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Abstract: We use BRIEF binary local image descriptors as minutia descriptors
for indexing of biometric fingerprint databases. Tests with varying descriptor size
and parametrization are performed on a proprietary database. Compared with
the speed of an implementation of conventional minutiae matching, we find that
BRIEF descriptors are fast enough for database indexing. The tested descriptors
outperform two other image descriptors (LBP, HoG) from recent literature with
respect to matching rates and average penetration rates.
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1 Introduction

1.1 Fingerprint indexing

Executive state agencies have aggregated huge fingerprint databases nowadays. In order to
find a given fingerprint image against such a database, it is not feasible any more to do a
brute-force search across all entries. The database needs to be indexed instead. This means
that each fingerprint image is represented not only by its match template, but also by a
feature vector (also called “descriptor” or “hash”). These vectors do not need to have same
lengths; they have to be comparable however. The representation needs to be selected such
that images of the same finger yield feature vectors that are as similar as possible, and that
vectors of different fingers are as different as possible. The set of feature vectors is then
called “index”. Measuring feature vector similarity defines the database search order.

The identification of a query image then works in the following steps:

1. Compute the query finger’s feature vector.

2. For each index entry, compute the similarity of the entry and the query finger’s feature
vector.

3. Sort all database entries in descending order of similarity.

4. For each entry in the sorted database, try to match the query finger until a match is
found, or the database is fully scanned.
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If, in step 3, the best “candidates” are sorted to the front of the database, then in step
4 only a few finger-finger matchings are necessary. Hence, for such an index to be useful,
comparing two feature vectors in step 2 needs to be extremely fast compared to ordinary
finger-finger matching. Additionally, it is desirable that feature vector computation is fast,
and that the vectors are small in terms of computer memory consumption.

Many indexing representations have already been proposed. Surveys are given e.g. by
Maltoni et al. (2009), Cappelli, Ferrara, and Maio (2011), and Yang (2011). One can
distinguish between approaches that only consider minutia (or minutiae triplet) information,
and others which also process image or orientation information:

Representation by minutiae: In fingerprint matching, most of the known methods are
based on minutiae. This suggests using them for indexing, too.

An example is the “Minutia Cylinder Code” (Cappelli, Ferrara, and Maltoni, 2010)
— a minutia representation that only uses standardized minutiae templates and is time
efficient (Cappelli, Ferrara, and Maltoni, 2011).

Xu et al. (2009) present a method based on the Fourier-Mellin transformation. All
minutiae are represented as Gauss functions (i.e. smoothed Dirac functions) at their
respective position. This creates a descriptor of an image’s whole minutiae set which
is invariant to translation, rotation and scaling, and whose size is fixed (but possibly
very large).

Representation by image information: Most of the known fingerprint indexing methods
integrate information from the initial grayscale image or from the orientation image
into the feature vector computation.

For example, Nanni and Lumini (2009) decompose a fingerprint image into a grid of
overlapping squares. For each of these squares several characterization numbers are
computed. Together with a complex distance function those numbers are then used to
estimate the similarity of two images.

Another variant is to center a fingerprint image at its core for generating a feature
vector. This happens e.g. in FingerCode (Jain et al., 2000), where a series of centered,
Gabor-filtered images are processed.

Many works follow a hybrid approach (called “texture-based local structures” by
Maltoni et al., 2009, section 4.4.3): each minutia is characterized by a descriptor; it is
computed from the local minutia environment in the fingerprint image, the orientation image
or similar. The feature vector corresponding to the fingerprint image then consists of all
minutiae’s descriptors. The present work also takes this hybrid approach.

1.2 Image based minutia descriptors

A minutia descriptor contains information that, in addition to position and direction, makes
a minutia better identifiable and discriminable from other minutiae. In combination with a
similarity measure on descriptors, these are suitable for finding pairs of matching minutiae
between the queried fingerprint image and the reference image. This “local matching” (or
“correspondence problem”, Feng and Zhou, 2011) serves to measure similarity between
query and reference image.

In recent years, many minutia descriptors have been proposed and evaluated. An
overview is given by Feng and Zhou (ibid.), where three kinds of minutia descriptors are
described:
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• Image based: The descriptor is computed directly from the image in the minutia
environment (either from the original grayscale image, or after preprocessing like
e.g. binarization).

• Texture based: The descriptor is determined by orientation and ridge frequency in the
environment of the minutia. Examples are (Feng, 2008) or the SIFT-based descriptor
of Park, Pankanti, and Jain (2008).

• Minutiae based: Here one can distinguish between “nearest-neighbor based” and
“fixed-radius based” descriptors (Feng and Zhou, 2011).

Subsequently, Feng and Zhou (ibid.) evaluate seven different minutia descriptors in four
separate scenarios. In three of those scenarios (good quality, bad quality, large distortion)
Minutia Cylinder Code descriptors (Cappelli, Ferrara, and Maltoni, 2010) score best; in one
scenario (low overlap) a texture-based descriptor (Feng, 2008) is best.

Nanni and Lumini (2009) propose a method for image based matching with several
different texture descriptors, including Gabor filters, invariant Local Binary Patterns (LBP,
Ojala, Pietikäinen, and Harwood, 1996; Ojala, Pietikainen, and Maenpaa, 2002), and
Histogram of Gradients (HoG, Dalal and Triggs, 2005). From these descriptors, the authors
generate 176 features by varying parameter configurations. Sequential forward floating
selection (SFFS) is then used to select the most capable configurations.

An extensive overview of image based minutia descriptors is given by Yang (2011).
In addition to the above mentioned ones, Yang (ibid.) also describes descriptors that are
based on Discrete Wavelet Transformation and Discrete Cosine Transformation, as well as
descriptors based on statistical moments.

1.3 Binary local descriptors

Algorithms for the extraction of local image properties like SIFT (Scale-Invariant Feature
Transform, Lowe, 2004) or SURF (Speeded Up Robust Features, Bay et al., 2008) were
created in recent years for dealing with general image processing tasks like matching,
tracking, stitching, and 3D reconstruction. These algorithms usually consist of two steps: a
“detector” finds prominent “interest points”, and a descriptor computes preferably unique
representations of these points.

Time and memory efficiency is in focus here. One approach is to represent descriptors as
binary vectors that can be processed and compared faster (Heinly, Dunn, and Frahm, 2012).
Examples for such efficient binary descriptors are BRIEF (Binary Robust Independent
Elementary Features, Calonder et al., 2010; Calonder et al., 2012) and ORB (Oriented FAST
and Rotated BRIEF, Rublee et al., 2011).

In the context of fingerprint recognition, two approaches are possible: Extractors like
SIFT or SURF can be used both as a detector of interest points, and as a descriptor to
characterize them; this is e.g. done by Park, Pankanti, and Jain, 2008 and He, Zhang, and
Hao, 2010. Since different detectors and descriptors can be combined (Heinly, Dunn, and
Frahm, 2012), it is also possible to use an existing minutiae extraction as detector, and
add another descriptor to enhance minutiae differentiability. This approach has not been
followed often; one example is (Laadjel et al., 2010), where palm prints are matched via
minutiae.
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1.3.1 BRIEF descriptors

Base idea of the BRIEF descriptor (Calonder et al., 2010; Calonder et al., 2012) is that
the environment of a point can be characterized by a number of pair-wise gray value
comparisons. For this, a set of n random, but fixed point pairs (pi, qi) is generated as a test
pattern for an s× s environment. For the environment U(M) of a minutia M , this pattern
defines a series of n binary tests as

t(U(M); pi, qi) =

{
1 if I(U(M), pi) < I(U(M), qi)

0 otherwise
(1)

with I(U(M), p) being the (gray) value of the environment U(M) at position p. The
result is a binary string of length n that characterizes the environment and therefore its
center M . The authors of ibid. further examine several variants: either the test pattern is
rotated (oriented, O-BRIEF), scaled (S-BRIEF), or used upright and unscaled (U-BRIEF).
Also different point pair distributions are tested there.

2 Method and test setup

2.1 Database

Our industry partner has provided us with a set of 4658 fingerprint images, recorded from a
capacitive sweep sensor with 500 dpi resolution. This image set was taken from 96 persons.
It contains about 8 images per finger, mostly from the forefingers, middle fingers, and ring
fingers. The given data was not selected specially for our work. Moreover, we did not remove
any images from the database, although some images show “stitching artifacts” from image
acquisition and some images only display a quite small finger contact area.

For our indexing tests, we assigned the first image of each finger to the reference database
of size 466. The other 4192 images serve as query fingers, for which the matching finger is
searched in that database.

In our tests, fingerprint images were preprocessed by the proprietary fingerprint software
of our company partner, written in C++. In particular, minutiae were computed for each
fingerprint image. On average, 26.7 minutiae were found per image. For 85 images, or 1.8
% of the database, ten or less minutiae were found, which might be problematic for any
minutiae-based matching algorithm.

2.2 Descriptors

The aim of the present work was to find a time and memory efficient minutia descriptor for
fast and still powerful “local matching” of fingerprints, allowing to index large fingerprint
databases. Since our data was recorded with a sweep sensor, the images are oriented quite
upright. In our database, nearly all fingerprint images (99.9 %) are rotated by less than 11
degrees w.r.t. other images of the same finger. Hence, the wanted descriptor only needs
minor rotation invariance. Additionally, it does not need to be scale invariant.

As we strived for fast descriptors, a simple descriptor such as BRIEF seemed to be more
feasible than more complex descriptors such as SIFT and SURF. We have implemented the
following descriptors in C++, embedded in the proprietary fingerprint matching software of



Fingerprint Indexing via BRIEF Minutia Descriptors 5

our industry partner. In this environment, a list of detected minutiae (position and direction),
smoothed gray-level and binarized versions of the original image, as well as an orientation
field are already available.

2.2.1 BRIEF descriptors

In order to optimize both for discriminatory power and computation speed (and, to a lesser
extent, memory size), we considered some variations of the BRIEF descriptor.

• Descriptor length: The length of a descriptor obviously influences the time it takes to
compute and compare it, as well as the amount of information it can hold. Calonder
et al. (ibid.) considered descriptor of 16, 32, and 64 bytes in size. In order to determine
an optimal BRIEF size, we tested BRIEF descriptors of 8, 16, 24, 32, and 64 bytes.

• Spatial distribution: In the process of creating the random test pattern for BRIEF
descriptors, one might impose some restrictions. Calonder et al. (ibid.) give several
examples for such variations. We tested “free” patterns generated without any
restrictions versus patterns which were “restricted” in the following way: circular
instead of quadratic patch; no reuse of test points (to impede fingerprint reconstruction);
and a minimum distance of compared points (to integrate knowledge about possible
ridge frequencies). Note that enforcing points not to be reused also limits the number
of possible point pairs, i.e. the size of the maximum descriptor.

• Binarized vs. gray-level image: As binarized images were available in our environment,
we tested whether using binarized images makes computations faster or not. In this
case, we used I(U(M), p1) 6= I(U(M), p2) (instead of “<”) in test t(U(M); p1, p2).

• Minutiae orientation: Since directions of all minutiae were already computed, we could
easily test the effect of using the test pattern “upright” versus using the test pattern
“oriented”, i.e. rotated into minutiae direction.

Combining these possibilities gives a number of BRIEF descriptor variants. Our names
denote whether the descriptors are free (“F”) or restricted (“R”), “binarized image” (“BN”)
or “gray-level image” (“GL”), upright (“U”) or oriented (“O”), and finally give the size of
the test pattern in bytes. For instance, RGLU-BRIEF-8 denotes a BRIEF descriptor which
uses a restricted test pattern of 8 bytes, used upright on the gray-level image. Figure 1
shows three possible BRIEF patterns.

Figure 1 Examples of BRIEF patterns: left: even distribution on a square; middle: even distribution
on a disk, with additional constraints; right: even distribution in polar coordinates.
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2.2.2 HoG descriptor

Histogram of Gradients was introduced by Dalal and Triggs (2005) to detect pedestrians
in arbitrary images. Nanni and Lumini (2009) examined HoG and other methods for their
suitability to match fingerprints. In our test environment, a computed orientation field is
already available. We calculated the HoG descriptor via a histogram of 12 bins, sampled
in an s× s environment of a minutia M , based on the orientations relative to the minutia
orientation. The histogram was then normalized, resulting in a descriptor of 12 bytes in
size.

2.2.3 LBP descriptor

Local Binary Patterns was first proposed by Ojala, Pietikäinen, and Harwood (1996) as a
powerful descriptor of textured images that is easy to compute. In the original version, the
eight neighbors of the point M are compared with the grayscale value of M : smaller values
are set to 0, larger ones to 1. By this, one gets eight bits, encoding a value from 0 to 255.
Later, Ojala, Pietikainen, and Maenpaa (2002) refined and extended this method to larger
environments to get invariant descriptors. There, not only a single value, but a histogram of
values in the environment of M is generated.

For our approach, we reduced the number of neighbors to four. Hence, each pixel is
encoded as a value between 0 and 15. The frequency of these values is collected in a
histogram with 16 bins over an s× s environment of M , resulting in a descriptor of 16
bytes.

2.3 Fingerprint matching

In order to compare a query finger with the database index, two sets of minutia descriptors
need to be compared for each index entry. For this, we iteratively find the best matching
descriptor pair, until only dissimilar descriptors are left over (dependent on a threshold). To
find these best pairs, we use the Hamming distance of the bit strings for BRIEF descriptors,
and the cumulated histogram difference for HoG and LBP descriptors. Throughout our tests,
two different fingers of the same person were not allowed to match, even if this false match
would be harmless in practice.

As described, directions of matching minutiae do not differ very much in our database.
We therefore only need to compare the descriptors of those minutiae whose directions are
similar. This reduces computation time as well as the frequency of accidental descriptor
matches (which reduce the indexing result).

3 Results

In the following, we report the results of two different test runs. In the first test, we compared
BRIEF descriptors of several sizes, namely all ten RGL[U/O]-BRIEF-[8/16/24/32/64]
variants. In the second run, we fixed the size of BRIEF descriptors to 16 bytes, and compared
all eight [F/R][BN/GL][U/O]-BRIEF-16 variants with HoG-12 and LBP-16 descriptors.

Since a BRIEF descriptor is computed by a random test pattern, we repeated BRIEF
tests 100 times, and report the minimum, mean, and maximum results. For HoG and LBP
descriptors, it suffices to run them once.
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3.1 Indexing performance

A well established way to measure the performance of fingerprint indexing and retrieval
methods is the average penetration rate (Maltoni et al., 2009). It is the database search depth
necessary to find the first matching entry, averaged over all query fingers. In our case, a
value of e.g. 1.00 % means that, on average, only 4.66 entries in our database have to be
examined until a match is found.

Figure 2 Average penetration rate per BRIEF descriptor size. Maximum (i.e., worst), mean and
minimum (i.e., best), in percent of the database.

Figure 2 shows the average penetration rate of our tests using different BRIEF descriptor
sizes. As is to be expected, larger descriptor sizes result in lower (i.e. better) average
penetration rates. There is a notable performance increase when switching from BRIEF-8
to BRIEF-16 descriptors. However, further increasing BRIEF size beyond 16 bytes yields
only marginal increases in performance.

Hence, it was reasonable to fix this size to 16 bytes, and test several BRIEF variants in
comparison to HoG-12 and LBP-16. The result of this second test run is shown in figure 3.
Roughly speaking, a “restricted” pattern performs better than a “free” one; sampling from
gray-level images is better than sampling from binarized images; and rotating the BRIEF
pattern in minutia orientation is better than using the BRIEF pattern upright. Also note that
most BRIEF variants outperform HoG-12 and LBP-16.

Another way to compare different indexing algorithms is the percentage of unmatched
queries dependent on the searched database portion (see ibid., Cappelli, Ferrara, and
Maltoni, 2011). This number is called “error rate”, the used percentage of the database
is called “penetration rate”, and their relation is called “indexing performance”. Note that
these measures assume perfect minutiae matching in order to examine indexing quality
independent of minutiae matching quality.

There is a trade-off between error rate and penetration rate: the more of the database is
accessed (with corresponding duration), the more entries are found. Zero percent penetration
means 100 % error, while useful indexing means that low error rates can already be reached
with much less than 100 % penetration.
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Figure 3 Average penetration rate of descriptor types and variants. Maximum (i.e., worst), mean
and minimum (i.e., best), in percent of the database.

Figure 4 shows indexing performances for some selected descriptors. The error rate of
HoG and LBP smoothly decreases with increasing penetration rate. There is a notable error
rate “plateau” from about 30 % and 60 % penetration rate when using RGLO-BRIEF-16.
Figure 4 (right) shows that this behavior can be seen for many BRIEF-16 descriptors. The
reason for this behavior remains yet to be determined.

Figure 4 Comparing indexing performance of several tested descriptors (n = 100).

One cannot expect that the matching procedure described above can be a replacement
for established fingerprint matching algorithms. However, the method often sorts the correct
entry to the very first position of the database. The frequency of this event can be seen as
the “matching rate”, and is shown in figure 5. In contrast to the average penetration rate,
the matching rate tends to increase with BRIEF descriptor size beyond BRIEF-16.

3.2 Index operation speeds

Whereas the proprietary fingerprint software we work with usually runs on embedded
hardware, our tests took place on conventional desktop processors. Hence, it is difficult to
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Figure 5 Matching rate by BRIEF descriptor size. Minimum (i.e., worst), mean and maximum
(i.e., best).

Computation step Time
Compute RGLU-BRIEF-16 descr., per image 58.4
Match RGLU-BRIEF-16, per image pair 9.2
Compute RGLO-BRIEF-16 descr., per image 298.5
Match RGLO-BRIEF-16, per image pair 9.4
Match minutiae template, per image pair 156.3

Table 1 Average measured durations of computation steps (in microseconds, n = 100).

compare absolute time measurements. It is reasonable, however, to compare the durations
of individual computation steps relative to each other.

In our timing experiments, we observed no significant difference between the F/R
and BN/GL variants of descriptor computation. The only notable difference was that the
computation of oriented descriptors is about five times more expensive than computation of
the unoriented counterparts. This does not matter much, however, since the database index
only needs to be precomputed once, and the query image’s descriptors also just needs to be
computed once.

Table 1 shows average computation times for the two descriptors RGLU-BRIEF-16
and RGLO-BRIEF-16, as well as for the conventional extraction and matching algorithms
of the proprietary fingerprint software. Note that these times do not include time for image
preprocessing and the extraction of minutiae.

As stated above, comparing the descriptors of two images must be extremely fast for
indexing to be useful. This is indeed the case here, as BRIEF-16 descriptor matching is
about 15 times faster than conventional template matching. Even for databases of small
size, the additional cost of computing the query finger’s BRIEF descriptors is outweighed
by the fact that only a small number of conventional template matchings have to be made
afterwards.
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4 Conclusion

We have implemented a series of image based minutia descriptors into fingerprint matching
software. Indexing comparisons with two state-of-the art methods on a fingerprint image
database show that oriented BRIEF descriptors give better indexing performance and
average penetration rates with at the same time low computational effort and memory
consumption. We therefore conclude that BRIEF minutia descriptors are suitable and
beneficial for fingerprint indexing.

Additionally, for some descriptors, matching rates of more than 95 % can be achieved.
This means that matching based on BRIEF descriptors can be used as a supplement to
conventional template matching.
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