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Overview

= Overview of fuzzy clustering

« Important representative: fuzzy c-means

= Overview of learning and tuning methods
= Inductive learning of fuzzy rules
« Fuzzy decision trees
« Numerical optimization of fuzzy systems

= Overview of other models and methods
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Clustering: Motivation

Labeled data (data whose classification is known) are
sometimes not available

= Sometimes not even the classes and their characteristic
features are known

Data reduction

For such purposes, it Is necessary to identify significant
groups of data points, so-called clusters

Clusters are data groups in which the points have small dis-
tances/high similarity, where the different clusters have a large
distance/low similarity.
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Basic Requirements

l. CiU---UCkrg =X
2. C;~=Qfori=1,...,K
3. CiﬂCjz@fOl'i:1,...,KWithi#j
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Prototype-Based Clustering

» |Instead of a complete set description, every cluster C;
IS represented by a typical value v;, which can usually
be interpreted as the center of the cluster

= The distance to the nearest prototype determines to
which cluster a data point belongs, i.e. x;, € C; If

K
I3 = vill = min [lxg = vy
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The c-Means (CM) Model

Obijective function to be minimized:

K

Jeu(U VY=Y ke =vill? =) ) ugllxg — il
1 =1 XkECi 1=1 k=1

Computation of prototypes:

Z X, = Zk 1 Wik Xk (1)

x1.€C; Zk‘:l Uk
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The c-Means Algorithm

1. Given: data set {x1,...,xy;} € R"™ norm ||.|| on R™, pre-
defined number of clusters K, maximum number of itera-
tions tmax, distance measure ||.||», threshold

2. Initialization: V(9 C R”

3. Fort =1,...,tmax doO:
= Determine U® (VD) (nearest prototype)
= Determine VO (UW®) (by Eq. (1))
o if |V — VED], < e, stop

4. Output: partition matrix U, set of prototypes V
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The Fuzzy c-Means (FCM) Model

Objective function to be minimized:

K M
Jrem (U, V) =) Y ull|lxy — vil|?

1=1 k=1

Computation of prototypes:

M m
v, = Zkzl U Xk (2)

M
D k=1 Uik

Update of partition matrix:
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The Fuzzy c-Means Algorithm

1. Given: data set {xi,...,xyp} € R", norm [.|| on R",
predefined number of clusters K, sharpness exponent m,
maximum number of iterations tmax, distance measure
|.]|v, threshold ¢

2. Initialization: V(9 C R”

3. Fort=1,...,tmax dO:

= Determine UM (V) (by Eq. (3))
= Determine VO (UW®) (by Eq. (2))
n if VO — VED|, < ¢, stop

4. Output: partition matrix U, set of prototypes V
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Adaptive Variants

Different distributions and sizes of clusters usually lead to suboptimal
results with CM/FCM. In order to adapt to different structures in data,
problem-specific distance measures can be used.

The Gustafson-Kessel (GK) Model.

K M
Jax (U, V) =) ull (g — vi) T A (g, — vy))
i=1k=1
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Learning and Tuning: Motivation

= |n all our studies so far, we considered the fuzzy sets and

rules as given.
But where do they actually come from?

= Often they are provided by experts that have sufficient
knowledge of the given control/classification task.
Even in such a case, how can we optimize the parameters?

= |[n many cases, however, there is nothing known.
What do we do then?

According to these motivations, numerous methods for con-
structing/optimizing fuzzy systems from example data have
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Learning and Tuning: The Basic Setup

= Suppose we have a problem in which an output y should be as-
signed to an n-dimensional input vector (z1,...,zn), Where the
output is either a class label (classification) or a numerical value
(interpolation/control/prediction)

= Suppose we have M data samples (z7,...,23;4) (j = 1,..., M)

= If we denote the output of an appropriate fuzzy system with

F(x1,...,zn), the goal is to find parameters (fuzzy sets, rules)

such that the output for each input sample (x{, . ,:c%) IS as close
to yJ as possible. Simple variant of an error measure:

M

Z (F(azjl,,a:%) —yj)2
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Example: The Wine Data Set

Inputs: Chemical Parameters: Alcohol, Malic Acid,
Ash, Alkalinity of Ash, Magnesium, Total Phenols,
Flavonoids, Non-Flavonoid Phenols, Proanthocyanin,
OD280/0OD315 of Diluted Wines, Proline Optical
Properties: Color Intensity, Hue

Output parameter: vineyard

Goal: Iidentify relationships between properties of wines
and the vineyard they originate from
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Overview of FS-FOIL

» FS-FOIL is based on a well-known machine learning
method (First-Order Inductive Learner)

= |t tries to describe the data samples fulfilling a cer-
tain goal predicate by means of assertions about the
Input variable; this is done by sequential coverage;
the choice of predicates for this stepwise refinement
IS based on an information gain measure

» Fuzzy sets are chosen a priori according to the distri-
bution of sample data (by means of clustering)
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The Language

t("z 1S A%|zg) = pa(zo)
t(“z 1S NOT A”|z0) = 1 — pua (o)
t(“z 1S AT LEAST A’|z0) = sup{ui(v) |y < xo)
t("z IS AT MOST A”|zg) = sup{ua(y) |y > zo}

Fuzzy Logic | 246



T
e

Gl
<V JOHANNES KEPLER
UNIVERSITAT LINZ

rrrrrrrrrrrrrrrrrrrr , Lehre und Praxis

Example: FS-FOIL Rules for the Wine Data Set

= THEN

Rule 1. | (Flavonoids IstAtLeast High AND ClassiIs 1

Proline IsAtLeast High)

Rule 2: | (Alcohol IsAtMost Low) OR

(Flavonoids Is High AND Alcohol Is High AND
Proline IsAtMost Low) Class Is 2

Rule 3: | (OD2800D3150fDilutedWines IsAtMost Low) | Class Is 3
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Descriptive Data Analysis with FS-FOIL
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Descriptive Data Analysis with FS-FOIL
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Descriptive Data Analysis with FS-FOIL
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Descriptive Data Analysis with FS-FOIL

Fuzzy Logic |

Description
Cluster 1: | (Blue Is High) OR
(Red IsAtMost Low AND
Blue IsAtLeast VeryHigh)
Cluster 2: | Lightness IsAtMost Dark
Cluster 3: | Lightness IsAtLeast Light
Cluster 4: | (Hue Is Orange) OR

(Hue Is Red) OR
(Hue Is Yellow) OR
(Hue Is Green AND Lightness Is Normal)
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Overview of FS-ID3

s FS-ID3 is based on a well-known decision tree induc-
tion method (ID3)

= |t tries to split the data samples hierarchically by
means of a decision tree such that the data sets In
the leaf nodes are as homogeneous as possible

= |n order to do the splits, FS-ID3 uses an information
gain measure

= Fuzzy sets are chosen a priori according to the distri-
bution of sample data (by means of clustering)
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Example: FS-ID3 Decision Tree for the Wine Data Set

o Cass_Is_Cl
() Cass_|Is_C2
o Class_Is_C3

Fl avanoi ds_| sAt Least _L
Proline_| sAtLeast_M

Cass_|s_Cl —

48. 151

Al cohol _I sAt Most _L

61.9777 F
Class_|Is_C2 —
41. 7269
Max. |evel reached HMaxLe\—
20. 3492

Col orlntensity_| sAtLeast _

Cass_|s_C3 —

38. 1041

Mal i cAci d_I sAt Least _H

10.7671 F
Class_|s_C3 —
1.09033
Class_Is_ Q2 _
9. 85602
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Numerical Optimization of Sugeno/TSK Fuzzy Systems

= The optimization problem is linear w.r.t. the coeffi-
cients and highly non-linear w.r.t. the parameters de-
scribing the fuzzy sets

= Taking interpretability into account results in a rela-
tively large number of constraints

= The problem is ill-posed, i.e. the solution of the data
fitting problem depends on the data samples in a dis-
continuous way; therefore, the solution Is unstable
with respect to perturbations (in particular, noise) in

ruzzy Lt data 251
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RENO

= ... stands for Regularized Numerical Optimization of
Fuzzy Systems

= RENO Is a highly efficient numerical method for op-
timizing Sugeno/TSK fuzzy systems with the use of
regularization

= RENO can also be applied to the a posteriori tuning
of fuzzy systems constructed with FS-ID3/FS-FOIL
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Spectral Data Function with Noisy Measurements
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Spectral Data Function with Noisy Measurements

Smoothing &
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Spectral Data Function with Noisy Measurements

Tikhonov &
regularization
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Sugeno Rule Base ldentified from Noisy Data

Rule: Antecedent

Consequent singleton

Consequent label

R1 : If x is Negative Big then y=-7.908 Negative Medium
R2 : If x is Negative Medium then y=-5.671 Negative Medium
R3 : If x is Negative Small then y=-13.784 Negative Big

R4 : If x is Negative very Small then y=-1.960 Negative Small
R5 : If x is Positive very Small then y=2.367 Positive Small
R6 : If x is Positive Small then y=19.524 Positive Big

R7 : If x is Positive Medium then y=5.943 Positive Medium
R8 : If x is Positive Big then y=8.022 Positive Medium

Fuzzy Logic |
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Overview of Other Learning/Tuning Methods

» Methods based on clustering (ANFIS, GENFIS, etc.)
= Neuro-fuzzy networks

= Genetic optimization of fuzzy systems
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