
BL-ALGEBRAS AND QUANTUM STRUCTURES

THOMAS VETTERLEIN

Abstract. Endowing a lower-bounded partially ordered set with
a total addition or with a total difference operation leads to the
basic notion of a NAM, that is, a naturally ordered abelian monoid,
or a BCK-algebra, respectively.

BL-algebras may be alteratively viewed as certain NAMs or cer-
tain BCK-algebras. We characterize the appropriate subclasses by
making use of those properties which have been so far considered in
an apparently rather different context, namely for certain quantum
structures.

The three most important subclasses of BL-algebras, MV-, prod-
uct, and Gödel algebras, are also taken into account.

1. Introduction

Basic Logic [Haj1, Got], introduced by Hájek several years ago, aims
at formalizing in a quite general manner statements of fuzzy nature. It
is a calculus of propositions which are true principly only to a certain
degree, that is, to which in general no sharp yes or no is assigned.

The Lindenbaum algebras of the theories of Basic Logic are the BL-
algebras. BL-algebras are a certain type of residuated lattices, and they
have been examined in several papers; see e.g. [Haj2, Tur, Hoe].

On the other hand, algebras of various kinds have been examined in
the last decades in connection with foundational questions about the
formalism of quantum mechanics [DvPu]. Among these algebras, which
are in general referred to as quantum structures, we find for instance ef-
fect algebras [FoBe], MV-algebras [CiOtMu] and BCK-algebras [MeJu].
We find that BL-algebras are relatively closely related to the quantum
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structures: BL-algebras generalize MV-algebras, which in turn are spe-
cial cases of effect algebras; furthermore, BL-algebras form a subclass
of the BCK-algebras.

Now, since the structure theory of most quantum structures is a rather
difficult matter, several of their subclasses have been considered, which
are somewhat more convenient to handle. For example, the Riesz de-
composition property was introduced for effect algebras [Rav], the rel-
ative cancellation propery was defined for BCK-algebras [DvGr], and
based on these notions, it was in both cases possible to prove po-group
representation theorems.

Whereas the mentioned special properties play basically no role in con-
nection with the original motivation to study quantum structures, we
see that they now naturally appear in a different context – in the context
of fuzzy logic. To see that some of them are actually the characteristic
properties of BL-algebras among certain very basic types of algebras,
this is the aim of the present paper.

We proceed as follows. BL-algebras have a conjunction-like and an
implication-like operation, and each of these two basic operations is
definable from the other one. We give axiomatizations with respect to
the conjunction only (Section 3) as well as with respect to the impli-
cation only (Section 4). In both cases, we start from an appropriate
general type of algebra – one with a total addition, one with a total
difference.

So first, we shall view BL-algebras as special bounded NAMs, where
a NAM is just meant to be an abelian monoid ordered in the natural
manner; compare also [Kue]. Second, we consider BL-algebras as spe-
cial bounded BCK-algebras; compare also [Ior]. Now, the properties
which single out BL-algebras among both types of structures, are those
of the mentioned kind: the Riesz decomposition property, the property
of being mutual compatible, the relative cancellation property.

We moreover see to which subclasses of NAMs and of BCK-algebras
MV-, PL-, and G-algebras correspond, which are the Lindenbaum alge-
bras of the  Lukasiewicz, the product, and the Gödel logic, respectively.

Finally, we shortly discuss (in Section 5) the categorical-theoretic ques-
tion connected with the transition from BL-algebras to algebras which
are based on one basic operation instead of two.
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2. BL-algebras reviewed

BL-algebras are the Lindenbaum algebras of Hájek’s Basic logic. Their
axioms have been chosen in accordance to the nature of this logic –
usually more or less in the following manner.

Definition 2.1. A residuated lattice is a structure (L;≤,⊙,⇒, 0, 1) such
that the following holds.

(RL1) (L;≤) is a lattice with a smallest element 0 and a largest
element 1.

(RL2) (L;⊙, 1) is a commutative monoid, that is, ⊙ is a associative
and commutative binary operation, and 1 is a neutral element
with respect to ⊙.

(RL3) ⊙ is isotone, that is, for any a, b, c ∈ L, a ≤ b implies a ⊙ c ≤
b ⊙ c.

(RL4) For any a, b ∈ L, a ⇒ b is the maximal element x such that
a ⊙ x ≤ b.

Furthermore, a residuated lattice is called a BL-algebra under the fol-
lowing conditions.

(BL1) a ∧ b = a ⊙ (a⇒b) for a, b ∈ L.

(BL2) (a⇒b) ∨ (b⇒a) = 1 for a, b ∈ L.

We note that also the supremum of pairs of elements of a BL-algebra
L is definable from ⊙ and⇒,

a ∨ b = (a⇒b)⇒b) ∧ (b⇒a)⇒a) for a, b ∈ L,

and that the lattice (L;∧,∨) is a distributive one.

The following proposition is meant to show that BL-algebras, when not
considered in connection with fuzzy logic, are not as unnatural objects
as they seem to be at first sight.

Definition 2.2. Let (L;≤,⊙,⇒, 0, 1) be a residuated lattice. We say
that

(a) ⊙ is compatible with the lattice operations if for any a ∈ L the
mapping L → L, x 7→ a ⊙ x is a lattice homomorphism.

(b) ⇒ is compatible with the lattice operations if for any a ∈ L (α)
the mapping L → L, x 7→ a ⇒ x is a lattice homomorphism
and (β) the mapping L → L, x 7→ x⇒ a is a homomorphism
of the lattice L to its dual.
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(c) L is divisible if for any a, b ∈ L, a ≤ b holds if and only if
a = b ⊙ x for some x ∈ L.

Proposition 2.3. A residuated poset (L;≤,⊙,⇒, 0, 1) is a BL-algebra
if and only if ⊙ and⇒ are compatible with the lattice operations and L

is divisible.

Proof. By (BL2), the conditions concerning the lattice compatibilities
hold e.g. according to [Hoe, Propositions 2.1, 2.3]. By [Hoe, Lemma
2.5], the divisibility is equivalent to (BL1). And from the compatibility
of⇒with ∧, (BL2) follows. �

Note that Proposition 2.3 in particular implies that the operations ⊙
and⇒are, with respect to any one of its arguments, isotone or antitone,
respectively.

The importance of BL has apparently much to do with the fact that it
possesses three extensions well-known from fuzzy logics: the  Lukasiewicz,
product, and Gödel logic. The algebraic counterparts of these logics are
the MV-, PL-, and G-algebras, respectively.

For the original definitions of these algebras and for further details,
we refer to [CiOtMu], [Haj1], and [Goe], respectively. Here we will,
following the lines of [Haj1], consider MV-, PL-, and G-algebras as
subclasses of the BL-algebras.

Definition 2.4. Let L a BL-algebra. Let

a⋆ def
= a⇒0 for a ∈ L

be the complement of a.

(i) L is called an MV-algebra if we have:

(MV) The complement operation is involutive, that is, a⋆⋆ = a

for all a ∈ L.

(ii) L is called a PL-algebra if we have:

(PL1) a⋆⋆ ≤ (a ⊙ b ⇒ a ⊙ c)⇒(b⇒c) for any a, b, c ∈ L.

(PL2) a ∧ a⋆ = 0 for a ∈ L.

(iii) L is called a G-algebra if we have:

(G) a ⊙ b = a ∧ b for any a, b ∈ L.

Now, BL-algebras are lattices endowed with operations which are mod-
elled upon a logical conjunction and implication. In what follows, we
prefer to work with algebras possessing an addition-like and a difference-
like operation; namely, what we will consider throughout the text are
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the duals of BL-algebras rather than BL-algebras themselves. This
makes it more convenient to compare BL-algebras with algebras known
from other fields like e.g. quantum structures.

Definition 2.5. Let (L;≤BL,⊙,⇒, 0BL, 1BL) be a BL-algebra. Then
(L;≤,⊕,⊖, 0, 1) is called the dual of L, where for a, b ∈ L

a ≤ b
def
⇔ b ≤BL a,

a ⊖ b
def
= b⇒a, a ⊕ b

def
= a ⊙ b,

0
def
= 1BL, 1

def
= 0BL.

We see that the transition from a BL-algebra to its dual may be con-
sidered just as a change of notation. In particular, all statements about
BL-algebras are easily reformulated for duals of BL-algebras. This is
to be kept in mind in the sequel, where we will often talk about duals
of BL-algebras, but refer to statements about BL-algebras.

Remark 2.6. The duals of BL-algebras are exactly the bounded DRl-
monoids with the property (a ⊖ b) ∧ (b ⊖ a) = 0 for any pair a, b; see
e.g. [Kue]. DRl-monoids have been introduced by Swamy; their basic
properties may be found in [Swa].

3. BL-algebras as naturally ordered abelian monoids

Since the two operations ⊙ and ⇒ of a BL-algebra (L;≤,⊙,⇒, 0, 1)
are definable from each other, one may wonder if it is not possible
to axiomatize in a reasonable manner the reducts (L;≤,⊙, 0, 1) and
(L;≤,⇒, 0, 1) such that there is a unique expansion to a BL-algebra.
We propose here such an axiomatization, using mainly those properties
which are known from related types of algebras and in particular from
quantum structures.

We consider in this section the implication-like operation ⇒. So with
respect to the dual algebra (L;≤,⊕,⊖, 0, 1), given according to Defini-
tion 2.5, we have to characterize the structure (L;≤,⊕, 0, 1).

We are given an abelian monoid which is endowed in the natural way
with a partial order. Since this type of algebra arises frequently, we
shall use an own term for it. The abbreviation “NAM” was chosen in
analogy to the term “PAM”, which stands for “partial ordered monoid”
[GuPu].

Definition 3.1. A naturally ordered abelian monoid, or NAM for short,
is a structure (L;≤,⊕, 0) with the following properties:
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(NAM1) (L;≤, 0) is a poset with a smallest element 0;

(NAM2) ⊕ is a binary operation such that for any a, b, c ∈ L

(a) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c);

(b) a ⊕ 0 = a;

(c) a ⊕ b = b ⊕ a.

(NAM3) We have a ≤ b for a, b ∈ L if and only if a⊕ x = b for some
x ∈ L.

Furthermore, a structure (L;≤,⊕, 0, 1) is called a bounded NAM if (L;≤
,⊕, 0) is a NAM with a largest element 1.

Now, duals of BL-algebras will prove to be special bounded NAMs; for
their exact characterization the following properties are needed.

Definition 3.2. Let (L;≤,⊕, 0, 1) be a bounded NAM.

(i) We say that L has the difference property if for any a, b ∈ L such
that a ≤ b there is a smallest element x ∈ L such that a⊕x = b.

(ii) We say that L has the Riesz Decomposition Property, or (RDP)
for short, if for any a, b, c ∈ L such that c ≤ a ⊕ b there are
a1 ≤ a and b1 ≤ b such that (α) c = a1 ⊕ b1 and (β) a1 = a in
case c ≥ a.

(iii) We say that L is mutually compatible if for any a, b ∈ L there
are a1, b1, c ∈ L such that a = a1⊕c, b = b1⊕c, and a1∧b1 = 0.

Moreover, we say that a bounded NAM is of type BL if it has the
difference property, if it fulfils (RDP), and if it is mutually compatible.

Let us shortly comment these definitions. Roughly speaking, condition
(i) states that there is shortest distance between any pair of compara-
ble elements. Note that the difference property alone does not imply a
residuation property analogous to (RL4). Furthermore, (RDP) corre-
sponds to the equally denoted property of effect algebras [Rav, DvVe],
although in the case of the latter algebras, the requirement (β) is super-
fluous. Finally, two compatible elements of an effect algebra formally
fulfil the requirements of (iii).

Theorem 3.3. Let (L;≤,⊕,⊖, 0, 1) be the dual of a BL-algebra. Then
(L;≤,⊕, 0, 1) is a bounded NAM of type BL.

Conversely, let (L;≤,⊕, 0, 1) be a bounded NAM of type BL. Then L

may be expanded uniquely to the dual of a BL-algebra (L;≤,⊕,⊖, 0, 1).
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Proof. Let (L;≤,⊕,⊖, 0, 1) be the dual of a BL-algebra. By (RL1),
(NAM1) holds and 1 is the largest element. By (RL2), (NAM2) holds.
By (RL3), we have a = a ⊕ 0 ≤ a ⊕ x for any a, x ∈ L, which is one
half of (NAM3). If a ≤ b for some a, b ∈ L, then by (RL4) b ⊖ a is
the smallest element x such that a ⊕ x ≥ b, and by (BL1), we have
a ⊕ (b ⊖ a) = a ∨ b = b; so also the second half of (NAM3) as well as
the difference property follows.

Assume now c ≤ a⊕b for some a, b, c ∈ L. Set a1 = a∧c and b1 = c⊖a1.
Then a1 ≤ a and, in view of Proposition 2.3 and (RL4), b1 = c⊖(a∧c) =
c⊖ a ≤ (a⊕ b)⊖ a ≤ b; moreover, a1 ⊕ b1 = (c⊖ a1)⊕ a1 = c by (BL1).
In case c ≥ a, we have a1 = a. So (RDP) is proved.

To see that E is mutually compatible, let a, b ∈ L, and set a1 = a ⊖ b,
b1 = b ⊖ a and c = a ∧ b. We see by (BL1) and Proposition 2.3 that
a = (a ⊖ (a ∧ b)) ⊕ (a ∧ b) = (a ⊖ b) ⊕ (a ∧ b) = a1 ⊕ c, and similarly
b = b1 ⊕ c. Furthermore, a1 ∧ b1 = 0 holds by (BL2). So the proof that
L is a bounded NAM of type BL is complete.

Conversely, let (L;≤,⊕, 0, 1) a bounded NAM of type BL. By (NAM1)
and the boundedness of L, (L;≤, 0, 1) is a bounded poset. To see that
L is a lattice, let a, b ∈ L, and let, according the mutual compatibility
of L, a1, b1, c ∈ L be such that a = a1 ⊕ c, b = b1 ⊕ c and a1 ∧ b1 = 0.
We claim that c = a ∧ b and d = a1 ⊕ b1 ⊕ c = a ∨ b.

By (NAM3), c ≤ a, b. Let x ≤ a, b; we shall show x ≤ c; then it will be
clear that c = a ∧ b. From x ≤ a = a1 ⊕ c we conclude by (RDP) and
the difference property that x = xa1

⊕xc such that xa1
≤ a1, xc ≤ c and

xa1
is the minimal element summing up with xc to x. Choose r ∈ L

such that c = xc ⊕ r; then xc ≤ x ≤ b = xc ⊕ b1 ⊕ r implies by (RDP)
that x = xc ⊕ x′

a1
for some x′

a1
≤ b1 ⊕ r. By the minimality of xa1

we have xa1
≤ x′

a1
, and from xa1

≤ b1 ⊕ r we conclude by (RDP) and
a1 ∧ b1 = 0 that xa1

≤ r. Thus x = xa1
⊕ xc ≤ r ⊕ xc = c.

Furthermore, we have d ≥ a, b. To see that d is actually the supremum
of a and b, let y ≥ a, b; we will show y ≥ d. We have c ≤ b ≤ y =
a1 ⊕ c ⊕ s for some s. From (RDP), we again conclude b = c ⊕ b′

1
for

some b′1 ≤ a1 ⊕ s, and since we may assume that b1 was chosen as the
minimal element summing up with c to b, we have b1 ≤ b′1, and we
conclude by (RDP) b1 ≤ s. It follows y ≥ d.

This completes the proof of (RL1). (RL2) holds by (NAM2). (NAM3)
implies that ⊕ is isotone; so also (RL3) holds.

Now, we see from (RL4) that there is maximally one function ⊖ with
the property that (L;≤,⊕,⊖, 0, 1) is the dual of a BCK-algebra. In
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view of the difference property, we may for any a, b ∈ L define b⊖ a to
be the smallest element x such that a ⊕ x = a ∨ b.

By our definition of ⊖, we get a ⊕ (b ⊖ a) = a ∨ b for a, b ∈ L, which
gives (BL1).

To see (RL4), we have to show that for any a, b ∈ L, b ⊖ a = min {x:
a ⊕ x ≥ b}. We have a ⊕ (b ⊖ a) = a ∨ b ≥ b. Let now x such that
a⊕x ≥ b; then we have a ≤ a∨b ≤ a⊕x, whence by (RDP) a∨b = a⊕x′

for some x′ ≤ x. So by the definition of ⊖, b ⊖ a ≤ x′ ≤ x.

It remains to show (BL2), according to which for a, b ∈ L we have
(a ⊖ b) ∧ (b ⊖ a) = 0. So let again a = a1 ⊕ c, b = b1 ⊕ c for some
a1, b1, c ∈ L such that a1 ∧ b1 = 0. We have seen above that then
a ∨ b = a1 ⊕ b, so a1 ≥ a ⊖ b, and similarly, b1 ≥ b ⊖ a. The claim
follows. �

So given some bounded NAM of type BL L, it is the function ⊖ defined
by

(1) b ⊖ a
def
= min {x: a ⊕ x = a ∨ b} for any a, b ∈ L

which makes L the dual of a BL-algebra. We will as usual refer to ⊖
as the residuum of L. Note that in particular

(2) (b ⊖ a) ⊕ a = a ∨ b for any a, b ∈ L.

Let us now turn to those well-known algebras which are frequently dis-
cussed in connection with BL-algebras: the MV-, PL-, and G-algebras.
According to Definition 2.4, these three types of algebras form sub-
classes of the BL-algebras. Now, because by Theorem 3.3 BL-algebras
are in a one-to-one correspondence with bounded NAMs of type BL, we
see that MV-, PL-, and G-algebras might be equivalently viewed as sub-
classes of the bounded NAMs. The respective characteristic properties
of bounded NAMs are given in Proposition 3.4.

In what follows, we will denote the complement function on the dual
of a BL-algebra L by ⋆⊙, that is,

a⋆⊙ def
= 1 ⊖ a for a ∈ L.

Proposition 3.4. Let (L;≤BL,⊙,⇒, 0BL, 1BL) be a BL-algebra, and let
(L;≤,⊕, 0, 1) be the corresponding bounded NAM according to Defini-
tion 2.5 and Theorem 3.3.

(i) L as a BL-algebra is an MV-algebra if and only if L as a bounded
NAM has the following property:
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(MV⊕) If a ⊕ b = c for some a, b, c ∈ L such that a is the
smallest element x fulfilling x ⊕ b = c, then also b is
the smallest element y fulfilling a ⊕ y = c.

(ii) L as a BL-algebra is a PL-algebra if and only if for L as a
bounded NAM the following holds:

(PL⊕1) Let a ∈ L be such that a⊕x = 1 holds only for x = 1.
Then, for any b, c ∈ L, a ⊕ b = a ⊕ c implies b = c.

(PL⊕2) If a ⊕ a ⊕ b = 1 for some a, b ∈ L, then a ⊕ b = 1.

(iii) L as a BL-algebra is a G-algebra if and only if for L as a bounded
NAM we have:

(G⊕) a ⊕ b = a ∨ b for a, b ∈ L.

Proof. Let us treat L as a bounded NAM throughout the proof. Let ⊖
be the residuum of L.

(i) Let condition (MV) hold, that is, assume a⋆⊙⋆⊙ = a for all a ∈ L.
To prove (MV⊕), assume a ⊕ b = c for a, b, c ∈ L, where a is chosen
minimal, that is, a = c ⊖ b. We have to show that b = c ⊖ a. Clearly,
b ≥ c⊖a. From (RL4) we see that c⊖a ≥ (c⊕c⋆⊙)⊖(a⊕c⋆⊙) = 1⊖(a⊕c⋆⊙);
and since b ≤ c ≤ 1, we have a⊕ c⋆⊙ = (1⊖ c)⊕ (c⊖ b) = 1⊖ b = b⋆⊙ by
[Swa, Lemma 15]. So c⊖a ≥ 1⊖ b⋆⊙ = b⋆⊙⋆⊙ = b, and it follows b = c⊖a.

Conversely, let (MV⊕) hold, and let a ∈ L. Then a⊕(1⊖a) = 1 implies
that a is minimal, that is, a = 1 ⊖ (1 ⊖ a) = a⋆⊙⋆⊙, which is (MV).

(ii) Assume that (PL1) and (PL2) hold. To prove (PL⊕1), let a, b, c ∈ L

be such that a ⊕ x = 1 for some x ∈ L implies x = 1, and such that
a⊕ b = a⊕ c. Then 1 = min {x: a⊕ x = 1} = a⋆⊙. According to (PL1)
we have

(3) (c ⊖ b) ⊖ ((a ⊕ c) ⊖ (a ⊕ b)) ≤ a⋆⊙⋆⊙.

It follows c⊖ b = 0, whence by (1) c ≤ b. Similarly, we conclude b ≤ c.
Thus b = c, and (PL⊕1) is proved.

Furthermore, by (PL2), (2) and [Swa, Lemma 6], 1 = a∨a⋆⊙ = [(1⊖a)⊖
a] ⊕ a = [1 ⊖ (a ⊕ a)] ⊕ a = (a ⊕ a)⋆⊙ ⊕ a for any a ∈ L. Consequently,
a⋆⊙ ≤ (a ⊕ a)⋆⊙ and, since ⋆⊙ is antitone, even a⋆⊙ = (a ⊕ a)⋆⊙. Now, if
a ⊕ a ⊕ b = 1 for some b ∈ L, then b ≥ (a ⊕ a)⋆⊙ = a⋆⊙, so a ⊕ b = 1.
This proves (PL⊕2).

Assume now (PL⊕1) and (PL⊕2) to hold. For any a ∈ L, we conclude
from a ⊕ a ⊕ (a ⊕ a)⋆⊙ = 1 by (PL⊕2) that already a ⊕ (a ⊕ a)⋆⊙ = 1.
According to the previous paragraph, a ⊕ (a ⊕ a)⋆⊙ = a ∨ a⋆⊙; so (PL2)
holds.
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Let now a, b, c ∈ L. We have to show (3). By (PL2) and the distribu-
tivity of the lattice order of L, we have a = a0 ∨ a1, where a0 = a ∧ a⋆⊙

and a1 = a ∧ a⋆⊙⋆⊙ = a⋆⊙⋆⊙. Then, according to Proposition 2.3, we may
write the expression on the left side of (3) as

(4)
∨

i=0,1

∧

j=0,1

(c ⊖ b) ⊖ [(aj ⊕ c) ⊖ (ai ⊕ b)].

From (PL2) and [Tur, (12)] we get a0
⋆⊙ = (a ∧ a⋆⊙)⋆⊙ = a⋆⊙ ∨ a⋆⊙⋆⊙ = 1;

so by (PL⊕1), a0 ⊕ ((a0 ⊕ c) ⊖ a0) = a0 ⊕ c implies (a0 ⊕ c) ⊖ a0 = c.
We conclude by [Swa, Lemma 6] (c ⊖ b) ⊖ [(a0 ⊕ c) ⊖ (a0 ⊕ b)] =
(c⊖ b) ⊖ ([(a0 ⊕ c) ⊖ a0] ⊖ b) = 0. Thus, in (4), the term i = 0 may be
deleted.

Furthermore, we have (c ⊖ b) ⊖ [(a1 ⊕ c) ⊖ (a1 ⊕ b)] ≤ a1, because
[(a1⊕c)⊖ (a1 ⊕b)]⊕a1 = [((a1⊕c)⊖b)⊖a1]⊕a1 ≥ (a1⊕c)⊖b ≥ c⊖b.
Thus, in (4), the term i = 1 is smaller than a1.

All in all, the term (4) is below a1, and a1 = a⋆⊙⋆⊙, so (PL1) is proved.

(iii) This is evident. �

4. BL-algebras as BCK-algebras

We now consider the implication-like operation⇒: We will axiomatize
BL-algebras on the base of this operation only. We will further work
with the duals of BL-algebras (L;≤,⊕,⊖, 0, 1); so we shall character-
ize their reduct (L;≤,⊖, 0, 1). Again, we will concentrate on those
properties which have already been defined in other contextes.

In the previous case, when we restricted ourselves to the ⊕ operation,
we had to do with a bounded poset endowed with a total addition
determining the order. Now here, we are given a poset which is endowed
with a total difference operation being connected to the order in a
natural way.

A genuine difference operation − on some lower-bounded poset (L;≤, 0)
should be defined for comparable elements only. If we do so, we are led
to the notion of a poset with a difference [KoCh], the basic properties
of which are a − (a − b) = b for b ≤ a, (a − b) − (a − c) = c − b for
b ≤ c ≤ a, and a − 0 = a. Now, the analogous notion for the case of
a total difference are the BCK-algebras, as might be nicely seen from
the axioms below.

BCK-algebras have been originally defined by Imai and Iséki; the basic
reference is [MeJu]. The connection between BL- and BCK-algebras has
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been already pointed out in [Ior]; our characterization of the relevant
subclass is, however, an alternative one.

In accordance to the nature of this article, the basic BCK-operation is
denoted by ⊖ rather than the usual ⋆; and our operation ⊕ replaces
the ◦ used elsewhere. Furthermore, the BCK-ordering ≤ is added as
an own relation.

Definition 4.1. A BCK-algebra is a structure (L;≤,⊖, 0) such that

(BCK1) (L;≤, 0) is a poset with a smallest element 0.

(BCK2) ⊖ is a binary operation such that for any a, b, c ∈ L

(a) a ⊖ (a ⊖ b) ≤ b;

(b) (a ⊖ b) ⊖ (a ⊖ c) ≤ c ⊖ b;

(c) a ⊖ 0 = a.

(BCK3) For any a, b ∈ L, a ≤ b if and only if a ⊖ b = 0.

Furthermore, a structure (L;≤,⊖, 0, 1) is called a bounded BCK-algebra
if (L;≤,⊖, 0) is a BCK-algebra with a largest element 1.

BL-algebras may be understood as special BCK-algebras; for an exact
characterization, we chose the following properties.

Definition 4.2. Let (L;≤,⊖, 0, 1) a bounded BCK-algebra.

(i) L is said to have the addition property if for any a, b ∈ L there
is a c ∈ L such that for all d ∈ L we have (d ⊖ a) ⊖ b = d ⊖ c.

(ii) L is said to be strongly cancellative if for any a, b, c ∈ L such
that c ≤ a, b we have

a ≤ b iff a ⊖ c ≤ b ⊖ c.

(iii) L is said to be mutually compatible if for any a, b ∈ L

(a ⊖ b) ∧ (b ⊖ a) = 0.

Moreover, we say that a bounded BCK-algebra is of type BL if it has
the addition property, if it is strongly cancellative, and if it is mutually
compatible.

Here, the addition property is meant to ensure that an addition may be
defined in a natural manner, in analogy to the difference property for
NAMs. As outlined in [Ise], it is actually equivalent to the condition
(S), which was introduced by Iséki; (S) holds if for any a and b there
is a largest element y fulfilling y ⊖ a ≤ b. Furthermore, the strong can-
cellativity is a strengthened version of the relative cancellation property,
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which has been defined in [DvGr]; according to the latter, elements a

and b such that a ⊖ c = b ⊖ c for some c ≤ a, b, are equal. Finally, the
mutual compatibility is analogous to the equally denoted property for
NAMs.

Theorem 4.3. Let (L;≤,⊕,⊖, 0, 1) be the dual of a BL-algebra. Then
(L;≤,⊖, 0, 1) is a bounded BCK-algebra of type BL.

Conversely, let (L;≤,⊖, 0, 1) be a bounded BCK-algebra of type BL.
Then L may be expanded uniquely to the dual of a BL-algebra (L;≤
,⊕,⊖, 0, 1).

Proof. Let (L;≤,⊕,⊖, 0, 1) be the dual of a BL-algebra. Then (L;≤
,⊖, 0, 1) is a bounded BCK-algebra. This may be verified directly with
the help of (RL4); or see [Ior].

Furthermore, given a, b ∈ L, we have by [Swa, Lemma 6] (d⊖ a) ⊖ b =
d ⊖ (a ⊕ b) for any d ∈ L, which proves the addition property.

Let now a, b, c ∈ L such that c ≤ a, b. By the isotonicity properties of
⊖ and ⊕ and (2), a ≤ b implies a ⊖ c ≤ b ⊖ c, which in turn implies
a = (a ⊖ c) ⊕ c ≤ (b ⊖ c) ⊕ c = b. So L is strongly cancellative.

Finally, we have by (BL2) that E is mutually compatible. So L is a
bounded BCK-algebra of type BL.

Conversely, let (L;≤,⊖, 0, 1) be a bounded BCK-algebra of type BL.
It follows from (RL4) that there is maximally one function ⊕ making
L the dual of a BL-algebra. Given some a, b ∈ L, let us, in accordance
with the addition property, define a ⊕ b to be the element c such that
(d⊖a)⊖b = d⊖c for all d; there is, by (BCK3), for every pair maximally
one such element. Then, for any a, b ∈ L, a⊕ b is the largest element y

such that y⊖a ≤ b. Indeed, we have 0 = (a⊕b)⊖(a⊕b) = ((a⊕b)⊖a)⊖b,
whence (a ⊕ b) ⊖ a ≤ b; and if y ⊖ a ≤ b for some y ∈ L, then
0 = (y ⊖ a) ⊖ b = y ⊖ (a ⊕ b), whence y ≤ a ⊕ b.

(RL2), (RL3), and (RL4) hold by [MeJu, Theorems I.7.7 and I.7.10].

We next show that L is a lattice; then (RL1) follows. Let a, b ∈ L; we
claim that a∨b = a⊕(b⊖a), which is also the content of (BL1). We have
a⊕ (b⊖ a) = max {y: y ⊖ a ≤ b⊖ a} ≥ a, b. If z ≥ a, b for some z ∈ L

and furthermore y ⊖ a ≤ b ⊖ a for some y, then z ⊖ a ≥ b ⊖ a ≥ y ⊖ a;
under the assumption y ≥ a we conclude by the strong cancellativity
z ≥ y; so z ≥ a ⊕ (b ⊖ a).

Furthermore, we claim that c = (b⊖ (b⊖ a))∨ (a⊖ (a⊖ b)) = a∧ b. By
(BCK2)(a), c is a lower bound of a and b. Assume x ≤ a, b. It follows
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x ≤ a = a∨ (a⊖ b) = (a⊖ (a⊖ b))⊕ (a⊖ b) ≤ c⊕ (a⊖ b), which means
x ⊖ c ≤ a ⊖ b. Similarly, we see x ⊖ c ≤ b ⊖ a, and since L is mutually
compatible, we get x ⊖ c = 0, that is, x ≤ c by (BCK3).

(BL2) follows from the fact that L is mutually compatible. This com-
pletes the proof that L is the dual of a BL-algebra. �

So given some bounded BCK-algebra of type BL L, it is the function
⊕ definable by

(5) a ⊕ b
def
= max {y: y ⊖ b ≤ a} for any a, b ∈ L

which makes L the dual of a BL-algebra. We will refer to ⊕ as the
S-function of L, its existence being the subject of condition (S).

Remark 4.4. We may also characterize the bounded BCK-algebras of
type BL in the following way, which makes use (practically) only of
known terms. Namely, BL-algebras are in a one-to-one correspondence
to BCK-algebras which are (i) bounded, (ii) lattice-ordered, (iii) such
that (a∧ b)⊖c = (a⊖c)∧ (b⊖c), (iv) with condition (S) and (v) which
fulfil the relative cancellation property.

In analogy to Proposition 3.4 in Section 3, we shall now see how MV-,
PL-, and G-algebras may be understood as subclasses of BCK-algebras.

MV-, PL-, and G-algebras are, by Definition 2.4, special BL-algebras;
so these three algebras may also be viewed, by Theorem 4.3, as spe-
cial BCK-algebras. In the case of MV-algebras, this is a well-known
fact [Mun]. We further note that, in order to characterize MV- or
G-algebras among the BCK-algebras, we may refer to standard termi-
nology, recalled in the following definition [MeJu]. This is apparently
not the case for PL-algebras.

Definition 4.5. Let (L;≤,⊖, 0) be a BCK-algebra.

(i) L is called commutative if a⊖ (a⊖ b) = b⊖ (b⊖ a) holds for any
a, b ∈ L.

(ii) L is called positive implicative if (a ⊖ c) ⊖ (b ⊖ c) = (a ⊖ b) ⊖ c

holds for any a, b, c ∈ L.

We will again set a⋆⊙ def
= 1 ⊖ a for an element a of a bounded BCK-

algebra.

Proposition 4.6. Let (L;≤BL,⊙,⇒, 0BL, 1BL) be a BL-algebra, and let
(L;≤,⊖, 0, 1) be the corresponding bounded BCK-algebra according to
Theorem 4.3.
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(i) L as a BL-algebra is an MV-algebra if and only if L as a bounded
BCK-algebra is commutative if and only if for L as a bounded
BCK-algebra we have:

(MV⊖) For any a, b ∈ L, a ≤ b iff a = b ⊖ x for some x ∈ L.

(ii) L as a BL-algebra is a PL-algebra if and only if for L as a
bounded BCK-algebra the following conditions hold:

(PL⊖1) Let a, b, c ∈ L such that a⋆⊙ = 1 and such that, for all
x ∈ L, x ⊖ a ≤ b iff x ⊖ a ≤ c. Then b = c.

(PL⊖2) a ∨ a⋆⊙ = 1 for a ∈ L.

(iii) L as a BL-algebra is a G-algebra if and only if L as a bounded
BCK-algebra is positive implicative.

Proof. Throughout this proof, we will treat L as a bounded BCK-
algebra. Let ⊕ be the S-function of L.

(i) Assume (MV), that is, let the complement ⋆⊙ be involutive. Then, for
a, b, c ∈ L, a, b ≤ c and c⊖ b ≤ c⊖ a imply a ≤ b. Indeed, from [MeJu,
Theorem I.3.4] and ⋆⊙⋆⊙ = id we have b⋆⊙ ⊖ c⋆⊙ = c⊖ b ≤ c⊖ a = a⋆⊙ ⊖ c⋆⊙.
From c⋆⊙ ≤ a⋆⊙, b⋆⊙ and the strong cancellativity, we conclude b⋆⊙ ≤ a⋆⊙

and thus a ≤ b. Now, by [MeJu, Theorem I.5.6], this property implies
the commutativity of B.

If the BCK-algebra L is commutative, then again by [MeJu, Theorem
I.5.6], we have a = b ⊖ (b ⊖ a) whenever a ≤ b, which proves (MV⊖).

Assume now (MV⊖). We know that ⋆⊙ is order-reversing and that, for
a ∈ L, a⋆⊙⋆⊙ ≤ a; thus a⋆⊙⋆⊙⋆⊙ = a⋆⊙. Now, (MV⊖) implies that ⋆⊙ is
surjective; so a = b⋆⊙ for some b. It follows a⋆⊙⋆⊙ = b⋆⊙⋆⊙⋆⊙ = b⋆⊙ = a, that
is, (MV) holds.

(ii) (PL2) evidently coincides with (PL⊖2). Moreover, note that (PL⊖1)
is equivalent to saying that for a, b, c ∈ L, a⋆⊙ = 1 and a ⊕ b = a ⊕ c

imply b = c, which is (PL⊕1). And from Proposition 3.4(ii) and its
proof it follows that, when assuming (PL2), (PL⊕1) is equivalent to
(PL1).

(iii) The BL-algebra L is a G-algebra iff a ⊕ b = a ∨ b for any a, b ∈
L. By [MeJu, Theorem I.7.12], this condition holds iff L is positive
implicative. �

5. Categorical-theoretical aspects

As seen in this paper, BL-algebras, respectively duals of BL-algebras,
still possess reasonable axiomatizations when we restrict to one of their
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two binary operations. Namely, we proved that BL-algebras and, for in-
stance, bounded NAMs of type BL, are in a one-to-one correspondence,
the latter being a reduct of the dual of the former structure.

What we certainly cannot expect is the equivalence of the appropri-
ate categories; the respective congruences do not correspond to each
other. Let us conclude this paper with a simple example illustrating
that homomorphisms of bounded NAMs of type BL do not necessarily
preserve the residuum.

Example 5.1. Let ({0, 1

2
, 1};≤,⊕, 0, 1) and ({0, 1};≤,⊕, 0, 1) be the

three- and two-element MV-chain, respectively, understood as bounded
NAMs of type BL. Define ϕ: {0, 1

2
, 1} → {0, 1}, 0 7→ 0, 1

2
7→ 1, 1 7→ 1.

Then ϕ preserves the order, ⊕, and the constants. But we have, with
respect to the three-element algebra, 1⊖ 1

2
= 1

2
, whereas ϕ(1)⊖ϕ(1

2
) =

0 6= 1 = ϕ(1

2
). So ϕ is homomorphism of bounded NAMs of type BL,

but not of the corresponding duals of BL-algebras.
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