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Abstract

We introduce a framework within which reasoning according to
ÃLukasiewicz logic can be represented. We consider a separable
Boolean algebra B endowed with a (certain type of) group G of
automorphisms; the pair (B, G) will be called a Boolean ambi-
guity algebra. B is meant to model a system of crisp properties;
G is meant to express uncertainty about these properties.

We define fuzzy propositions as subsets of B which are, most
importantly, closed under the action of G. By defining a con-
junction and implication for pairs of fuzzy propositions in an
appropriate manner, we are led to the algebraic structure char-
acteristic for ÃLukasiewicz logic.

Key words: ÃLukasiewicz logic, MV-algebra, Boolean algebra,
Boolean algebra with an automorphism group

1 Introduction

Since the times when many-valued logics were introduced, the ques-
tion has been raised again and again which kind of properties the
propositions of these logics actually express. Numerous suggestions
to gain a better understanding were made; for a general overview, see
e.g. [13]. We are primarily interested in many-valued logics which are
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based on a t-norm and its corresponding residuum. A nice compilation
of approaches of how to interpret t-norm based logics can be found
in J. Paris’s article [11]. Among the approaches followed at present,
we want to mention the dialogue-game based semantics, going back
to R. Giles and later elaborated in particular by C. Fermüller; see
e.g. [3, 4].

The present article aims at a better understanding of the meaning
of ÃLukasiewicz logic [2]. It was actually not our original intention to
focus on this specific logic, and so we will not justify this choice by
referring to the common agreement about its particular importance.
As a matter of fact, it simply was this logic which “came out” in the
end. We add our conjecture that our approach can be modified so as
to cover also weaker logics and in particular Hájek’s Basic Logic [6].

Generally, our approach to the foundational problem of fuzzy logics
is as follows. We intend to provide a framework within which a system
of entities suitable to interpret propositions of many-valued calculi can
be singled out, and which furthermore allows us to define a conjunction
and an implication in a natural way. There should be a clear evidence
that our basic understanding of many-valued logics is supported.

In this paper, we will work out a simple idea how such a framework
could look like. To understand this idea, consider, for a moment, the
case of classical propositional logic. Here, we may choose as the primary
semantical notion a system of subsets, representing yes-no properties.
Systems of subsets, endowed with the set-theoretical operations, are
Boolean algebras and may serve as a framework for classical proposi-
tional logic.

Now, we will generalise this framework so as to model statements
with which a certain uncertainty is associated. Note that this is in
contrast to most approaches to interpret fuzzy logics, where vagueness
is the primary notion. What we propose is to model a fuzzy property
by a subset of a Boolean algebra rather than a single element. Namely,
we assume that we have to do with properties which are perceivable
only up to the action of some group of automorphism acting on the
Boolean algebra. Accordingly, a subset modelling a fuzzy property is
required to be closed under the action of this group.

So our framework will consist of a Boolean algebra and an auto-
morphism group. We note that the group may be the trivial, i.e. the
one-element one; in this case we get classical logic. Otherwise, by de-
termining carefully the details of the system of subsets of the Boolean
algebra, of the operations on it, and of the automorphism group, we
are more or less naturally led to the kind of algebra corresponding to
ÃLukasiewicz logic: MV-algebras.
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We should underline that we share our principal aims with the ar-
ticles [3], [10], and several of those reviewed in [11]; our approach,
however, is a rather specific one. At least, we may say that the gen-
eral idea – to start with an abstract structure and defining from it all
what is needed –, is found also elsewhere, in particular in case of the
formalism in [10]; but it will be hard to find anything more in common.
With respect to the mathematical content of our work, the picture is
certainly different. Let us mention the related work of Cignoli, Dubuc,
and Mundici, who established that Boolean algebras endowed with one
automorphism whose orbits are all finite, correspond to locally finite
MV-algebras [1]. Furthermore, one way which we propose here for the
interpretation of connectives, is very similar to what appears in Ono
and Komori’s work [9]. Note finally that the present paper follows the
lines of our note [14]. However, the concept of [14] is different and the
described formalism is not a special case of the formalism presented
here.

Let us summarise our results. We study so-called Boolean ambiguity
algebras, which are pairs (B, G) of a separable Boolean algebra B and a
group G of automorphisms of B. We will first, in Section 2, assume that
the Boolean algebra is complete, and we will define fuzzy propositions
as the orbits of G, that is, as the sets {g(a) : g ∈ G} for a ∈ B.
We require G to be compact – meaning that no element has infinitely
many pairwise disjoint images [7] – and full [5]. We will may make
use of parts of the theory developed by Kawada in [8]. In particular,
we will see that the set of fuzzy propositions is lattice-ordered in a
natural way and that we may define a conjunction and an implication
in a straightforward manner. The resulting structure is an MV-algebra.
Moreover, in the subsequent Section 3, we show that the connectives
take a particularly easy form when representing the group orbits in a
certain alternative way. In particular, the conjunction becomes simply
the pointwise Boolean meet.

In the additional Sections 4 and 5, a variant of this formalism is de-
veloped; the difference is that the completeness assumption is dropped.
This means that Kawada’s results no longer apply and that we are
forced to require rather strong conditions for G to be able to derive
similar results as before.

Finally, we will see that the MV-algebras which are representable
either by means of the basic concept or the variant of it, suffice to
generate the whole variety. So we may provide alternative semantics
for ÃLukasiewicz logic based on Boolean ambiguity algebras (Section 6).
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2 The orbit algebra of a
complete Boolean ambiguity algebra

In this article, we examine pairs (B, G), where B is a Boolean algebra
and G is a group of automorphisms of B. We should have the following
picture in mind. An element of B should be thought of a sharp property
arising in some context. We furthermore assume that, due to principal
limitations of our observational capabilities, we may determine any such
property only up to the action of G; for any a ∈ B and g ∈ G, we are
supposed not to be able to distinguish between a and g(a).

This picture motivates us to study the set of all G-orbits of B; a
G-orbit is a subset of B of the form {g(a) ∈ B : g ∈ G} for some a ∈ B.
In a first step, we will consider the case that the Boolean algebra is
complete. By this assumption, we may make use of results of Kawada,
contained in his famous work [8] to derive the existence of invariant
measures.

Note, however, that we will not use Kawada’s main result; we will
not rely on the existence of an invariant measure. If we wanted, we
would have to require additionally either the ergodicity of the group or
the measurability of the invariant Boolean subalgebra. For an approach
which does rely on measures, see [14].

A Boolean algebra is a structure (B;∧,∨,¬, 0, 1) such that (B;∧,∨,
0, 1) is a distributive 0, 1-lattice and ¬ a complementation function. We
write a \ b = a∧¬b and a→ b = ¬a∨ b for a, b ∈ B. For general infor-
mation about Boolean algebras, we recommend [12]; for automorphism
groups, see e.g. [5, Section 381].

A Boolean algebra with a countable dense subset is called separable.
Furthermore, for an automorphism g of a Boolean algebra and one of
its elements a, we denote by g|a the restriction of g to the interval [0, a].

Definition 2.1 Let B be a separable Boolean algebra, and let G be a
group of automorphisms of B. Then we call the pair (B, G) a Boolean
ambiguity algebra.

For a, b ∈ B, we write a ∼ b if b = g(a) for some g ∈ G. We
furthermore write a ⊥ b if there are no non-zero a0 ≤ a and b0 ≤ b such
that a0 ∼ b0. Given (B, G), we introduce the following notions.

(i) We call G compact if for all non-zero a ∈ B, every set of pairwise
disjoint elements of the form g(a), where g ∈ G, is finite.

(ii) Let B be σ-complete. We call G full if for any two partitions of
unity (ai)i≤λ and (bi)i≤λ, where λ ≤ ω, and a system gi ∈ G,
i ≤ λ, such that gi(ai) = bi, the automorphism g defined by
g|ai = gi|ai , belongs to G as well.



A framework for ÃLukasiewicz logic 5

The Boolean ambiguity algebra (B, G) will be called complete if B is
σ-complete and G is compact and full.

In view of the intended interpretation of our notions, the relation ∼
means the indistinguishability of elements, and ⊥ means distinguisha-
bility in a strict sense.

Compactness of an automorphism group is a variant of the notion
“weakly wandering” in [7]. It expresses that the uncertainty about a
proposition a multiplies the extent of a by a finite number only. The
notion of fullness is taken from [5]. It means that each automorphism
which we may define piecewise from those existing in G, is in G as well.

The relation ∼ is a specialised version of the equally denoted notion
in [8]. In certain proofs, we will need the original one as well, here
denoted by ∼∞. Namely, for elements a, b of a Boolean ambiguity
algebra, a ∼∞ b means that there are two countable sets a1, . . . and
b1, . . . of pairwise disjoint elements as well as g1, . . . ∈ G such that
a =

∨
i ai and b =

∨
i bi and gj(aj) = bj for every j.

We shall make use of the following facts [8, Lemmas 5, 6].

Lemma 2.2 Let (B, G) be a Boolean ambiguity algebra, and let B be
complete. Call a ∈ B finite if b ≤ a and a ∼∞ b imply a = b.

(i) a ∈ B is finite if and only if for any countably infinite set a1, a2, . . .
of pairwise disjoint elements such that ai ≤ a for all i < ω and
ai ∼∞ aj for all i, j < ω, we have a1 = a2 = . . . = 0.

(ii) Let a, b, c, d ∈ B be finite. If a ≤ b, c ≤ d, a ∼∞ c, b ∼∞ d,
then b \ a ∼∞ d \ c.

Lemma 2.3 Let (B, G) be a complete Boolean ambiguity algebra.

(i) Let a1, . . . and b1, . . . be two countable sets of pairwise disjoint
elements such that a =

∨
i ai and b =

∨
i bi; let g1, . . . ∈ G such

that gj(aj) = bj for all j. Then there is a g ∈ G such that
g|aj = gj |aj for each j.

In particular, for any a, b ∈ B, a ∼∞ b holds if and only if a ∼ b.

(ii) If a ∼ b and a ≤ b, then a = b.

Proof. By construction, a ∼ b implies a ∼∞ b.
Assume next a∧b = 0 and a ∼∞ b; let a1, . . ., b1, . . ., and g1, . . . ∈ G

as specified in (i). Define the automorphism g as follows: Let g|ai =
gi|ai and g|bi = g−1

i |bi for every i, and let g|¬(a∨b) = id|¬(a∨b). By
fullness, g is in G, and g(a) = b. So we have proved that a ∼ b is
equivalent to a ∼∞ b for orthogonal pairs a, b.
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Let now a ≤ b and a ∼∞ b; we shall show that then a = b. In
particular, assertion (ii) will then be proved. So let e1, . . . ≤ b be
such that, for i 6= j, ei ∧ ej = 0 and ei ∼∞ ej . By the preceding
paragraph, ei ∼ ej for i 6= j then, and by the compactness of G, it
follows e1 = . . . = 0. So by Lemma 2.2(i), we conclude a = b.

Assume finally a ∼∞ b. From Lemma 2.2(ii), we conclude ¬a ∼∞
¬b. By fullness, assertion (i) follows. ¤

Lemma 2.4 Let (B, G) be a complete Boolean ambiguity algebra.

(i) Let a < b, c < d, g(a) = c for some g ∈ G, and b ∼ d. Then
there is a ḡ ∈ G such that ḡ|a = g|a and ḡ(b) = d. In particular,
b \ a ∼ d \ c.

(ii) Let a, b ∈ B such that a ∼ b. Let c = (a∧ b)∨¬(a∨ b), d = a \ b,
e = b \ a. Then there is a g ∈ G such that g|c = id|c, g(d) = e,
g(e) = d.

Proof. (i) By assumption, g maps a to c and there is a h ∈ G
mapping ¬b to ¬d. So by Lemma 2.3(i), there is a ḡ such that ḡ|a = g|a
and ḡ|¬b = h|¬b, and ḡ obviously has the required property.

(ii) By part (i), there is a g ∈ G such that g(d) = e, implying also
g−1(e) = d. So the assertion follows from fullness. ¤

We will now exhibit the basic properties of the set of G-orbits in an
Boolean algebra.

Definition 2.5 Let (B, G) be a Boolean ambiguity algebra. For a ∈ B,
let [a] = {b ∈ B : b ∼ a}, and let 0 = [0] and 1 = [1]. Let O(B,G) =
{[a]: a ∈ B}.

For a, b ∈ B, let a ≺∼ b if a′ ≤ b′ for some a′ ∼ a and b′ ∼ b.
Furthermore, let a ≺ b if a′ < b′ for some a′ ∼ a and b′ ∼ b.

For ϕ,ψ ∈ O(B,G), we define ϕ ≤ ψ if a ≤ b for some a ∈ ϕ and
b ∈ ψ. We call (O(B,G);≤, 0, 1) the orbit preordered set or, if ≤ happens
to be a lattice order, the orbit lattice of (B, G).

Note that, for a, b ∈ B, a ≺∼ b is equivalent to [a] ≤ [b].

Lemma 2.6 Let (B, G) be a complete Boolean ambiguity algebra.

(i) Let a, b, c ∈ B such that a ≺∼ b ≺∼ c and a ≤ c. Then there is a
b′ ∼ b such that a ≤ b′ ≤ c.

(ii) Let a ≺∼ b and a, b ≤ c. Then c \ b ≺∼ c \ a.
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Proof. (i) Let b1, b2 ∼ b such that a ≤ b1 and b2 ≤ c. By Lemma
2.4(ii), b1 \ c ≤ b1 \ b2 ∼ b2 \ b1 ≤ c \ b1. It follows b1 \ c ∼ d for some
d ≤ c \ b1; so b′ = (c ∧ b1) ∨ d fulfils the requirements.

(ii) Let a′ ∼ a be such that a′ ≤ b. By Lemma 2.4(ii), a \ a′ ∼ a′ \ a.
So c \ a = (c \ (a∨a′))∨(a′ \ a) ∼ (c \ (a∨a′))∨(a \ a′) = c \ a′ ≥ c \ b.

¤

Let us cite one more fact from [8, Lemma 16].

Lemma 2.7 Let (B, G) be a complete Boolean ambiguity algebra. Let
a, b ∈ B. Then there is a pair e, f ∈ B of disjoint elements which are
invariant under G such that (α) a ∧ e ≺ b ∧ e or a ∧ e = b ∧ e = 0, (β)
b∧f ≺ a∧f or a∧f = b∧f = 0, and (γ) a∧¬(e ∨ f) ∼∞ b∧¬(e ∨ f).

Proposition 2.8 Let (B, G) be a complete Boolean ambiguity algebra.
Then ∼ is an equivalence relation, and (O(B,G);≤, 0, 1) is a bounded
lattice. 0 = {0} is the smallest and 1 = {1} is the largest element.
Moreover, for any a, b ∈ B, there is a b′ ∼ b such that [a∧ b′] = [a]∧ [b]
and [a ∨ b′] = [a] ∨ [b].

Proof. Clearly, ∼ is an equivalence relation, and ≺∼ is reflexive and
transitive. So (O(B,G); ≺∼ ) is a preordered set. It moreover follows from
Lemma 2.6(i) that ≺∼ is antisymmetric. So (O(B,G); ≺∼ ) is a poset with
the smallest element 0 = [0] and the largest element 1 = [1]. Evidently
[0] = {0} and [1] = {1}.

Let now a, b ∈ B. By Lemma 2.7, there is an e ∈ B which is invariant
under G and such that a ∧ e ≺∼ b ∧ e and b ∧ ¬e ≺∼ a ∧ ¬e. Because G
is full, there is a b′ ∼ b such that a ∧ e ≤ b′ ∧ e and b′ ∧ ¬e ≤ a ∧ ¬e.

We claim that [a ∧ b′] is the infimum of [a] and [b]. Clearly, a ∧
b′ ≺∼ a, b, that is, [a ∧ b′] ≤ [a], [b]. Let x ∈ B be such that x ≺∼ a and
x ≺∼ b. Then g1(x ∧ e) = g1(x) ∧ e ≤ a ∧ e ≤ b′ ∧ e and g2(x ∧ ¬e) ≤
b′ ∧ ¬e ≤ a ∧ ¬e for some g1, g2 ∈ G. Let g3 ∈ G such that g3|e = g1|e
and g3|¬e = g2|¬e, and it follows g3(x) = g1(x∧ e)∨ g2(x∧¬e) ≤ a∧ b′,
that is, x ≺∼ a ∧ b′.

Similarly, we may show that [a∨b′] is the supremum of [a] and [b]. So
(O(B,G);≤) is a lattice, and the infima and suprema are representable
in the asserted way. ¤

Lemma 2.9 Let (B, G) be a complete Boolean ambiguity algebra. Let
a1, a2, . . . , b ∈ B such that a1 ≥ a2 ≥ · · · and b ≺∼ a1, a2, . . .. Then
also b ≺∼

∧
i ai.

Proof. By Lemma 2.6(i), we see that there are a′1 ∼ a1, a
′
2 ∼ a2 such

that a′1 ≥ a′2 ≥ · · · ≥ b. So by Lemmas 2.3(i) and 2.4(i), a1 \
∧

i≥2 ai =
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(a1 \ a2)∨ (a2 \ a3)∨ . . . ∼ (a′1 \ a′2)∨ (a′2 \ a′3)∨ . . . = a′1 \
∧

i≥2 a
′
i. So

by Lemma 2.4(i), b ≤ ∧
i a
′
i ∼

∧
i ai. ¤

We now endow the orbit lattice of a complete Boolean ambiguity
algebra with two operations, which arise quite naturally.

Lemma 2.10 Let (B, G) be a complete Boolean ambiguity algebra. Let
a, b ∈ B. Then {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} has a minimal element, and
{[a′ → b′]: a′ ∼ a, b′ ∼ b} has a maximal element.

Proof. To prove the first part, let b′ ∼ b be such that [a ∧ ¬b′] =
[a] ∧ [¬b]. We claim that then a ∧ b′ represents the required minimum,
that is, a ∧ b′ ≺∼ a ∧ b′′ for any b′′ ∼ b. Indeed, let b′′ ∼ b; from
[a ∧ ¬b′′] ≤ [a] ∧ [¬b] = [a ∧ ¬b′], we conclude by Lemma 2.6(ii) that
a ∧ b′′ = a \ (a ∧ ¬b′′) Â∼ a \ (a ∧ ¬b′) = a ∧ b′.

Similarly, we proceed for the second part. This time, let b′ ∼ b
be such that [a ∧ b′] = [a] ∧ [b]. We claim that ¬a ∨ b′ represents
the required maximum, that is, ¬a ∨ b′ Â∼ ¬a ∨ b′′ for any b′′ ∼ b.
Indeed, let b′′ ∼ b; from [a ∧ b′′] ≤ [a] ∧ [b] = [a ∧ b′], it follows that
¬a ∨ b′′ = (a ∧ b′′) ∨ ¬a ≺∼ (a ∧ b′) ∨ ¬a = ¬a ∨ b′. ¤

The operations whose existence are assured by Lemma 2.10, are
those we are primarily interested in.

Definition 2.11 Let (B, G) be a Boolean ambiguity algebra. Assume
that the following infima and suprema exists for all a, b ∈ B:

[a]¯ [b] = inf {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b}, (1)
[a] → [b] = sup {[a′ → b′]: a′ ∼ a, b′ ∼ b}.

Then we call the structure (O(B,G);≤,¯,→, 0, 1) the orbit algebra of
(B, G). We then moreover define an additional unary operation on L
by ¬[a] = [a] → 0 for a ∈ B.

Proposition 2.12 Let (B, G) be a complete Boolean ambiguity algebra.
Let a, b ∈ B such that [a ∧ b] = [a] ∧ [b]. Then [a]¯ [¬b] = [a ∧ ¬b] and
[a] → [b] = [a→ b].

Proof. This is clear from Lemma 2.10 and its proof. ¤

We arrive at the main statement of this section: under the com-
pleteness assumption, the orbit algebra is actually an MV-algebra. For
unexplained notions and also alternative ways to define MV-algebras,
we refer to [2, 6].



A framework for ÃLukasiewicz logic 9

Definition 2.13 A residuated lattice (L;≤,¯,→, 0, 1) is called an -
MV-algebra if L is divisible and the operation ¬ = · → 0 is involutive.

Theorem 2.14 Let (B, G) be a complete Boolean ambiguity algebra.
Then the orbit algebra (O(B,G);≤,¯,→, 0, 1) is an MV-algebra.

Proof. We first prove that (O(B,G);≤,¯, 1) is an ordered monoid.
Clearly, ¯ is commutative, and 1 is neutral w.r.t. ¯. Furthermore, let
a, b, c ∈ B; let a′ ∼ a and b′ ∼ b be such that [a] ¯ [b] = [a′ ∧ b′]; then
([a]¯ [b])¯ [c] = min {[d∧ c′]: d ∼ a′∧ b′, c′ ∼ c} = min {[a′′∧ b′′∧ c′]:
a′′ ∼ a, b′′ ∼ b, c′ ∼ c}, whence associativity of ¯ follows. Finally, it
is easily seen that ¯ is in both arguments isotone.

We next show the residuation property. [a] ¯ [b] ≤ [c] obviously
holds iff there are a′ ∼ a, b′ ∼ b, c′ ∼ c such that a′ ∧ b′ ≤ c′; and
[a] ≤ [b] → [c] holds iff there are a′ ∼ a, b′ ∼ b, c′ ∼ c such that
a′ ≤ b′ → c′. So [a]¯ [b] ≤ [c] if and only if [a] ≤ [b] → [c].

We next prove [a]∧ [b] = [a]¯ ([a] → [b]). By Proposition 2.8, there
are a′ ∼ a and b′ ∼ b such that [a′∧b′] = [a]∧ [b]. Then, by Proposition
2.12, [a] → [b] = [a′ → b′]. Because ¬(a′ → b′) ≤ a′, we trivially have
[a′] ∧ [¬(a′ → b′)] = [a′ ∧ ¬(a′ → b′)], and again by Proposition 2.12
it follows that [a] ¯ ([a] → [b]) = [a′] ¯ [a′ → b′] = [a ∧ (a′ → b′)] =
[a′ ∧ b′] = [a] ∧ [b]. So L is divisible.

Finally, we obviously have ¬[a] = [¬a] for any a ∈ B; so ¬ is
involutive. ¤

We conclude the section with two examples; in one case, the full
automorphism group of a Boolean algebra is taken, in the other case
the trivial group.

Example 2.15 Let B be the finite Boolean algebra with n atoms, and
let G be the group of all automorphisms of B. Then O(B,G) = Ln, that
is, the n+ 1-element MV-algebra.

It follows that the class of MV-algebras arising according to The-
orem 2.14 from complete Boolean ambiguity algebras is large enough
such that we may base the semantics of ÃLukasiewicz logic on them. The
details are given in Section 6.

Example 2.16 Let B be a complete Boolean algebra, and let G be the
group consisting of the identity of B only. Then O(B,G) = {{a} : a ∈
B}; so in this case, the orbit algebra is isomorphic to B.
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3 The filter algebra of a
complete Boolean ambiguity algebra

According to the last section’s concept, unsharp propositions are mod-
elled by elements of the orbit algebra O(B,G), which is associated to
some complete Boolean ambiguity algebra (B, G). On O(B,G), we de-
fined a conjunction-like operation ¯ and an implication-like operation
→ on O(B,G) by (1).

The formulas (1) are quite easily comprehensible; still, it would be
desirable to interpret the basic operations of many-valued logics in a
more intuitive way. The present section is meant to contribute to this
aim. We will stay in the same framework as before, which is based on
a complete Boolean ambiguity algebra (B, G). However, we will work
with what we call G-filters rather than group orbits. We will prove that
the set of G-filters and the set of orbits are order isomorphic. Moreover,
the operations ¯ and →, when formulated with reference to the set of
G-filters, will take a particularly suggestive form.

In what follows, by an order σ-filter of a complete Boolean algebra,
we will mean a subset closed under the enlargement of elements and
closed under the infima of countable chains.

Definition 3.1 Let (B, G) be a complete Boolean ambiguity algebra.
An order σ-filter ϕ of B will be called a G-filter if (i) for any a ∈ ϕ and
g ∈ G, also g(a) ∈ ϕ, and (ii) for any a, b ∈ ϕ there is a g ∈ G such
that a ∧ g(b) ∈ ϕ.

Let F(B,G) be the set of all G-filters of B. For ϕ,ψ ∈ F(B,G), let
ϕ ≤ ψ if ϕ ⊇ ψ. Let moreover 0 = B and 1 = {1}. We will call
(F(B,G);≤, 0, 1) the filter poset or, if ≤ happens to be a lattice order,
the filter lattice of (B, G).

So the characteristic properties of a G-filter ϕ are: ϕ is closed under
the group action; and for a, b ∈ ϕ, not necessarily a ∧ b ∈ ϕ, but
a′ ∧ b′ ∈ ϕ for some a′ ∼ a and b′ ∼ b.

Lemma 3.2 Let (B, G) be a complete Boolean ambiguity algebra. For
a ∈ B, let

ϕa = {x ∈ B : a ≺∼ x}. (2)

Then ϕa is a G-filter.
Moreover, every G-filter is of this form.

Proof. Let a ∈ B. ϕa is clearly an order filter and fulfils conditions
(i) and (ii) in Definition 3.1. Furthermore, ϕa is closed under the infima
of countable chains by Lemma 2.9.
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Conversely, let ϕ be a G-filter. By separability and by Zorn’s
Lemma, there is a minimal element a in ϕ. We claim that ϕ = ϕa.
Indeed, by assumption, a ≺∼ x implies x ∈ ϕ. Conversely, if x ∈ ϕ,
then a ∧ x′ ∈ ϕ for some x′ ∼ x, and by the minimality of a, it follows
a ≺∼ x. ¤

In what follows, the expression ϕa, where a ∈ B, refers to the defi-
nition (2).

Lemma 3.3 Let (B, G) be a complete Boolean ambiguity algebra. Then
the mapping

ι: O(B,G) → F(B,G), [a] 7→ ϕa (3)

is a lattice isomorphism.

Proof. The mapping ι is clearly well-defined. Furthermore, ι is
surjective by Lemma 3.2.

If moreover ϕa = ϕb for a, b ∈ B, a ≺∼ b and b ≺∼ a. It follows a ∼ b
by Proposition 2.8, whence [a] = [b]. So ι is also injective.

Evidently, [a] ≤ [b] iff a ≺∼ b iff ϕa ≤ ϕb. This completes the proof.
¤

So G-filters are essentially the same thing as G-orbits. We shall
now see which form the operations on the set of G-orbits take when
translated to operations on the set of G-filters.

Definition 3.4 Let (B, G) be a complete Boolean ambiguity algebra.
For a, b ∈ B, we will write a ./ b if a Â∼ ¬b.

For any ϕ,ψ ∈ F(B,G), let

ϕ¯ ψ = {x ∧ y : x ∈ ϕ, y ∈ ψ}, (4)
ϕ→ ψ = {x: for all y ∈ ϕ, y ./ x and x ∧ y ∈ ϕ ∧ ψ}.

Then we call (F(B,G);≤,¯,→, 0, 1) the filter algebra of (B, G).

Note at this point the slight similarity of these definitions to what
appears in [9]. However, in [9], an arbitrary monoid is used rather
than a Boolean algebra endowed with the infimum; furthermore, the
definition of → is kept easier than ours.

The fact that ¯ and → are indeed operations on the set of G-filters,
is implied by the following lemma.

Lemma 3.5 Let B be a complete Boolean ambiguity algebra. For any
ϕ,ψ ∈ F(B,G), ϕ¯ ψ and ϕ→ ψ are G-filters as well.

Moreover, let a, b, c, d ∈ B such that [c] = [a]¯[b] and [d] = [a] → [b].
Then ϕc = ϕa ¯ ϕb and ϕd = ϕa → ϕb.
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Proof. Let a, b ∈ B. Let c be such that [c] = [a] ¯ [b]; then c is a
≺∼ -minimal element in {x∧y : x ∼ a, y ∼ b} according to Lemma 2.10.
So c = a′ ∧ b′ for an appropriate a′ ∼ a and b′ ∼ b, and it follows that
c ∈ ϕa¯ϕb and c ≺∼ x for all x ∈ ϕa¯ϕb. So the assertions concerning
¯ follow.

Next, let d be such that [d] = [a] → [b]. According to Propo-
sition 2.12, choose a′ ∼ a and b′ ∼ b such that [a′ ∧ b′] = [a] ∧ [b]
and d = ¬a′ ∨ b′. Then ϕa′∧b′ = ϕa ∧ ϕb by Lemma 3.3. We have
to prove that the sets ϕd = {x : d ≺∼ x} and ϕa → ϕb = {x :
x Â∼ ¬a′ and, for all a′′ ∼ a′, a′′ ∧ x Â∼ a′ ∧ b′} coincide; the asser-
tions concerning → will then follow as well.

Let us show first that d ∈ ϕa → ϕb, which implies that ϕd ⊆
ϕa → ϕb. Clearly, d Â∼ ¬a′. Furthermore, for a′′ ∼ a′, (a′ ∧
d) \ a′′ ≺∼ ¬a′ ≺∼ d, whence a′′ ∧ d Â∼ a′ ∧ b′.

Conversely, let x ≥ ¬a′ and a′ ∧ x Â∼ a′ ∧ b′. Then x \ d Â∼ d \ x,
whence x Â∼ d. It follows that ϕa → ϕb ⊆ ϕd. ¤

This finishes the proof of the equivalence of this and the last sec-
tion’s concepts.

Theorem 3.6 Let B be a complete Boolean ambiguity algebra. Then ι
as defined by (3) is an isomorphism between the MV-algebras (O(B,G);
≤,¯,→, 0, 1) and (F(B,G);≤,¯,→, 0, 1).

4 The orbit algebra of a
normal Boolean ambiguity algebra

This and the next section contain results which supplement those of
the last two sections. We show that we may proceed along similar
lines with assumptions of a more algebraic character. We will provide
proofs only as far as necessary, otherwise referring to the proofs of the
analogous statements above.

Our considerations so far were based on pairs of complete Boolean
algebras and full automorphism groups. As the idea is to base semantics
for fuzzy logics on these objects, it seems desirable to avoid infinitary
conditions. For this reason, we shall drop the assumption that the
Boolean algebra is complete.

In this case, the apparatus developed by Kawada in [8] no longer
applies, since it heavily relies on the completeness assumption. We will
not put extra assumptions on the Boolean algebra instead; rather the
conditions involving the group will be sharpened. We will still assume
G to be compact, and the notion of fullness will be generalised in the
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straightforward way. It is a certain additional condition – called (DP)
in the sequel – which will ensure that the set of orbits is still lattice-
ordered and that we may define the conjunction and implication as
before.

Definition 4.1 Let (B, G) be a Boolean ambiguity algebra. Given
(B, G), we introduce the following notions.

(i) We call G f-full if for any two partitions of unity (ai)i<l and
(bi)i<l, where l < ω, and a system gi ∈ G, i < l, such that
g(ai) = bi, the automorphism g defined by g|ai

= gi|ai
for each

i < l, belongs to G as well.

(ii) We say that G has the decomposition property, or (DP) for short,
if for any a, b ∈ B, there are c ≤ a and d ≤ b such that c ∼ d and
a \ c ⊥ b \ d.

The Boolean ambiguity algebra (B, G) will be called normal if G is
compact, f-full, and fulfils (DP).

In analogy to Section 2, we introduce an auxiliary notion as follows.
For elements a, b of a Boolean ambiguity algebra, a ∼f b means that
there are two finite sets a1, . . . , ak and b1, . . . , bk of pairwise disjoint
elements as well as g1, . . . , gk ∈ G such that a =

∨
i ai and b =

∨
i bi

and gj(aj) = bj for all j.

Lemma 4.2 Let (B, G) be a normal Boolean ambiguity algebra. As-
sume that c1, c2, . . . are pairwise disjoint and c1 ∼f c2 ∼f · · · . Then
c1 = c2 = · · · = 0.

Proof. As in the proof of Lemma 2.3, we construct automorphisms
g1, . . . ∈ G such that g1(c1) = c2, . . ., using the f-fullness. Then the
assertion follows from compactness. ¤

Lemma 4.3 Let (B, G) be a normal Boolean ambiguity algebra.

(i) Let a < b, c < d, g(a) = c for some g ∈ G, and b ∼ d. Then
there is a ḡ ∈ G such that ḡ|a = g|a and ḡ(b) = d. In particular,
b \ a ∼ d \ c.

(ii) Let a, b ∈ B such that a ∼ b. Let c = (a∧ b)∨¬(a∨ b), d = a \ b,
e = b \ a. Then there is a g ∈ G such that g|c = id|c, g(d) = e,
g(e) = d.

(iii) Let a, b, c ∈ B such that a ≺∼ b ≺∼ c and a ≤ c. Then there is a
b′ ∼ b such that a ≤ b′ ≤ c.
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Proof. (i) According to (DP), let a′ ≤ b \ a and c′ ≤ d \ c be such
that a′ ∼ c′ and b \ (a ∨ a′) ⊥ d \ (c ∨ c′). Let a0 = b, a1 = a ∨ a′,
u0 = b \ a1, and similarly c0 = d, c1 = c ∨ c′, v0 = d \ c1. Then we
have a0 ∼ c0, a1 ∼f c1 and u0 ⊥ v0.

Let u1 ≤ a1 and v1 ≤ c1 such that u1 ∼ v0, v1 ∼ u0, and a2 ∼f c2,
where a2 = a1 \ u1 and c2 = c1 \ v1. So then we have a1 ∼f c1,
a2 ∼f c2, and u1 ⊥ v1.

In the same way, we may proceed to decompose a2 = a3 ∨ u2 and
c2 = c3 ∨ v2 such that a2 ∼f c2, a3 ∼f c3, and u2 ⊥ v2, and so on.
We get a sequence u0 ∼f v1 ∼f u2 ∼f v3 ∼f · · · . Since u0, u1, . . . are
pairwise disjoint, u0 = 0 by Lemma 4.2; similarly, we have v0 = 0.

So a′ = b \ a and c′ = d \ c. Since ¬b ∼ ¬d, it follows from the
f-fullness of G that there is a mapping ḡ ∈ G as requested.

(ii) follows easily from part (i) and the f-fullness of G.
(iii) is proved like Lemma 2.6(i); the last step requires an application

of the f-fullness of G. ¤

Lemma 4.4 Let (B, G) be a normal Boolean ambiguity algebra.

(i) For a, b ∈ B, a ∼f b holds if and only if a ∼ b.

(ii) If a ∼ b and a ≤ b, then a = b.

Proof. (i) Let a = a1 ∨ . . . ∨ ak, b = b1 ∨ . . . ∨ bk, and g1(a1) =
b1, . . . , gk(ak) = bk. Then, by Lemma 4.3(i), ¬a2 ∼ ¬b2 and there is a
g′2 ∈ G such that g′2|a1 = g1|a1 and g′2(¬a2) = ¬b2, that is, g′2(a1∨a2) =
b1 ∨ b2. In the same way, we may determine g′3 such that g′3(a1 ∨ a2 ∨
a3) = b1 ∨ b2 ∨ b3, and so forth, so as to get finally a g ∈ G such that
g(a) = b.

(ii) a ∼ b and a < b imply 1 > ¬(b \ a) ∼f 1, which is a contradic-
tion by part (i). ¤

We next consider the orbit preordered set of a normal Boolean am-
biguity algebra; cf. Definition 2.5.

Proposition 4.5 Let (B, G) be a normal Boolean ambiguity algebra.
Then (O(B,G);≤, 0, 1) is a bounded lattice. For any a, b ∈ B, there is a
b′ ∼ b such that [a ∧ b′] = [a] ∧ [b] and [a ∨ b′] = [a] ∨ [b].

Proof. As above for Proposition 2.8, we see that O(B,G) is a bounded
poset.

Let a, b ∈ B. By (DP), there is a b′ ∼ b such that a \ b′ ⊥ b′ \ a. We
claim that a∧b′ Â∼ a∧b′′ for all b′′ ∼ b, implying that [a∧b′] = [a]∧ [b].
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Indeed, b′′ ∼ b′ implies by Lemma 4.3(ii) that a ∧ ¬b′ ∧ b′′ ≺∼ b′ \ b′′,
and because a \ b′ ⊥ b′ \ a, it follows a ∧ ¬b′ ∧ b′′ ≺∼ a ∧ b′ ∧ ¬b′′; so
a ∧ b′′ ≺∼ a ∧ b′.

By similar reasoning, we conclude that [a ∨ b′] = [a] ∨ [b]. ¤

So we have established that, for a normal Boolean ambiguity algebra
(B, G), we may call (O(B,G);≤, 0, 1) the orbit lattice.

We next turn to the conjunction-like and the implication-like op-
eration on the orbit lattice. Because we have proved all the necessary
technical lemmas, we can proceed from this point on just like in Section
2.

Lemma 4.6 Let (B, G) be a normal Boolean ambiguity algebra. Let
a, b ∈ B. Then {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} has a minimal element, and
{[a′ → b′]: a′ ∼ a, b′ ∼ b} has a maximal element.

Proof. This is proved similarly like Lemma 2.10. ¤

Due to this lemma, ¯ and → is defined for Boolean ambiguity al-
gebras according to Definition 2.11. Note further that also the same
representation of ¯ and → holds:

Proposition 4.7 Let (B, G) be a normal Boolean ambiguity algebra.
Let a, b ∈ B such that [a ∧ b] = [a] ∧ [b]. Then [a]¯ [¬b] = [a ∧ ¬b] and
[a] → [b] = [a→ b].

We arrive at the main statement of this section.

Theorem 4.8 Let (B, G) be a normal Boolean ambiguity algebra.
Then (O(B,G);≤,¯,→, 0, 1) is an MV-algebra.

Proof. This is proved in the same way as Theorem 2.14. ¤

We readily see that mutatis mutandis, Example 2.15 still applies.
This means that for a proper choice of the Boolean ambiguity algebra,
the MV-algebra appearing in Theorem 4.8 can be any finite linearly
ordered MV-algebra.

5 The filter algebra of a
normal Boolean ambiguity algebra

Certainly also in the case that we are concerned with a normal and not
necessarily complete Boolean ambiguity algebra, it is desirable that
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the connectives ¯ and →, which are to interpret the conjunction and
implication in many-valued logics, take a form like in (4). We will
propose a possibility here, which, however, is less elegant than in the
case of complete Boolean ambiguity algebras.

Definition 5.1 Let (B, G) be a normal Boolean ambiguity algebra.
We call any set of the form

ϕa = {x ∈ B : a ≺∼ x}. (5)

a principal G-filter of B.
Let F(B,G) be the set of all principal G-filters of B. For ϕ,ψ ∈

F(B,G), let ϕ ≤ ψ if ϕ ⊇ ψ. Let moreover 0 = B and 1 = {1}. We
will call (F(B,G);≤, 0, 1) the filter poset or, if ≤ happens to be a lattice
order, the filter lattice of (B, G).

By this definition, we have a one-to-one correspondence between
orbits and filters trivially.

Lemma 5.2 Let (B, G) be a normal Boolean ambiguity algebra. Then
the mapping

ι: O(B,G) → F(B,G), [a] 7→ ϕa

is a lattice isomorphism.

We next define the operations ¯ and → on the filter lattice of a
normal Boolean ambiguity algebra. Let us adopt Definition 3.4 to the
present context, to define the filter algebra (F(B,G);≤,¯,→, 0, 1).

Lemma 5.3 Let B be a normal Boolean ambiguity algebra. For any
ϕ,ψ ∈ F(B,G), ϕ¯ ψ and ϕ→ ψ are principal G-filters as well.

Moreover, let a, b, c, d ∈ B such that [c] = [a]¯[b] and [d] = [a] → [b].
Then ϕc = ϕa ¯ ϕb and ϕd = ϕa → ϕb.

Proof. The proof is similar to the proof of Lemma 3.5. ¤

So we get again the equivalence of this and the preceding section’s
concepts.

Theorem 5.4 Let B be a normal Boolean ambiguity algebra. Then
(O(B,G); ≤,¯,→, 0, 1) and (F(B,G);≤,¯,→, 0, 1) are isomorphic alge-
bras.
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6 Semantics for ÃLukasiewicz logic

In this section, we apply our results to provide alternative semantics
for ÃLukasiewicz logic.

A formula of ÃLukasiewicz logic, or ÃL-formula for short, is built up
from propositional variables ϕ1, ϕ2, . . . and the constant 0 by the bi-
nary connectives ¯ and →. An ÃL-formula ϕ is called ÃL-valid if, under
an arbitrary interpretation of the variables by values from the real unit
interval [0, 1], of the constant 0 by the real number 0, and of the con-
nectives ¯ and → by the ÃLukasiewicz t-norm ¯L and the corresponding
residuum →L, respectively, ϕ is assigned the value 1.

Theorem 6.1 Call an ÃL-formula ϕ cBAA-valid if for all complete
Boolean ambiguity algebras (B, G) and for all interpretations of the
variables by elements from O(B,G), of the constant 0 by 0 and of the
connectives according to Definition 2.11, ϕ is assigned 1. Then ϕ is
cBAA-valid if and only it is a ÃL-valid.

Proof. Let ϕ be cBAA-valid. From Theorem 2.14 and Example
2.15, it follows that ϕ is valid in all finite linearly ordered MV-algebras.
Because the variety of MV-algebras is generated by its finite members,
this means that ϕ is valid in all MV-algebras, hence in particular in
([0, 1];≤,¯L,→L, 0, 1). So ϕ is ÃL-valid.

Conversely, let ϕ be ÃL-valid. Then ϕ is valid in all MV-algebras;
for this fact, see e.g. [2]. So in particular, ϕ is cBAA-valid by Theorem
2.14. ¤

Theorem 6.2 Call an ÃL-formula ϕ BAA-valid if for all normal Bool-
ean ambiguity algebras (B, G) and for all interpretations of the variables
by elements from O(B,G), of the constant 0 by 0 and of the connectives
according to Definition 2.11, ϕ is assigned 1. Then ϕ is BAA-valid if
and only it is a ÃL-valid.

Proof. This follows from Theorem 4.8 and Example 2.15 in the same
way as Theorem 6.1. ¤

It is clear that by Theorems 3.6 and 5.4, we could have used in both
cases the filter algebra rather than the orbit algebra of the respective
Boolean ambiguity algebra.

7 Conclusion

Based on Boolean ambiguity algebras, which are Boolean algebras en-
dowed with a certain kind of automorphism group, we have presented
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an alternative semantics for ÃLukasiewicz logic. We actually explained
two different ways how to do so, and in each case there are two variants.

The ÃLukasiewicz logic is a common, but otherwise rather particular
member of the family of multi-valued logics. The present work can be
seen as a confirmation of its significance.

It would moreover be desirable to generalise our scheme so as to
treat further logics. We intend to focus next on the Basic Logic intro-
duced by P. Hájek [6]. Our idea is to generalise the underlying struc-
ture: the Boolean algebra should be replaced by a bounded distributive
lattice.
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