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Abstract

The present paper responds to an attempt to interpret the inference
process and output of the medical expert system CADIAG2. In order to
do so, we first provide a logical formalization of the inference process by
means of a set of rules aimed at describing the steps along the inference
and later attempt to provide a sound semantics for them. Two semantics
are taken as reference for our purpose: probabilistic semantics and fuzzy
(t-norm-based) semantics.

1 Introduction

CADIAG2 (Computer Assisted DIAGnosis) is a well known rule-based expert
system that aims at providing support in diagnostic decision making in the field
of internal medicine. Its design and construction was initiated in the early 80’s
at the University of Vienna Medical School (now Medical University of Vienna)
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by Klaus-Peter Adlassnig –see [20] for a historical perspective on the origins and
motivations of the system–.

CADIAG2 consists basically of two pieces: a knowledge base and an inference
engine. CADIAG2’s knowledge base is formed by a set of IF-THEN rules, also
known as production rules in the literature, intended to represent relationships
between distinct medical entities: symptoms, findings, signs and test results
on the one hand (to which we will commonly refer as symptoms) and diseases
and therapies on the other (to which we will commonly refer as diagnoses).
The rules in CADIAG2 are defined along with a certain degree of confirmation
which is intended to express the degree to which the antecedent confirms the
consequent. For example,

IF suspicion of liver metastases by palpation
THEN pancreatic cancer
with degree of confirmation 0.3

The inference engine in CADIAG2 takes as input (possibly) imprecise med-
ical information about the patient, normally in the form of a set of symptoms
present to some degree in the patient, and yields as output a set of possible di-
agnoses, each along with a value intended to represent some degree of certainty
about its presence in the patient. The inference rules in the knowledge base of
the system are brought into play along the inference process, which is based on
methodology from fuzzy set theory, in the sense of [23] and [24].

The main aim of the present paper responds to an attempt to interpret the
inference process in CADIAG2, and ultimately the output of the system, on
the grounds of a sound semantics. Two semantics will be taken as reference
in our attempt: probabilistic semantics and fuzzy (t-norm-based) semantics
–see for example [10] or [12] for more on t-norms and some other concepts
mentioned below that are related to them–. The use of probabilistic semantics
is motivated by the natural identification of the degrees of confirmation in the
rules of the system with probabilities (in principle with frequencies, as suggested
in [3], estimated from medical databases and patient records, although not all
degrees of confirmation were obtained in this way) and the rules themselves
with probabilistic conditional statements. The use of a fuzzy semantics is mostly
motivated by the natural identification of the degrees of presence of symptoms in
the patient with membership degrees in fuzzy set theory (i.e., as truth degrees).
It is common practice in the field to choose a t-norm as the interpretation of
the conjunction and its residuum as the interpretation of the implication with
which we will characterize the rules of the system: rules in this context will
be formalized as graded implications in the context of many-valued logics, in a
sense that will be made clear later.

As is probably expected, the outcome of such an attempt can be at least par-
tially anticipated. The inference mechanism in CADIAG2 is built on method-
ology from fuzzy set theory and thus it is bound to be unsound with respect to
probabilistic semantics. Some aspects of the probabilistic unsoundness of the in-
ference mechanism in CADIAG2 were soon observed in earlier studies concerning
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the celebrated rule-based expert system MYCIN (that shares some background
methodology with CADIAG2) –see [4] or [21] for a description of MYCIN, [8]
for a comparison of CADIAG2 and MYCIN-like systems and [11], [13], [14],
[22] for probabilistic approaches to it–. However, it remains to be seen how
far the system CADIAG2 is from probabilistic soundness and thus how much
of its inference process could be interpreted probabilistically. A better match
of the inference process may be expected with respect to some t-norm-based
fuzzy semantics (in particular, as will be clear later, with the semantics based
on the indentification of the t-norm with the minimum operator) yet, as with
probabilistic semantics, it needs to be seen how much of the inference process
can be interpreted on the grounds of this semantics.

It is worth mentioning here that, although the interest among theoretical
AI researchers in rule-based expert systems seems to be lesser today than some
years ago, rule-based expert systems are very popular among AI engineers.
Many CADIAG2-like systems are in use and more are being built for future
implementation. It is mainly for this reason that we believe that further anal-
ysis and understanding of CADIAG2-like systems is of relevance (CADIAG2
is presented in some monographs as an example of a fuzzy expert system –for
example in [15] or [25]– and thus is used as a reference for some newly developed
knowledge-based systems).

The paper is structured as follows: in Section 2 we introduce some notation
and give some preliminary definitions necessary for the description of the in-
ference mechanism of the medical system CADIAG2, which is done in Section
3, where we also describe the knowledge base of the system. In Section 4 we
introduce the logical system CadL that consists of a collection of rules that
formalize the steps made along the inference process. Such a formalization will
facilitate the semantic analysis of the system carried out in Section 5. Section
6 summarizes results.

2 Preliminary definitions

In this section we define a pair of concepts that we will need to describe the
inference process in CADIAG2.

First we define a partial ordering relation.

Definition 1 Let � be the partial ordering relation on [0, 1] defined as follows:
for a, b ∈ [0, 1], a � b if and only if 0 < a ≤ b or 0 ≤ a < 1 and b = 0.

We define the strict partial ordering ≺ from � in the conventional way.
As we will see later, the definition of the ordering � responds to the use of

both 0 and 1 as maximal values in CADIAG2 for the interval [0, 1]. The value
0 denotes certainty in the non-occurrence of an event or falsity of a statement
and the value 1 denotes certainty in its occurrence or its truth.
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For the next definition let

D = [0, 1]× [0, 1]− {(0, 1), (1, 0)}.

Definition 2 The function max∗ : D −→ R is defined as follows, for (a, b) ∈ D:

max∗(a, b) =

{
a if b ≺ a
b otherwise

In words, max∗(a, b) returns the biggest value among a and b with respect
to the ordering � just defined.

3 The medical expert system CADIAG2

In this section we briefly introduce the medical expert system CADIAG2
–for more details on its design one can look at [1], [2] or [3]–.

As already mentioned in the introduction, CADIAG2 consists of two funda-
mental pieces: the knowledge base and the inference engine. We first describe
the different types of rules in the system, mostly in relation to the role they
play along the inference process, and later describe the essentials of the infer-
ence mechanism. Before getting started some notation is needed.

Let p1, . . . , pl denote the basic medical entities that occur in CADIAG2 (i.e.,
the symptoms and diseases in the system), for some l ∈ N. CADIAG2 deals
also with compound entities, build from basic ones by means of conjunction (∧),
disjunction (∨) and negation (∼) (i.e., built as Boolean combinations of basic
ones).

Strictly speaking, the system regards two additional types of connectives
called at least n out of m and at most n out of m, with n,m ∈ N and n ≤ m.
However, these can be expressed in terms of conjunction and disjunction and
thus are not taken into account in this paper. As an example,

at least 2 of (φ1, φ2, φ3)

can be rewritten as

(φ1 ∧ φ2) ∨ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3),

for φ1, φ2, φ3 some arbitrary medical entities in CADIAG2.

The knowledge base. The knowledge base of CADIAG2, to which we
will commonly refer as KB, consists of a collection of approximately 40.000
IF-THEN rules that express possibly uncertain relationships among distinct
medical entities.

Rules in CADIAG2 can be characterized by triples of the form 〈θ, φ, η〉, where
θ is the antecedent, φ the consequent and η is the degree to which θ confirms φ
(i.e., the degree of confirmation), for θ, φ medical entities and η ∈ [0, 1].
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In some literature about CADIAG2 –see for example [1] or [7]– rules are
defined as 4-tuples of the form 〈θ, φ, η, ζ〉, for θ, φ medical entities and η, ζ ∈
[0, 1], where η stands for the degree to which θ (the antecedent) confirms φ (the
consequent) and ζ for the degree to which φ confirms θ, sometimes referred to in
the corresponding literature as the strength of confirmation and the frequency
of occurrence of the rule respectively. The 4-tuple 〈θ, φ, η, ζ〉 corresponds in our
notation to the pair of triples 〈θ, φ, η〉 and 〈φ, θ, ζ〉.

We can distinguish among three different types of rules by considering their
form and how they are used along the inference process in relation to the values
assigned to their antecedent or consequent.

• Type confirming to the degree η (cη). A rule of this type is of the
general form 〈θ, φ, η〉, for θ, φ medical entities (φ a basic medical entity)
and η ∈ (0, 1]. It is triggered in a run of the inference mechanism in
CADIAG2 for strictly positive values or grades of its antecedent (in a way
that will be made clear below, where we describe the inference engine of
CADIAG2). We will generally refer to rules of this kind as rules of type
c.

A rule of type c formalizes (possibly) uncertain interrelations among medical
entities, the bigger the degree of confirmation η the more certain the presence
of the consequent given the antecedent of the rule.

What follows is an example of a rule of type c, taken from [1]:1

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with degree of confirmation 0.3.

• Type mutually exclusive (me). A rule of type me is of the form 〈θ, φ, 0〉,
for θ, φ medical entities (φ a basic medical entity). It is only triggered in
a run of the inference engine of the system when there is certainty about
the truth or occurrence of θ.

A rule of type me expresses mutual exclusiveness between antecedent and
consequent (i.e., the presence of one of them excludes the other).

The one that follows is an example of a rule of this type:

IF positive rheumatoid factor
THEN NOT seronegative rheumatoid arthritis

• Type always occurring (ao). A rule of type ao is of the form 〈θ, φ, 1〉,
for θ, φ medical entities. It can be triggered by the system only when there
is certainty about the falsity or non-occurrence of φ.

1The subsequent examples in this subsection are also taken from [1].
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A rule of type ao expresses the fact that the antecedent implies the con-
sequent. It follows that, if the consequent is excluded, the presence of the
antecedent is also excluded.

Notice that a rule 〈θ, φ, 1〉 of type ao can be alternatively formalized by the
triple 〈∼ φ,∼ θ, 1〉 and that it is not a special case of a rule of type c due to
the fact that ∼ θ is not a basic medical entity.

Next we give an example of a rule of this type:

IF NOT (rheumatoid arthritis AND splenomegaly AND leukopenia
≤ 4000/µl)
THEN NOT Felty’s syndrome

There are other typologies for the rules in KB that will prove useful in
further sections in this paper. A very general typology is the one that follows:

• Binary rules. Rules of the form 〈θ, φ, η〉 where θ, φ are basic entities.

• Compound rules. Rules of the form 〈θ, φ, η〉 where θ is a compound
medical entity and φ is a basic entity.

The vast majority of rules in KR are binary. There are less than one hundred
compound rules in KR yet, despite the number, they are important for the
functioning of the system.

We have a further distinction among binary rules of use in further sections:

• Symptom-symptom rules. Rules of the form 〈θ, φ, η〉 where both θ, φ
are symptoms and η ∈ {0, 1}.

• Disease-disease rules. Rules of the form 〈θ, φ, η〉 where both θ, φ are
diseases and η ∈ {0, 1}.

• Symptom-disease rules. Rules of the form 〈θ, φ, η〉 where θ is a symp-
tom, φ a disease and η ∈ [0, 1].

• Disease-symptom rules. Rules of the form 〈θ, φ, η〉 where θ is a disease,
φ is a symptom and η ∈ [0, 1].

Most rules of type disease-symptom in KB are not used by the inference
engine, only those of type ao are used by it.

The inference engine. CADIAG2 gets started with medical information
about the patient. Such information is formally given by a set of basic medical
entities present in the patient, each one together with a number in the interval
[0, 1] which, in principle, is intended to represent the degree to which such
entity is present (i.e., its degree of presence). These values are, in most of the
literature on CADIAG2, interpreted as membership degrees in the context of
fuzzy set theory and respond to the possibly vague nature of medical entities in
CADIAG2.
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Values assigned to compound medical entities in the system (in principle
only for those that are relevant for the inference) are generated according to the
following rules, for θ, φ any medical entities:

• The assignment to θ ∧ φ is obtained as the minimum between the corre-
sponding assignments to θ and φ.

• The assignment to θ ∨ φ is obtained as the maximum between the corre-
sponding assignments to θ and φ.

• The assignment to ∼ θ is obtained as the difference between 1 and the
assignment to θ.

After the initial medical information about the patient is obtained and en-
tered into the system the rules in the knowledge base come into play. All the
rules triggered by the initial information about the patient are used during the
inference process. At each step in the inference process a rule of type c, me or
ao is applied (that is done, in principle, in no particular order). Rules of these
types are triggered as follows, for general entities θ, φ:

• A rule 〈θ, φ, η〉 of type c can be triggered at some step in the inference
process if a strictly positive value has been previously assigned to θ. The
use of the rule 〈θ, φ, η〉 will generate a new assignment for φ, calculated as
the minimum between the value assigned to θ that triggers the rule and
η.

• A rule 〈θ, φ, 0〉 of type me can be triggered during the inference process if
certainty about the presence of θ in the patient (i.e., the assignment 1) has
been previously concluded. The application of 〈θ, φ, 0〉 allows us to con-
clude certainty about the absence of φ in the patient (i.e., the assignment
0).

• A rule 〈θ, φ, 1〉 of type ao can be triggered if certainty about the absence
of φ has been previously concluded. The application of the rule 〈θ, φ, 1〉
will allow us to conclude certainty about the absence of θ in the patient.

The inference process goes on until the system comes to the stage where
neither new medical entities nor new assignments for those already generated
can be inferred. CADIAG2 yields as outcome of the inference the set of dis-
eases generated during the inference process along with the maximal value (with
respect to the ordering � defined above) assigned to them during the inference.

It has to be mentioned that, according to part of the literature on CADIAG2
–for example [1]–, the original inference process in CADIAG2 works in a slightly
different way. The update in the value of the distinct sentences involved in
the inference is done as soon as two different values for the same sentence are
produced by the system. The value chosen in the update for atomic sentences
in L is the maximal one (with respect to the ordering �). Notice though that
this feature has a highly undesirable result (unless further restrictions on the
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rules or on the order in which the rules are used are imposed), which is that the
outcome of a run of the inference mechanism can depend on the order in which
the rules are applied. Such a drawback is easily avoided by assuming (as we do
for this paper) that the chosen value, the maximal among all those produced
along the inference with respect to the partial ordering �, is only computed at
the end of the process.

Notice that the system can generate what is called a runtime inconsistency
given the ordering �, produced when both values 0 and 1 are assigned to a
medical entity along the inference process. In such case the system stops and
produces an error message.

4 A formalization of the inference process

In this section we provide a logical formalization of the inference process in
CADIAG2 by means of a complete set of rules aimed at describing the possible
steps along the inference.

Let L be a finite propositional language and SL the set of sentences obtained
from L as its closure under conjunction (∧), disjunction (∨) and negation (∼).
In the context of CADIAG2, the set {p1, . . . , pl} of basic medical entities will
be a subset of L and the compound medical entities that can be obtained from
L will be a subset of SL.

Let Γ = {φ1, ..., φn} ⊂ SL, for some n ∈ N. We will denote the sentence
φ1 ∧ ... ∧ φn by

∧
Γ.

Definition 3 A graded statement in L is a pair of the form (φ, η), with φ ∈ SL
and η ∈ [0, 1].

In the context of CADIAG2 a graded statement of the form (φ, η) represents
the medical entity φ together with the value assigned to it, η, either at the
outset (i.e., if φ is part of the initial information with which CADIAG2 gets
started) or during the inference process.

4.1 The calculus CadL

In this subsection we summarize results in [6] and present, in a slightly
simplified version, the calculus CadL aimed at formalizing the inference process
in CADIAG2.

First we define the notion of theory of CadL:

Definition 4 A theory T of CadL is a pair of the form (Φ, R) characterized
as follows:

• Φ is a finite set of graded statements in L.

• R = Rc ∪ Rme ∪ Rao, with Rc, Rme and Rao finite collections of rules of
type c, me and ao respectively.
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In the context of CADIAG2 Φ would be given by the input of the system
(i.e., the initial information about the patient) and R would be given by KR.

Let T = (Φ, R) be a theory of CadL. We have the following rules:

• Reflexivity rule

(REF)
(φ, η) ∈ Φ

T ` (φ, η)

• Evaluation rules

(AND)
T ` (φ, η) T ` (θ, ζ)

T ` (φ ∧ θ,min(η, ζ))

(OR)
T ` (φ, η) T ` (θ, ζ)

T ` (φ ∨ θ,max(η, ζ))

(NOT)
T ` (φ, η)

T ` (∼ φ, 1− η)

• Manipulation rules

(C)
〈θ, φ, η〉 ∈ Rc T ` (θ, ζ)

T ` (φ,min(η, ζ))
for ζ > 0

(ME)
〈θ, φ, 0〉 ∈ Rme T ` (θ, 1)

T ` (φ, 0)

(AO)
〈θ, φ, 1〉 ∈ Rao T ` (φ, 0)

T ` (θ, 0)

REF simply aims at formalizing for general theories of the form (Φ, R)
that a graded statement that belongs to Φ (i.e., to the input in CADIAG2) is
itself inferred as a consequence (i.e., as part of the output in CADIAG2). The
evaluation rules AND,OR and NOT aim at formalizing the assignments to
compound medical entities along the inference process in a run of the inference
mechanism of CADIAG2 and the rules C,ME and AO correspond to the use
of rules of type c, me and ao respectively during the inference process, as
explained in the previous section.

Given a theory T of CadL and a graded statement (φ, η), a proof of (φ, η)
from T in CadL is defined as a finite sequence of sequents of the form

T ` (φ1, η1), ..., T ` (φn, ηn)
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with (φn, ηn) = (φ, η) and where, for i ∈ {1, ..., n}, each (φi, ηi) in T ` (φi, ηi)
follows from T by the application of one of the rules above, from graded state-
ments in previous sequents.

We say that there exists a maximal proof of (φ, η) from T in CadL if there
exists a proof of (φ, η) from T and there is no proof from T of (φ, ζ) with η ≺ ζ.

Let us now consider the theory T = (Φ, R), with R = KR, φ a disease
in L and η ∈ [0, 1]. As should be clear from the description of the inference
mechanism of CADIAG2 given in Section 3, the medical entity φ along with
the value η would be given as an outcome in a run of the inference process of
CADIAG2 on input Φ only if there exists a maximal proof of (φ, η) from T in
CadL –for more details on this point see [6]–. In CadL a runtime inconsistency
generated by the system would imply the existence of maximal proofs of (θ, 0)
and (θ, 1) from T , for some medical entity θ.

5 Towards a semantics for CadL

In this section we look at the interpretation of the inference process in CA-
DIAG2. We consider two possible alternatives in our attempt: probabilistic
semantics and fuzzy semantics.

5.1 Probabilistic semantics

The motivation for a probabilistic interpretation of the inference in CA-
DIAG2 comes from the identification of the degrees of confirmation of rules
in KR with frequencies or, more generally, probabilities and the rules in KR
themselves with probabilistic conditional statements.

In this subsection we will assume that rules of the form 〈θ, φ, η〉 ∈ KR
represent probabilistic conditional statements, where θ is the conditioning event
or evidence, φ the uncertain event and η the probability of φ given that θ is
true or that it occurs.

In order to set the inference process on probabilistic grounds and analyze
its adequacy with probability theory we need also a suitable probabilistic in-
terpretation of the graded propositions taken as input and generated along the
process by the system. Recall that the value η in a statement of the form (φ, η)
in the input of CADIAG2 is intended to represent the degree of presence of
φ in the patient, normally identified with a membership degree in the context
of fuzzy set theory (i.e., with a degree of truth). Here though we will adopt a
probabilistic interpretation for these values.

We will focus our analysis on the binary fragment of KR (i.e., on the binary
rules in KR), which we will denote by KRbin. The vast majority of rules in
KR are, as mentioned earlier, binary and they constitute the most characteristic
fragment of CADIAG2 when seen as a representative example of a certain type
of expert system. This restriction means leaving the evaluation rules in CadL
aside. We will focus our analysis of the inference engine and thus of CadL on
the manipulation rules.
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Before going any further we need to introduce some preliminary notation
and definitions.

Definition 5 Let ω : SL −→ [0, 1]. We say that ω is a probability function on
L if the following two conditions hold, for all θ, φ ∈ SL:

• If |= θ then ω(θ) = 1.

• If |=∼ (θ ∧ φ) then ω(θ ∨ φ) = ω(θ) + ω(φ).2

The first clause of the definition simply states that if θ is always true (or if
it always occurs) then its probability must be 1 whereas the second one states
that if φ and θ are never true at once (or that they never occur together) then
the probability of θ ∨ φ is equal to the sum of the probabilities of θ and φ.

From Definition 5 the standard properties of probability functions on propo-
sitional languages follow. We give some without proof –for a proof and more
details on probability functions see for example [17]–. For ω a probability func-
tion on L and θ, φ ∈ SL,

• ω(θ ∨ φ) = ω(θ) + ω(φ)− ω(θ ∧ φ),

• ω(∼ θ) = 1− ω(θ),

• If θ |= φ then ω(θ) ≤ ω(φ).

For the next definition let us consider 〈θ, φ, η〉 to be a conditional probabilis-
tic statement, for θ, φ ∈ SL and η ∈ [0, 1].

Definition 6 We say that a probability function ω on L satisfies 〈θ, φ, η〉 if

ω(θ ∧ φ)

ω(θ)
= η.

If there exists such a probability function we then say that 〈θ, φ, η〉 is satis-
fiable.

As seen in the previous section, the inference mechanism in CADIAG2 gets
started with a set of graded statements of the form (q, η), with q ∈ L a basic
medical entity present in the patient. Let us consider as an example the med-
ical entity ’reduced glucose in serum’. Let us assume that the value assigned
at the outset in a run of the inference engine by the evaluation system in CA-
DIAG2 to the statement ’Patient A has reduced glucose in serum’ out of the
evidence given by the corresponding measurement of the amount of glucose in
Patient A is η, for some η ∈ [0, 1]. As an example, we could interpret such
value as the degree of belief that a medical doctor has in the truth of the state-
ment given the evidence. As such η could be interpreted as a probability. The

2Here and throughout |= represents classical entailment.
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probabilistic interpretation is certainly favoured by the discretization applied
to medical concepts in CADIAG2 (for example, the concept ’glucose in serum’
generates five distinct medical entities in CADIAG2: ’highly reduced glucose in
serum’, ’reduced glucose in serum’, ’normal glucose in serum’, ’elevated glucose
in serum’ and ’highly elevated glucose in serum’). Notice that such an interpre-
tation places us within the subjective probabilistic frame and thus, for the sake
of coherence, the knowledge base KR should also be interpreted subjectively.
Other interpretations are also possible though. For example, one could regard
such values as the ratio given by the number of doctors that agree on the truth
of the statement out of all the doctors involved in the assessment. In order
to accommodate such values into a coherent probabilistic frame along with the
statements in KR one could justify them as being subjective probabilities as-
sessed by a group of experts –see [9] or [16] for an analysis and justification of
such concept–.

Formally, let q ∈ L represent a basic medical entity present in the patient and
assume that η ∈ [0, 1] is the initial value assigned to it by the evaluation system
of CADIAG2. We can identify the graded statement (q, η) with a probabilistic
conditional statement of the form 〈κ, q, η〉, where κ ∈ SL is the evidence that
supports the presence of q in the patient.

Let us assume that the input of the system consists of

〈κ1, q1, η1〉, ..., 〈κn, qn, ηn〉,

for some q1, ..., qn basic medical entities and η1, ..., ηn ∈ [0, 1]. Under this view,
the set Ω = {κ1, ..., κn} ⊂ SL constitutes the initial evidence about the patient,
which is then propagated along the inference process by the application of the
rules in KRbin.

Within our probabilistic interpretation the reflexivity and manipulation rules
in CadL adopt the following form, for input Φ in T now formally given by the
above conditional statements:

(REF*)
〈κ, φ, η〉 ∈ Φ

T ` 〈κ, φ, η〉

(C*)
〈θ, φ, η〉 ∈ Rc T ` 〈κ, θ, ζ〉
T ` 〈κ, φ,min(η, ζ)〉

for ζ > 0

(ME*)
〈θ, φ, 0〉 ∈ Rme T ` 〈κ, θ, 1〉

T ` 〈κ, φ, 0〉

(AO*)
〈θ, φ, 1〉 ∈ Rao T ` 〈κ, φ, 0〉

T ` 〈κ, θ, 0〉
Within this frame, final outputs of the form (φ, η) produced by the inference

engine shall be interpreted as conditionals of the form 〈
∧

Ω, φ, η〉 (i.e., as the
probability of φ given all the medical evidence available about the patient).
In order to make such interpretation operative and formalize it we need to

12



extend CadL by introducing two new inference rules (the extended system will
be denoted by CadL∗). The first of these rules formalizes the maximization
process done by the system in order to yield as output the set of medical entities
(diseases) along with the maximal value generated by it, with respect to the
ordering �:

(MAX)
T ` 〈

∧
∆1, φ, η〉 T ` 〈

∧
∆2, φ, ζ〉

T ` 〈
∧

(∆1 ∪∆2), φ,max∗(η, ζ)〉
for ∆1,∆2 ⊆ Ω.

An additional rule is necessary to produce the desired outcome:

(EX)
T ` 〈

∧
∆, φ, η〉 T 0 〈κ, φ, ζ〉 for all ζ ∈ [0, 1]

T ` 〈κ ∧
∧

∆, φ, η〉
for ∆ ⊂ Ω and κ ∈ Ω.

This last rule, which we call EX as abbreviation of ’exhaustive’, simply states
that, if κ is a piece of evidence that says nothing about the presence of φ in
the patient (i.e., that κ and φ are independent) then the probability of φ given
∆ should stay the same if in addition we consider the piece of evidence κ (i.e.,
∆ ∪ {κ}).

Consider now the theory T = (Φ, R), with R = KRbin and Φ the input of
the system which, as mentioned earlier, under our probabilistic interpretation
takes the form of a collection of conditional probabilistic statements

〈κ1, q1, η1〉, ..., 〈κn, qn, ηn〉,

for some q1, ..., qn basic medical entities, η1, ..., ηn ∈ [0, 1] and Ω = {κ1, ..., κn} ⊂
SL the initial evidence about the patient. The disease φ along with the value η
would be given as an output in a run of the inference process of CADIAG2 on
input Φ only if there exists a maximal proof (defined for CadL∗ essentially as
for CadL) of 〈

∧
Ω, φ, η〉 from T in CadL∗. In our probabilistic interpretation,

a runtime inconsistency in CADIAG2 can be manifested by the existence of
maximal proofs of 〈

∧
Ω, φ, 0〉 and 〈

∧
Ω, φ, 1〉 from T , for some medical entity φ,

or by the non-existence of a proof of 〈
∧

Ω, φ, η〉 together with the existence of
a proof of a statement of the form 〈κ, φ, ζ〉 from T (due to the fact that max∗

is not defined for (0, 1)) –for more details on all these issues see [19]–.

5.1.1 CadL∗ and probabilistic soundness

Among the manipulation rules in CadL∗, probabilistic soundness of ME∗ is
clear (i.e., that any probability function on L that satisfies 〈κ, θ, 1〉 and 〈θ, φ, 0〉
also satisfies 〈κ, φ, 0〉). So is soundness of AO∗. However, C∗ is certainly not
sound with respect to probabilistic semantics. Among the two new additional
rules in CadL∗ introduced to provide a probabilistic interpretation of the infer-
ence, MAX is clearly not sound and EX assumes some probabilistic indepen-
dence among entities that may not actually be independent. Overall, CadL∗
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does not score well within probability theory. This is no surprise. The computa-
tion of conditional probabilistic statements in a compositional way, as done by
CADIAG2 primarily by means of the min and max∗ operators, is clearly bound
to be probabilistically unsound. One may wonder though what could be done in
order to improve the inference on probabilistic grounds from a knowledge base
like KRbin. The answer seems to be ’not much’. Certainly a KRbin-like knowl-
edge base (i.e., a knowledge base given by some binary probabilistic conditional
statements) is not the most convenient for inferential purposes in probability
theory for medical applications like CADIAG2. As is well known, there are
other knowledge-base structures better suited for that purpose, Bayesian net-
works being the most celebrated among them –see for example [5] or [18]–.

It is worth noting that CadL∗ satisfies what we can call weak consistency
–called weak soundness in [11]–, defined as follows: if there is a maximal proof
in CadL∗ of a statement of the form 〈

∧
∆, φ, 1〉 (or 〈

∧
∆, φ, 0〉) from some

theory T , with φ ∈ SL and ∆ ⊂ SL then, if there is a maximal proof in CadL∗

of a statement of the form 〈
∧

∆∗, φ, η〉, with ∆ ⊂ ∆∗, then η = 1 (or η = 0
respectively). That is to say, if CadL∗ concludes certainty about the occurrence
of some event or about the truth or falsity of some sentence then adding new
evidence does not alter this certainty. Weak consistency is provided in CadL∗

and so in the inference mechanism of CADIAG2 by the operator max∗ defined
over the ordering �.

5.2 Fuzzy semantics

The motivation for an interpretation of the inference in CADIAG2 on the
grounds of a fuzzy semantics is mostly motivated by the interpretation of the
degree of presence η in a graded statement of the form (φ, η) in the input of
CADIAG2 in the natural, most intuitive way: as a membership degree (i.e.,
truth degree) in the context of fuzzy set theory. However, in our attempt to
provide a fuzzy interpretation of the inference in CADIAG2, we also need an
interpretation of the rules in the system in those same terms. As mentioned in
previous sections, degrees of confirmation are intended to represent degrees of
certainty about the presence of the corresponding diseases in the patient and
are better characterized by means of uncertainty measures such as probability
functions. Even though we acknowledge the possibility of using fuzzy semantics
to model uncertainty we would rather consider a characterization of the rules
of the system and the corresponding degrees of confirmation in terms of truth
degrees, arguably more suitable from the point of view of the intended fuzzy
semantics.

Graded statements in our settings become in this context what have been
called graded formulas in [10] or [12]. Truth degrees in them will now be in-
terpreted as lower-bound thresholds (i.e., η in a graded statement of the form
(φ, η) on L will now be regarded as a lower-bound threshold for the degree of
truth of φ). Such an interpretation is not only motivated by the fact that it con-
stitutes the common one to fuzzy logics but also by the inference in CADIAG2
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itself when interpreted on fuzzy grounds: the choice of the maximal value with
respect to the ordering � generated in relation to a certain disease as the output
value for it goes well with the characterization of any values generated at each
step in the inference as lower-bound thresholds.3

For our fuzzy semantics, the interpretation for conjunction (∧), disjunction
(∨) and negation (∼) suggests itself by the values (degrees of truth in this
context) that the system assigns to compound medical entities in SL along the
inference process. Therefore, for v : L −→ [0, 1] a fuzzy valuation on L, we will
have the following constraints, for φ, θ ∈ SL:

• v(φ ∧ θ) = min(v(φ), v(θ)).

• v(φ ∨ θ) = max(v(φ), v(θ)).

• v(∼ φ) = 1− v(φ).

It is common in the field of fuzzy logic to identify the interpretation of the
conjunction to a t-norm (based on some natural, desirable properties that such
an interpretation should satisfy) and the interpretation of the implication (→)
to its residuum –for more details on these notions see [12]–. Such identification
places a further constraint on v:

v(θ → φ) = sup{v(p) | v(θ ∧ p) ≤ v(φ)},

for θ, φ ∈ SL.
The identification of the interpretation of the conjunction (∧) with the Gödel

t-norm (i.e., with the minimum operator) leads to the following interpretation
of the implication (→), for φ, θ ∈ SL:

v(θ → φ) =

{
1 if v(θ) ≤ v(φ)
v(φ) otherwise

In this framework we can identify an inference rule of the form 〈θ, φ, η〉 in
the knowledge base of CADIAG2 –for θ, φ ∈ SL and η ∈ [0, 1]– with the graded
statement (θ → φ, η).

Satisfiability of rules in KR and, in general, of any graded statements is
defined in our framework as expected.

Definition 7 The fuzzy valuation v on L is said to satisfy (φ, η), for some
φ ∈ SL and η ∈ [0, 1], if v(φ) ≥ η.

3This is not so in our probabilistic interpretation of the rules and graded statements in-
volved in the inference process, as seen in the previous subsection. Recall that, in our prob-
abilistic characterization, distinct values generated along the inference for the same disease
(or, in general, medical entity) were intended to represent distinct degrees of certainty about
the presence of such disease in the patient due mostly to differing amounts of evidence (i.e,
subsets of what we denoted by Ω).
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If such a valuation exists we say that (φ, η) is satisfiable.

It has to be mentioned that the residuum is not strictly necessary in or-
der to characterize the inference rules in CADIAG2 by means of the intended
semantics. Notice that, in particular for v a fuzzy valuation as defined above
by the given restrictions, v(θ → φ) ≥ η is equivalent to v(θ) ≥ min(η, v(φ))
and thus the residuum does not need to be defined. However, it makes our
characterization clearer and less cumbersome.

5.2.1 CadL and fuzzy soundness.

Among the manipulation rules in CadL, soundness of the rule C under
the intended interpretation is clear (i.e., any fuzzy valuation v that satisfies
(θ, ζ) and (θ → φ, η) also satisfies (φ,min(η, ζ)) ) and so is soundness of ME
and AO. The rule C responds to what is basically called fuzzy modus ponens,
see for example [10]. As for the evaluation rules in CadL, AND and OR
are sound with respect to the intended semantics but NOT is not sound (due
to the interpretation of the truth values in graded statements as lower-bound
thresholds). As shown in [6], soundness of CadL can be basically provided by
restricting the use of the rule NOT along the inference and by reinterpreting the
intended meaning of the truth degrees in some graded statements: truth degrees
in the graded statements that constitute the input in a run of the inference
engine can be regarded as point values and also those in graded statements that
are obtained from them by the application of any rules in CadL other than
C. The rule NOT would only be applied to these statements (i.e., to graded
statements where the truth degree is known to represent a point value). Thus,
graded statements obtained as a result of the application of the rule C would
not be used by the rule NOT –for more details on this point and, in general,
on the content of this section see [6]–.

6 Conclusion

Two semantics have been taken as reference in our attempt to provide an
interpretation of the inference process and output of the medical expert system
CADIAG2: probabilistic semantics and fuzzy (t-norm-based) semantics. The
choice of probabilistic semantics was mostly motivated by the natural identifica-
tion of the degrees of confirmation in the rules of the system with probabilities
whereas the choice of a fuzzy semantics was mostly motivated by the natural
identification of the input values of the input symptoms in a run of the infer-
ence engine with membership degrees (i.e., truth degrees) in fuzzy set theory.
In order to set the inference process on probabilistic grounds a probabilistic in-
terpretation of the input values was needed and thus its natural interpretation,
(arguably) more in keeping with a fuzzy semantics, had to be overlooked. On
the other hand, in order to set the inference process fully on the grounds of a
fuzzy semantics the degrees of confirmation in the rules of the system needed to
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be interpreted accordingly, despite the fact that such degrees are better repre-
sented by uncertainty measures such as probabilities. This granted, we showed
that both semantics could account well for several steps along the inference pro-
cess, in particular the attempted t-norm-based fuzzy semantics –based on the
identification of the t-norm with the minimum operator– yet, overall, none of
them proved fully suitable as the intended interpretation of the system.
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