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Abstract

We consider orthogonality spaces subject to
the condition that gradual transitions be-
tween any two elements are possible. More
precisely, given elements e and f , we require
a homomorphism from the unit circle to the
automorphism group to exist such that one of
these automorphisms maps e to f , and any
of these automorphisms leaves the elements
orthogonal to e and f fixed. A natural exam-
ple is the collection of one-dimensional sub-
spaces of a real Hilbert space, endowed with
the usual orthogonality relation. We show
that the general case is closely related to this
example.

Keywords: Orthogonality space, Real
Hilbert space, Foundations of quantum me-
chanics.

1 Introduction

The notion of an orthogonality space was proposed in
the 1960s by David Foulis and his collaborators [2]. In
order to grasp the key features of the Hilbert space
model of quantum physics, it is natural to focus on
structures which can be considered as a simplification
of that model and yet play a significant role from the
physical point of view [3, 4]. Trying out the limits of
abstraction, one may restrict solely to the relation of
orthogonality – to obtain the prototypical example of
an orthogonality space. This way just one key aspect
of physical modelling is taken into account, namely,
the distinguishability of observation results.

We have tackled the problem of characterising the
complex Hilbert spaces as special orthogonality spaces
in our recent work [10, 11]. Our strategy was to
make assumptions on the existence of certain automor-
phisms. In a sense, we described the complex unitary
group as a particular transformation group, acting on

a set endowed with a binary relation that is to be pre-
served. In the infinite-dimensional case [10], a charac-
terisation on the basis of just a few natural assump-
tions turned out to be possible. The finite-dimensional
case [11] has required a much deeper analysis and the
assumptions are more involved.

In the present contribution we deal again with orthog-
onality spaces of finite rank. But we change the per-
spective as follows. Rather than focusing exclusively
on a Hilbert space over the field of complex numbers,
we investigate the consequences of a principle that
seems to be of central relevance. The idea is simple:
we require our orthogonality space to allow a gradual
transition between any pair of its elements, realised by
automorphisms that leave elements orthogonal to this
pair unaffected. The precise formulation of this idea is
admittedly not entirely free from technical subtleties,
but all in all our condition reflects quite accurately the
mentioned principle. Namely, let e and f be distinct
elements of the orthogonality space. Then we suppose
that a homomorphism from the abelian group of com-
plex units to the group of automorphisms exists such
that the latter act transitively on the closure of e and
f , one of them maps e to an element orthogonal to
e, and all elements orthogonal to two elements of the
orbit of e are mapped to themselves. We speak of an
automorphism circle connecting e and f .

Whether the orthogonality space should be thought
of as the collection of atomic yes-no properties of a
quantum physical system, or as the set of pure quan-
tum states, is left open. In either case, the idea is
that a smooth transition between two entities should
be realisable by a family of automorphisms – in the
sense just specified. We will see that the orthogonal-
ity space associated with a complex Hilbert space does
not have the required property. The example that we
may keep in mind is rather the real Hilbert space. In-
deed, the main result of this contribution is the fol-
lowing: we show that an orthogonality space of finite
rank that possesses enough automorphism circles to



connect any two distinct elements arises from an or-
thomodular space, equipped with a positive definite
symmetric bilinear form.

2 Orthogonality spaces

From the point of view of the discussions around the
foundations of quantum mechanics, the following no-
tion was first systematically studied in J. R. Dacey’s
Ph.D. Thesis [2].

Definition 2.1. An orthogonality space is a non-
empty set X equipped with a symmetric, irreflexive
binary relation ⊥, called the orthogonality relation.
The rank of (X,⊥) is the supremum of the number
of mutual orthogonal elements.

The typical example is the collection of one-
dimensional subspaces of an inner-product space, en-
dowed with the usual orthogonality relation, provided
that the inner product is orthosymmetric (to ensure
symmetry) and anisotropic (to ensure irreflexivity).
The original motivating example is presumably a com-
plex Hilbert space. But certainly, a (generalised)
Hilbert space over any division ring gives rise to an
example as well.

We will restrict our considerations to the case of a
finite rank. The rank of an orthogonality space arising
from an inner-product space of the indicated type is
then simply its linear dimension.

We should remark that the central notion on which
this work is based is actually quite unspecific. We can
hardly claim that Definition 2.1 suggests by itself an
application in the context of quantum physical mod-
elling. Indeed, orthogonality spaces are essentially the
same as (undirected) graphs, provided that the lat-
ter are defined as collections of two-element subsets of
some universe. Hence their theory is, in principle, as
general and rich as the whole area of graph theory.

Therefore, what matters is which structural proper-
ties we are going to consider in addition. Here, we
are interested in investigating the effect of a postulate
regarding automorphisms, which we have chosen with
the intention of addressing a basic feature of quantum
physical modelling.

An automorphism of an orthogonality space (X,⊥) is
a bijection ϕ of X such that x⊥y if and only if ϕ(x)⊥
ϕ(y). We denote by Aut(X) the automorphism group
of (X,⊥). We moreover denote by T the multiplicative
group of complex units.

For A ⊆ X, we put A⊥ = {x ∈ X : x⊥a for all a ∈ A}.
The assignment A 7→ A⊥⊥ defines an operation on
the power set of X, which is a closure operator. If
A⊥⊥ = A we say that A is orthoclosed and we denote

the set of all orthoclosed subsets of X by C(X,⊥).

Lemma 2.2. C(X,⊥), partially ordered by set-
theoretical inclusion and equipped with the operation
⊥, is a complete ortholattice.

Moreover, each automorphism of (X,⊥) induces an
automorphism of the ortholattice C(X,⊥).

3 Automorphism circles

We fix in this section an orthogonality space (X,⊥) of
finite rank.

We will moreover assume that (X,⊥) fulfils the follow-
ing property.

(A) For any distinct elements e and f of X, there is a
group homomorphism κ : T → Aut(X) such that
the following conditions are satisfied (we write κt,
where t ∈ R, for κ(eit)):

(α) For any g ∈ {e, f}⊥⊥, there is a t ∈ R such
that κt(e) = g.

(β) We have κπ
2

(e)⊥ e.
(γ) Let s ∈ R be such that κs(e) 6= e. Then

κt(x) = x for any x⊥ e, κs(e) and t ∈ R.

We will refer to κ : T → Aut(X), associated to some
elements e, f ∈ X according to condition (A), as an
automorphism circle connecting e and f .

Example 3.1. Let H be a Hilbert space over R. Let
P (H) be the associated projective space, endowed with
the natural orthogonality relation. Then (P (H),⊥) is
an orthogonality space. Moreover, (P (H),⊥) fulfils
(A). Indeed, for any two linearly independent vectors
v, w ∈ H, let κt, t ∈ R, be the automorphism of P (H)
induced by the rotation by the angle t in the (oriented)
plane spanned by v and w.

Lemma 3.2. Let κ be an automorphism circle con-
necting the distinct elements e, f ∈ X. Then we have:

(i) The group κt, t ∈ R, acts transitively on {e, f}⊥⊥.

(ii) For each t ∈ R, κt(x) = x if x ∈ {e, f}⊥.

(iii) For any s, t ∈ R such that κs(e) 6= κt(e), we have
{e, f}⊥⊥ = {κs(e), κt(e)}⊥⊥.

Proof. (ii) By condition (α) of (A) there is a t ∈ R
such that f = κt(e), hence this is a consequence of
condition (γ).

(i) In view of condition (α) of (A), we only have to
show that {e, f}⊥⊥ is invariant under the action of
κt for any t ∈ R. But by part (ii), each element of
{e, f}⊥ is left fixed by κt, hence g ⊥ {e, f}⊥ implies
κt(g)⊥ {e, f}⊥.



(iii) Let s, t ∈ R as indicated. We show {e, f}⊥ =
{κs(e), κt(e)}⊥. If x ⊥ e, f , then by part (ii) x =
κs(x) ⊥ κs(e), and similarly we see that x ⊥ κt(e).
Conversely, if x⊥κs(e), κt(e), then κ−s(x)⊥e, κt−s(e),
hence by condition (γ) κr(κ−s(x)) = κ−s(x), that is,
κr(x) = x for any r ∈ R. We conclude x = κ−s(x)⊥ e
and by (α) it also follows that x⊥ f .

We next note that (A) implies the following transitiv-
ity property of (X,⊥).

Lemma 3.3. Let e, f ∈ X. Then there is an au-
tomorphism ϕ of (X,⊥) such that (i) ϕ(e) = f and
(ii) ϕ(x) = x if x⊥ e, f .

Proof. This is trivial in case e = f . Otherwise, the
assertion follows from conditions (α) and (γ) of (A).

Lemma 3.4. Let e, f ∈ X be distinct. Then there is
an automorphism ϕ of (X,⊥) such that (i) ϕ(e) ⊥ f
and (ii) ϕ(x) = x if either x⊥ e, f or x⊥ ϕ(e), f .

Proof. Let κ be an automorphism circle associated
with e, f . Then κt(e) = f for some t ∈ R. Let
ϕ = κt+π

2
. Then ϕ(e) = κt(κπ

2
(e)) ⊥ κt(e) = f by

condition (β). Moreover, the last assertion holds by
Lemma 3.2 (ii),(iii).

The property stated in Lemma 3.4, called (F1) in [11],
has quite strong consequences. We start with a tech-
nicality.

We call an orthogonality space irredundant if, for any
pair of elements x and y, {x}⊥ = {y}⊥ implies x = y.
In case this property fails, it is easy enough to switch to
an irredundant one with essentially the same structure.
In the present context, however, irredundancy comes
anyhow as a consequence of (A).

Lemma 3.5. (X,⊥) is irredundant.

Proof. This follows from Lemma 3.4; see [11, Lemma
2.6].

The next lemma establishes the key properties of
C(X,⊥) used in the sequel. For lattice-theoretic no-
tion, we refer to [5].

Lemma 3.6. C(X,⊥) is an atomistic modular ortho-
lattice.

Moreover, the atoms of C(X,⊥) are exactly the sin-
gletons {x}, x ∈ X. In particular, the set of atoms
of C(X,⊥), endowed with the inherited orthogonality
relation, is isomorphic with (X,⊥).

Proof. This is again a consequence of Lemma 3.4; see
[11, Lemma 2.7, 2.11].

We conclude that the ortholattice C(X,⊥) has nearly
all the properties that are typical for lattices of sub-
spaces of an inner-product space. We address a further
important property.

We say that (X,⊥) is irreducible if X is not the disjoint
union of non-empty subsets A,B ⊆ X such that x⊥ y
for any x ∈ A and y ∈ B.

Lemma 3.7. (X,⊥) is irreducible.

Proof. Assume that X = A ∪̇ B, where A,B 6= ∅
and x ⊥ y for any x ∈ A and y ∈ B. Let κ be an
automorphism circle connecting some e ∈ A and f ∈
B. Then κπ

2
(e)⊥e and κπ

2
(e) ∈ {e, f}⊥⊥ = {e}∨{f},

hence κπ
2

(e) = f . Let g = κπ
4

(e). Then g ∈ B would
imply g ⊥ e, hence g = κπ

4
(e) ⊥ κπ

4
(g) = κπ

2
(e) = f

and thus g ∈ {e, f}⊥, in contradiction to the fact that
g ∈ {e, f}⊥⊥. Similarly, g ∈ A would imply g ⊥ f and
g = κ−π

4
(f)⊥ κ−π

4
(g) = e, again a contradiction.

Lemma 3.8. The lattice C(X,⊥) is irreducible.

Proof. Assume that C(X,⊥) is reducible. Then
C(X,⊥) (as a lattice) is isomorphic to a direct product
L1 × L2 of non-trivial (bounded) lattices L1 and L2.
Moreover, (a, 0) ⊥ (0, b) for any a ∈ L1 and b ∈ L2.
It follows that the set of atoms of C(X,⊥) can be
partitioned into two non-empty subsets such that any
element of one set is orthogonal to any of the other
one. In view of the second part of Lemma 3.6, we con-
clude that (X,⊥) is not irreducible, in contradiction
to Lemma 3.7.

We summarise that C(X,⊥) is an irreducible, atom-
istic modular ortholattice.

4 Representation of orthogonality
spaces in inner-product spaces

In this section, (X,⊥) will still be an orthogonality
space of finite rank n that fulfils (A). Our objective is
its representation by means of an inner-product space.

We will exclude the case of rank n 6 3 from our discus-
sion, as the lattice-theoretic characterisation of linear
spaces of low dimensions requires a different proce-
dure; cf. Theorem 4.1 below. Accordingly, we assume
that n > 4. We believe that from a physical point of
view this restriction is inessential.

A ?-sfield will be a skew field (division ring) equipped
with an involutorial anti-automorphism ?. We use
this practical notion to indicate both the possible non-
commutativity and the presence of an involution. Let
H be a linear space over a ?-sfield K and let H be
equipped with a hermitian form (·, ·) : H × H → K.



This means that, for any u, v, w ∈ H and α, β ∈ K,
we have

(αu+ βv,w) = α (u,w) + β (v, w) ,

(w,αu+ βv) = (w, u) α? + (w, v) β?,

(u, v) = (v, u)
?
.

Let the form moreover be anisotropic, that is, (u, u) =
0 holds only if u = 0. As usual, u⊥v means (u, v) = 0,
where u, v ∈ H, and for a subspace M of H we let
M⊥ = {u ∈ H : u ⊥ v for all v ∈ M}. Moreover, we
denote by C(H) = {M ⊆ H : M⊥⊥ = M} the set
of closed subspaces. If for all M ∈ C(H) we have
H = M + M⊥, we refer to H as an orthomodular
space.

We write [u] for the subspace spanned by a non-zero
vector u of an orthomodular space H, and we let
P (H) = {[u] : u ∈ H \ {0}}. Then P (H) becomes
an irredundant orthogonality space.

Finite-dimensional orthomodular spaces can be char-
acterised as follows by means of the ortholattice of
their subspaces; see, e.g., [5].

Theorem 4.1. Let H be a finite-dimensional ortho-
modular space. Then C(H) is an irreducible atomistic
modular ortholattice of finite length.

Conversely, let L be an irreducible atomistic modu-
lar ortholattice of finite length > 4. Then there is a
?-sfield K and an orthomodular space H over K such
that L is isomorphic to C(H).

Let us recall Wigner’s Theorem: Given an at least
3-dimensional orthomodular space H and an at least
2-dimensional subspace M of H, any automorphism ϕ
of C(H) such that ϕ([u]) = [u] for all u ∈M is induced
by a unique unitary operator U such that U |M is the
identity. See, e.g., [1].

Theorem 4.2. There is a ?-sfield K and an ortho-
modular space H over K such that C(X,⊥) is isomor-
phic to C(H). In particular, (X,⊥) is then isomorphic
to (P (H),⊥). The dimension of H coincides with the
rank of (X,⊥). In addition, the inner product can be
chosen such that each subspace of H contains a unit
vector.

Proof. The first assertion follows from Lemmas 3.6
and 3.8 by means of Theorem 4.1. The rank of (X,⊥)
is the maximal number of mutually orthogonal ele-
ments and coincides hence with the dimension of H.

Finally, the involution and the inner product can be
modified with the effect that there is a subspace [u]
possessing a unit vector; see, e.g., [7]. By Lemma 3.3
and Wigner’s Theorem, there is a unitary operator
mapping [u] to any given one-dimensional subspace.
The last assertion follows.

Let H be the orthomodular space over the ?-sfield K
representing (X,⊥) according to Theorem 4.2. By as-
sumption, H is at least 4-dimensional.

Lemma 4.3. K is commutative and the involution ?

is the identity.

Proof. Let S be a two-dimensional subspace of H. Let
b1, b2 be an orthogonal basis of S. Since each one-
dimensional subspace of H contains a unit vector, we
can assume that b1, b2 is in fact an orthonormal basis.

Let κ be an automorphism circle connecting [b1] and
[b2]. For each t ∈ R, κt is by Wigner’s Theorem in-
duced by a unique unitary operator Ut such that Ut|S⊥

is the identity. Note that U0 is the identity on H
and, due to the uniqueness part of Wigner’s Theorem,
Us+t = UsUt = UtUs for any s, t ∈ R.

We shall identify the operators Ut, t ∈ R, with their
restriction to S. Then for each t the operator is rep-

resentable as a 2 × 2-matrix Ut =

(
α γ
β δ

)
, where

αα? + ββ? = γγ? + δδ? = 1 and αγ? + βδ? = 0.
In particular, let TK = {ε ∈ K : εε? = 1} be the set of
unit elements of K. By condition (β) of (A) we have
Uπ

2
([b1]) = [b2] and consequently also Uπ

2
([b2]) = [b1].

Hence Uπ
2

=

(
0 ε1
ε2 0

)
for some ε1, ε2 ∈ TK .

Because(
ε2γ ε1α
ε2δ ε1β

)
=

(
α γ
β δ

)
·
(

0 ε1
ε2 0

)
=

(
0 ε1
ε2 0

)
·
(
α γ
β δ

)
=

(
βε1 δε1
αε2 γε2

)
,

each of the operators is of the form

Ut =

(
α ε1βε

?
2

β ε1αε
?
1

)
=

(
α ε?2βε1
β ε?2αε2

)
. (1)

We next claim that β−1α, where

(
α
β

)
is the first col-

umn vector of some Ut such that β 6= 0, ranges over
all of K. Indeed, let ξ ∈ K. By Lemma 3.2 (i), there

is an t ∈ R such that Ut =

(
α γ
β δ

)
maps [e1] to

[ξe1 + e2]. Then β 6= 0 and [

(
ξ
1

)
] = [

(
α
β

)
], thus the

claim follows.

The orthogonality of the column vectors of the first
matrix in (1) implies αε2β

?ε?1+βε1α
?ε?1 = 0 and hence

(β−1α)? = −ε?1β−1αε2. By the previous remark, we
conclude ξ? = −ε?1ξε2 for any ξ ∈ K. From the case
ξ = 1 we see that ε2 = −ε1. Let ε = ε2. Then ε ∈ TK
is such that

ξ? = ε?ξε for any ξ ∈ K,



and we conclude that for each t ∈ R there are α, β ∈ K
such that

Ut =

(
α −β?

β α?

)
. (2)

Let us furthermore consider the operator mapping [e1]

to [e1 + e2], which is of the form

(
γ −γ?
γ γ?

)
. Note

that 2γγ? = 1 and hence γ? = 1
2γ
−1. This operator

commutes with any operator (2), hence we have(
α̃ −β̃?

β̃ α̃?

)
=

(
γ −γ?
γ γ?

)
·
(
α −β?

β α?

)
=

(
α −β?

β α?

)
·
(
γ −γ?
γ γ?

)
.

This means

αγ − βγ? = γα− γβ? = α̃,

αγ + βγ? = γβ + γα? = β̃,

γα+ γ?β = α?γ + βγ = β̃,

γα− γ?β = αγ − β?γ = α̃.

Consequently, 2αγ = 2γα = α̃+β̃ and 2βγ? = 2γ?β =
β̃ − α̃. Hence γ commutes with α and β, and we
conclude that γ is in the centre of K. In particular,
γ? = γ. Furthermore, we have (α + β + α? − β?)γ =
α̃+ β̃ = 2αγ and (β − α+ α? + β?)γ = β̃ − α̃ = 2βγ.
It follows α? − β? = α− β and α? + β? = α+ β, that
is, α = α? and β = β?.

Since α = α? = ε?αε, we have αε = εα, and similarly
we see that βε = εβ. Hence (β−1α)? = ε?β−1αε =
β−1α, provided that β 6= 0. We conclude ξ? = ξ for
any ξ ∈ K. That is, the involution is the identity, and
the ?-sfield is commutative.

Thus we have shown that the space H, which repre-
sents the orthogonality space (X,⊥), is an orthomod-
ular space over a field K, and the inner product is
bilinear and symmetric.

We finally show that K is orderable, or formally real,
and that, whatever the order is chosen, the inner prod-
uct is positive definite. For the field K to be ordered
means that K is equipped with a total order such that
(i) α 6 β implies α + γ 6 β + γ and (ii) α, β > 0
implies αβ > 0.

Consider the set of sums of squares in K, that is,

SK = {α2
1 + . . .+ α2

k : α1, . . . , αk ∈ K, k > 0}.

W.r.t. any order on K, SK consists solely of positive
elements. The strategy to show that K is orderable is
to verify SK ∩−SK = {0}; it then follows that SK can
be extended to a positive cone determining an order

that makes K into an ordered field. We will use this
argument to prove our final lemma.

We refer to [9] for further information on the topic of
fields and orderings.

Lemma 4.4. K is a formally real field. W.r.t. any
order on K, the hermitian form on E is positive defi-
nite.

Proof. Let α1, . . . , αk ∈ K, k > 2, such that α2
1 + . . .+

α2
k = 0. Our aim is to show that α1, . . . , αk = 0. It

will then follow that SK ∩−SK = {0} and hence that
K is formally real [9, §1].

Let b1, b2 be orthogonal unit vectors of H. Assume
first that k = 2. Then (α1b1 + α2b2, α1b1 + α2b2) =
α2
1 + α2

2 = 0 implies α1b1 + α2b2 = 0 and thus α1 =
α2 = 0.

Let now k > 3 be arbitrary. Let v = α1b1 + α2b2. By
Lemma 3.3, there is a unitary operator U such that
U([v]) = [b1]. Then U(v) = β1b1 for some β1 ∈ K, and
we have β2

1 = α2
1 +α2

2. Arguing repeatedly in this way,
we see that there is a βi such that β2

i = β2
i−1 + α2

i+1,
i = 2, . . . , k−1. But then, 0 = α2

1 + . . .+α2
k = β2

k−1 =
β2
k−2 + α2

k implies βk−2 = αk = 0, and we conclude
successively in the same way that αi = 0 for all i.

For the second assertion, we recall that, for any v ∈
H\{0}, there is a unit vector b ∈ H and an α ∈ K such
that v = αb. But then (v, v) = (αb, αb) = α2 > 0.

We summarise what we have shown.

Theorem 4.5. Let (X,⊥) an orthogonality space ful-
filling (A). Then there is an ordered field K and an
orthomodular space H over K, based on a positive-
definite symmetric bilinear form, such that (X,⊥) is
isomorphic to (P (H),⊥).

5 Conclusion

Approaches to reconstruct the basic model of quantum
mechanics, the complex Hilbert space, from physically
plausible principles often exploit the fact that there are
smooth transitions between any two (pure) states of a
quantum physical system. The present work investi-
gates the question what we can conclude from this fact
alone. Transitions are understood as automorphisms,
and we have chosen a minimal structure to which this
notion refers. An orthogonality space consists of not
more than the relation after which it is named.

We were in this way not led to Hilbert spaces over C.
It was actually clear from the outset that the chosen
postulate fits instead quite well to the case of a real
Hilbert space. We have in fact shown that any or-
thogonality space of the considered kind arises from



a generalised Hilbert space (an orthomodular space)
over an ordered field.

We believe that this study could nonetheless help to
facilitate understanding of the complex case as well.
We have shown in our previous works that we may
identify the complex Hilbert space with orthogonality
spaces in which certain automorphisms are assumed to
exist. We are in that case faced with the fact that each
single element of the orthogonality space gives rise to
a group of automorphisms, similarly to our automor-
phism circles. However, these automorphisms are diffi-
cult to “see” in the abstract setting of an orthogonality
space. To make the relationship between the automor-
phisms associated with single elements and symmetries
of the whole space more clear, the detour via the real
Hilbert space might make sense. After all, real Hilbert
spaces endowed with a complex structure lead to the
model of the desired type.

Having said this, it clearly follows that it would be
desirable to continue the present line of investigation
so as to actually achieve a characterisation of the real
Hilbert spaces. We conjecture that to this end, ad-
ditional postulates or additional structure would be
necessary. Two possibilities could be considered. Hol-
land has shown in his paper [6] that linear spaces over
(Baer) ordered ?-sfields equipped with a positive def-
inite hermitian form possess a particular kind of quo-
tient, leading to a space over (a subfield of) a classical
?-sfield. We could make use of the fact in analogy
to our procedure in [11], requiring that the orthog-
onality space possesses no non-trivial quotients com-
patible with the automorphism circles. A second way
involves topology. One could consider topological or-
thogonality spaces, similar to Wilce’s topological test
spaces [12], to the effect that also the representing lin-
ear space can be endowed with a suitable topology. A
well-known result of Pontrjagin [8] might then be use-
ful, according to which a locally compact, connected
topology on a ?-sfield implies that the latter is among
the three classical ones.
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