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Abstract

With a left-continuous t-norm ¯, we may as-
sociate the set of its vertical cuts, namely, the
set F of functions fa : [0, 1] → [0, 1], x 7→
x ¯ a. Endowed with the pointwise order,
with the functional composition, with the
constant 0 function and with the identity
function, F is an algebra which is isomorphic
to ([0, 1];≤,¯, 0, 1).

We characterize the functional algebras aris-
ing in this way from left-continuous t-norms;
the key property is that every two functions
commute. On the basis of this approach, we
describe a subclass of the left-continuous t-
norms in a unified way. This subclass com-
prises most left-continuous t-norms discussed
in the literature.

Keywords: Left-continuous t-norms, func-
tional algebra.

1 Introduction

When compiling the most basic properties which a
function interpreting the conjunction in fuzzy log-
ics should fulfill, one arrives at the notion of a left-
continuous t-norm; see e.g. [7]. The logic which is
based on all left-continuous t-norms together with
their respective residua, is MTL [2].

It has been an open problem for many years how to de-
scribe the structure of left-continuous t-norms in gen-
eral. A general approach being missing, a great deal
of work has been done to define various ways to con-
struct specific such two-placed functions. See [5] for
an overview, and see also [10].

This paper is meant as a contribution to the difficult
problem how to systematize left-continuous t-norms.
We have developed a simple idea with the aim to bring

order into the picture, which presently causes the im-
pression that just a little bit of creativity is needed to
find once again a new left-continuous t-norm, seem-
ingly unrelated to earlier defined ones.

Still, what we offer is a way to construct left-
continuous t-norms, and not all of them are included.
However, our approach differs from previous ones. In
the works of S. Jenei and others (see [5]), the geometri-
cal viewpoint is frequently stressed, and the t-norm is
visualized by its three-dimensional graph. In our own
previous work [9, 10], the relationship between MTL-
algebras and partially ordered groups is examined.

The present work stresses again the geometric view-
point; but no three-dimensional objects are consid-
ered, we restrict to two dimensions. We simply work
with the collection of vertical cuts through the three-
dimensional graph. In this way, it is possible to visu-
alize in a pleasant way our object of study. We are
given a set of functions from the real unit interval into
itself, and the basic property of this set is that every
two functions commute. Indeed, the commutativity
of the functional composition corresponds to both the
associativity and the commutativity of the underlying
t-norm.

When taking into account the typical examples of left-
continuous t-norms, we see that the associated func-
tional algebras show certain regularities. We have col-
lected these regularities and derived from them a gen-
eral way to construct left-continuous t-norms. In this
way, we systematize a class of t-norms which have a
particularly simple structure, but is not too restrictive
either.

In this paper, we present our idea and its mathematical
specification, together with a demonstration how the
method works in known cases. The further elaboration
is the subject of a forthcoming paper.



2 Preliminaries

The basic notion of this paper is the following one.

Definition 2.1 An operation ¯ : [0, 1]2 → [0, 1] is
called a t-norm if, for all a, b, c ∈ [0, 1], (i) (a¯b)¯c =
a¯ (b¯ c), (ii) a¯ b = b¯ a, (iii) a¯ 1 = a, and (iv)
a ≤ b implies a¯ c ≤ b¯ c. A t-norm ¯ is called left-
continuous, or l.c. for short, if for each a ∈ [0, 1], the
function (0, 1] → [0, 1], x 7→ x¯ a is left-continuous.

Let ¯ a l.c. t-norm. Then we call ([0, 1];≤,¯, 0, 1) the
t-norm monoid based on ¯.

Note that usually, we associate with a l.c. t-norm the
MTL-algebra ([0, 1];∧,∨,¯,→, 0, 1), where → is the
residuum belonging to ¯. Classifying the t-norm al-
gebras is, however, the same as to classify the t-norm
monoids, as the operations ¯ and → are mutually de-
finable. We will deal here only with the monoidal op-
eration ¯.

The article is based on a simple observation, subject
of the subsequent Theorem 2.3.

Definition 2.2 Let ¯ be a l.c. t-norm. For any a ∈
[0, 1], call

f¯a : [0, 1] → [0, 1], x 7→ x¯ a

the vertical cut, or cut for short, of ¯ at the point a.
Moreover, call

F¯ = {f¯a : a ∈ [0, 1]}
cut set belonging to ¯.

We will denote the cut of a l.c. t-norm at a simply
by fa and the cut set by F , since the reference to a
specific t-norm will always be clear.

Theorem 2.3 Let ¯ be a l.c. t-norm. Then the cut
set F belonging to ¯ is a set of functions from [0, 1] to
[0, 1] with the following properties:

(T1) Every f ∈ F is increasing.

(T2) Every two functions in F commute, that is, f ◦
g = g ◦ f for any f, g ∈ F .

(T3) For every a ∈ [0, 1], there is exactly one f ∈ F
such that f(1) = a.

(T4) Every f ∈ F is on (0, 1] left-continuous.

Conversely, let F be a set of functions from [0, 1] to
[0, 1] fulfilling (T1)–(T4). Then F is the cut set of a
l.c. t-norm ¯, and ¯ is uniquely determined by

a¯ b = f(a), where f ∈ F is such that f(1) = b. (1)

Proof. Clearly, the cut set of a l.c. t-norm fulfills the
conditions (T1)–(T4).

Conversely, let F be a set of functions from [0, 1] to
itself such that (T1)–(T4) hold. Using (T3), denote
by fa, where a ∈ [0, 1], the unique element of F such
that fa(1) = a. We may then define ¯ by (1).

From (T2), we conclude a ¯ b = fb(a) = fb(fa(1)) =
fa(fb(1)) = fa(b) = b ¯ a. Again by (T2), we have
(a ¯ b) ¯ c = fc(a ¯ b) = fc(fb(a)) = fb(fc(a)) =
(a¯ c)¯ b, and since ¯ is proved to be commutative,
¯ is associative. Moreover, a¯ 1 = 1¯ a = fa(1) = a.
Finally, a ≤ b implies a ¯ c = fc(a) ≤ fc(b) = b ¯ c
by (T1). So ¯ is a t-norm, which is left-continuous by
(T4).

Obviously, F is the cut set belonging to ¯. In partic-
ular, fa is the cut of ¯ at a. ¤

We shall endow the cut set belonging to a t-norm with
an algebraic structure. For pairs of functions f, g :
[0, 1] → [0, 1], we denote the pointwise order by ≤.
Furthermore, with each pair f, g : [0, 1] → [0, 1], we
associate their composition f ◦g. The basic properties
of the order ≤ and of the operation ◦ on F are as
follows.

Lemma 2.4 Let F be a cut set belonging to some
l.c. t-norm. Then:

(T5) The pointwise defined partial order ≤ on F is
a total order which is moreover dense, separable,
complete, and bounded. The lower bound is

0̄ : [0, 1] → [0, 1], x 7→ 0,

and the upper bound is

id : [0, 1] → [0, 1], x 7→ x.

Moreover, all suprema are calculated pointwise.

(T6) F is closed under functional composition, that is,
f ◦ g ∈ F for any f, g ∈ F .

We note that, by Theorem 2.3, the properties (T5)–
(T6) are consequences of (T1)–(T4).

We summarize what we have shown.

Definition 2.5 Let F be a cut set belonging to a
l.c. t-norm ¯. Endow F with the pointwise order ≤,
with the composition of functions ◦, and with the con-
stants 0̄ and id. Then we call (F ;≤, ◦, 0̄, id) the func-
tional algebra belonging to ¯.

Theorem 2.6 A l.c. t-norm algebra ([0, 1];≤,¯, 0, 1)
and the functional algebra (F ;≤, ◦, 0̄, id) belonging to



¯ are isomorphic. The isomorphism is given by
Φ(a) = fa, where a ∈ [0, 1] and fa is the unique el-
ement of F such that fa(1) = a.

In this way, a one-to-one correspondence is defined
between the l.c. t-norms and the algebras of functions
from [0, 1] to [0, 1] fulfilling the properties (T1)–(T4).

Note that this correspondence can be extended to all
t-norms, by dropping the condition (T4).

3 Examples

Let us have a look at the cut sets of some frequently
encountered l.c. t-norms.

We consider first the continuous t-norms. Let ¯L be
the ÃLukasiewicz t-norm: let

a¯L b = (a + b− 1) ∨ 0

for a, b ∈ [0, 1]. We plot the cuts of ¯L at the points
0.2, 0.4, ..., 1:
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Note that our figures have only a schematic character;
the cuts are drawn inaccurate in case that two of them
overlap.

Next, let ¯P be the product t-norm: let

a¯P b = a · b

for a, b ∈ [0, 1], where · denotes the multiplication of
reals.
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Finally, let ¯G be the Gödel t-norm: let

a¯G b = a ∧ b

for a, b ∈ [0, 1].
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Any continuous t-norm arises from the three men-
tioned ones by means of an ordinal sum. So with these
three examples, it is easy to see how the cut set of an
arbitrary continuous t-norm looks like.

We now turn to examples of non-continuous l.c. t-
norms. These are taken from the survey article [5],
where further explanations and also the appropriate
references can be found. Let ¯n be the nilpotent min-
imum t-norm: let

a¯n b =

{
a ∧ b if a + b > 1,

0 else



for a, b ∈ [0, 1]. Discontinuity points are marked in
the subsequent figures by vertical lines inserted into
the graph, whose lower edge indicates the respective
function value.
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Next, we consider the t-norm ¯J : let

a¯J b

=





a ∧ b if a + b > 1 and a ≤ 1
3 or a > 2

3 ,

a + b− 2
3 if a + b > 1 and 1

3 < a, b ≤ 2
3 ,

0 if a + b ≤ 1

for a, b ∈ [0, 1].
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Furthermore, let ¯rP the rotated product t-norm: let

a¯rP b =





2ab− a− b + 1 if a, b > 1
2 ,

a+b−1
2a−1 if a > 1

2 , b ≤ 1
2 ,

and a + b > 1,

0 if a + b ≤ 1.

for a, b ∈ [0, 1].
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Finally, let ¯raLL be the rotation-annihilation of two
ÃLukasiewicz t-norms: let

a¯raLL b

=





a + b− 1 if a, b > 2
3 and a + b > 5

3 or
a ≤ 1

3 , b > 2
3 and a + b > 1,

2
3 if a, b > 2

3 and a + b ≤ 5
3 ,

a + b− 2
3 if 1

3 < a, b ≤ 2
3 and a + b > 1,

a if 1
3 < a ≤ 2

3 , b > 2
3 ,

0 if a + b ≤ 1.

for a, b ∈ [0, 1].
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4 The regular left-continuous t-norms

We will single out a class of left-continuous t-norms
which allow a particularly easy description. All exam-
ples of the previous section belong to this class.

As the first step, we restrict the number of disconti-
nuity points. Let ¯ be a l.c. t-norm; we introduce the
following condition.

(R1) There is a an n < ω such that each cut of ¯ has
at most n points of discontinuity.

From the universal-algebraic point of view, the class
of l.c. t-norms fulfilling only this condition (R1) can
be considered quite large. Namely, the algebras
([0, 1];∧,∨,¯,→, 0, 1), where ¯ is a l.c. t-norm ful-
filling (R1), generate the variety of MTL-algebras. In-
deed, this variety is generated by its finite members [1],
and every finite member can be isomorphically embed-
ded into a t-norm algebra as explained in [6], and this
t-norm algebra fulfills (R1).

Among the l.c. t-norm ruled out by (R1), we may men-
tion the t-norm defined by Hájek in [4] and the t-norm
defined by Hliněná in [8].

Our second condition refers directly to the representa-
tion of a l.c. t-norm ¯ by the corresponding cut set F .
Recall that the cut of ¯ at 1 is the identity, the largest
function in F ; the smaller a ∈ [0, 1] gets, the smaller is
the cut at a; finally, the cut at 0 is the zero function,
the smallest function in F . In particular, the set of
points which belong both to the graph of the identity
function and to the closure of the graph of an fa ∈ F
gets smaller if we make a smaller. It is this dependence
which we assume to be of an easy kind.

Recall that for a left-continuous function f : [0, 1] →
[0, 1], the right-side limit of f at a point x is denoted
by f+(x).

Definition 4.1 For each f ∈ F , let

Q(f) = {x ∈ [0, 1] : f+(x) = x},

and put q(a) = Q(fa) for each a ∈ [0, 1]. Moreover, let
C([0, 1]) be the set of closed subsets of [0, 1] contain-
ing 0, and partially order C([0, 1]) by the set-theoretic
inclusion.

Note that q is a monotonously increasing function from
[0, 1] to C([0, 1]). The dependence of q(a) from a is in
the cases of commonly known l.c. t-norm simple, but
can in general be arbitrarily complicated. This moti-
vates us to introduce the following further condition
on ¯. The power set of a set X will be denoted by
P(X).

(R2) There are 0 = x0 < x1 < . . . < xk = 1, k ≥ 1,
and 0 = a0 < a1 < . . . < al = 1, l ≥ 1, such that,
for every 1 ≤ i < k and 1 ≤ j < l, the function

qj
i : [aj−1, aj) → P((xi−1, xi)),

b 7→ q(b) ∩ (xi−1, xi)

is either constant ø, or constant (xi−1, xi), or
of the form q(b) = (xi−1, r(b)) for some order-
preserving bijection r : [aj−1, aj) → [xi−1, xi),
or of the form q(b) = (l(b), xi) for some order-
reversing bijection l : [aj−1, aj) → (xi−1, xi].

The condition (R2) is more restrictive than (R1). Let
us call a t-norm regular if it fulfills (R1) and (R2). We
have:

• All continuous t-norms are regular.

• A finite ordinal sum of regular l.c. t-norms is again
regular.

• The t-norms constructed from regular l.c. t-norms
by means of annihilation, rotation, or rotation-
annihilation, as explained in [5], are again regular.

On the other side, an ordinal sum of countably many
regular l.c. t-norms such that the number of disconti-
nuity points of the cuts is not globally bounded, does
not fulfill (R1). Furthermore, let M be the finite to-
tally ordered monoid given in [3, Chapter 5] as an ex-
ample for the property of not being formally integral.
The dual of M expands to a finite MTL-algebra which,
embedded into a t-norm algebra according to [6], re-
sults in a l.c. t-norm fulfilling (R1), but not (R2).



5 The description of regular
left-continuous t-norms

Regular t-norms are made up from only six different
kinds of “building blocks”.

The six possible constituents of regular l.c. t-norms can
be identified with certain algebras of functions from
[0, 1] to [0, 1].

Definition 5.1 Let C be a set of functions fa :
[0, 1] → [0, 1], where 0 ≤ a ≤ 1, such that f0 = 0̄,
f1 = id, and f0 ≤ f ≤ f1 for every f ∈ C. Endow C
with the order ≤, the functional composition ◦, and
the constant id.

(i) Let fa : [0, 1] → [0, 1], x 7→ a·x. Then C is called
the product algebra.

(ii) Let fa : [0, 1] → [0, 1], x 7→ (x + a− 1)∨ 0. Then
C is called the ÃLukasiewicz algebra.

(iii) Let fa : [0, 1] → [0, 1], (a+x−1)∨0
a if a > 0. Then

C is called the reversed product algebra.

(iv) Let fa : [0, 1] → [0, 1], x 7→ x
1
a if a > 0. Then C

is called the power algebra.

(v) Let

fa(x) =

{
x for x > a,
0 for x ≤ a

for x ∈ [0, 1]. Then C is called the left-
idempotency algebra.

(vi) Let

fa(x) =

{
x for x ≤ a,
a for x ≥ a

for x ∈ [0, 1]. Then C is called the right-
idempotency algebra.

In the sequel, we will actually have to do with sets
of functions from an interval (a, b], rather than [0, 1],
to itself. Each of the algebras just defined may be
transformed by means of an order-preserving bijection
from [0, 1] to (a, b], and will then be called a isomorphic
to the algebra of the respective type.

Definition 5.2 Let ¯ be a l.c. t-norm and (F ;≤,
◦, 0̄, id) the functional algebra belonging to ¯, and let
0 ≤ a < b ≤ 1. Let F(a,b] be the set of functions

f(a,b] : [a, b] → [a, b], t 7→
{

f(t) if t > a and f(t) > a,
a else,

where f ∈ F ; and endow F(a,b] with the pointwise
order ≤, the functional composition ◦, and the identity

id|[a,b]. Then (F(a,b];≤, ◦, id|[a,b]) is called the basic
algebra belonging to the interval (a, b].

Moreover, the parameter set belonging to (a, b] is the
smallest left-open right-closed interval (u, v] such that,
for any f ∈ F , a < f(b) < b if and only if u < f(1) <
v.

So given an interval (a, b] ⊆ [0, 1], the basic algebra
belonging to (a, b] arises from F by considering the
graph of each cut f only inside the triangle with the
points (a, a), (b, b), and (b, a). More precisely, we first
restrict f to (a, b]; we map each x ∈ (a, b] to f(x) only
in case that this value is larger than a, else we map x
to a; and we map the remaining boundary point a to
a.

The crucial observation is the following.

Theorem 5.3 Let ¯ be a regular l.c. t-norm. Then
there are 0 = a0 < . . . < ak = 1 such that, for
each i = 1, ..., k, the algebra F(ai−1,ai] is isomorphic
to the product, ÃLukasiewicz, reversed product, power,
left-idempotency, or right-idempotency algebra.

According to this theorem, let us associate with
a regular l.c. t-norm its characteristic data: (i)
the basic intervals (a0, a1], ..., (ak−1, ak], (ii) for each
i = 1, ..., k, the type of F(ai−1,i], which is one of
product, ÃLukasiewicz, reversed product, power, left-
idempotency, or right-idempotency, and (iii) for each
i = 1, ..., k, the parameter set belonging to (ai−1, ai].
We remark that this data can in general not be chosen
unambiguously.

As an example, consider the t-norm ¯J above. In this
case, the basic intervals are (0, 1

3 ], ( 1
3 , 2

3 ], and ( 2
3 , 1].

F(0, 1
3 ] is of type left-idempotency, F( 1

3 , 2
3 ] is of type

ÃLukasiewicz, and F( 2
3 ,1] is of type right-idempotency.

The parameter set belonging to (0, 1
3 ] and ( 2

3 , 1] is
( 2
3 , 1]; the parameter set belonging to ( 1

3 , 2
3 ] is ( 1

3 , 2
3 ].

In this case, like in the case of all other examples given
in Section 3, this information determines the t-norm,
up to isomorphism, uniquely. However, this is not true
in the general case.

Definition 5.4 We call a regular l.c. t-norm ¯ locally
determined if any other regular l.c. t-norm with the
same characteristic data is isomorphic to ¯.

One sufficient condition to ensure that a regular l.c. t-
norm is locally determined is as follows. Here, a func-
tion f is called idempotent if f ◦ f = f .

Proposition 5.5 Let ¯ be a regular l.c. t-norm. Let
the following condition hold:

(R3) For each basic interval (a, b] whose parameter is



also (a, b], the cut fa restricted to [0, a] is idem-
potent.

Then ¯ is locally determined.

6 Conclusion

We have presented an approach to describe the so-
called regular l.c. t-norms in a unified way. The main
tool is the algebra of commuting functions naturally
associated with each t-norm. Not every l.c. t-norm
is regular, but as measured by the set of l.c. t-norms
which can be found in the literature, the class of reg-
ular t-norms is quite comprehensive.

Our method provides also a recipe how to construct
new l.c. t-norms. To this end, the characteristic data
is to be chosen tentatively in a way that, e.g. using con-
dition (R3), a whole functional algebra is determined
by it. It is then straightforward to check whether
this functional algebra actually corresponds to a l.c. t-
norm.

To characterize the exact rules according to which we
have to associate with a number of basic intervals types
and paramater sets, so as to get the characteristic data
of a left-continuous t-norm, remains as a task for sub-
sequent papers.
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