
Fuzzy Arden Syntax: a fuzzy programming language for medicine

Thomas Vetterleina,∗, Harald Mandlb, Klaus-Peter Adlassniga,b

aSection on Medical Expert and Knowledge-Based Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
bMedexter Healthcare GmbH, Borschkegasse 7/5, 1090 Vienna, Austria

Abstract

Objective:The programming language Arden Syntax has been optimised for use in clinical decision support sys-
tems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced
in S. Tiffe’s dissertation on “Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by
Fuzzified Arden Syntax” (Vienna University of Technology, 2003). The primary aim is to provide an easy means of
processing vague or uncertain data, which frequently appears in medicine.

Methods:For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The
Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth);
fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were
generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be
indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally
aggregated subsequently.

Results: Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs)
based on the principle of a continuously graded applicability of statements. Furthermore, ad-hoc decisions about sharp
value boundaries can be avoided. As an illustrative exampleshows, an MLM making use of the features of Fuzzy
Arden Syntax is not significantly more complex than its ArdenSyntax equivalent; in the ideal case, a programme
handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the
output data, which can be a set of weighted alternatives, typically depends continuously from the input data.

Conclusion:In typical applications an Arden Syntax MLM can produce a different output after only slight changes
of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a
discrete set of possibilities. This inconvenience can, however, be attenuated by means of certain mechanisms on which
the programme flow under Fuzzy Arden Syntax is based. To writea programme making use of these possibilities is
not significantly more difficult than to write a programme according to the usual practice.

Key words:
Clinical Decision Support System, Arden Syntax, Fuzzy Arden Syntax, fuzzy set theory

1. Introduction

In medical computer science, intelligent management
of clinical data is the objective of what is known as
clinical decision support, or CDS for short. The per-
formance of a CDS system (CDSS) clearly extends the
mere storage and user-specified manipulation of patient

∗Corresponding author. Section on Medical Expert and
Knowledge-Based Systems, Medical University of Vienna, Spital-
gasse 23, 1090 Vienna, Austria. Tel.:+43 1 40400 6665, fax:+43
1 40400 6667.

Email address:Thomas.Vetterlein@meduniwien.ac.at

(Thomas Vetterlein)

data. Its essential feature is the ability to provide con-
sequences of the digitally handled medical information,
derived on the basis of a medical knowledge base. A
logical inference module provides methods of deduc-
ing consequences from the available data in accordance
with coded interrelations between medical facts.

We deal here with an established programming
language designed especially for computerised anal-
ysis of medical data. The language is named Ar-
den Syntax and has been used for fifteen years now;
it was first published by the American Society for
Testing and Materials in 1992. The language has
been developed since. The present paper refers to

Preprint submitted to Artificial Intelligence in Medicine December 15, 2009

Arden Syntax 2.5, which was published by Health
Level Seven, Inc., in 2005. Complete specifica-
tions can be found in [1], and further information
on the subject is available on the Web, e.g., at
http://cslxinfmtcs.csmc.edu/hl7/arden/ (ac-
cessed on 10 October 2008).

Arden Syntax is a convenient tool for the implemen-
tation of a CDSS. The aim of an Arden-Syntax-based
CDSS is to derive, from a patient’s electronic record,
information suitable to facilitate or improve clinical
decision-making. The user might employ the CDSS by
specifically calling some of its functions. However, in
order to achieve optimal performance the system should
run permanently in the background and notice in real
time whether the available data imply the necessity of
a consequence. In this case, a proposal or if necessary
a warning is communicated to the clinical personnel. A
CDSS should not merely perform routine tasks, but give
discrete hints as to what should or should not be done.
One of the primary objectives is to avoid the mistakes
that become evident from the available data, provided
the appropriate knowledge has been entered previously.

In principle an inference mechanism based on medi-
cal knowledge may be coded in any programming lan-
guage. However, Arden Syntax is equipped with several
features which were specifically chosen for the intended
application: (i) a syntax close to natural language,
which renders a programme to a large extent readable
by the non-expert in computer science; (ii) thorough
choice of just a few data types typically needed for med-
ical documentation, including time and duration; (iii)
the possibility to process and to communicate real-time
events, determined according to the host system specifi-
cations; (iv) easy handling of temporal relations, sup-
ported in particular by a time component attached to
all simple data types; (v) high error tolerance of Arden
Syntax programmes, selecting, in case of doubt, the op-
tion most likely meant by the user, rather than interrupt-
ing the work flow every time by an error message.

The function of an Arden-Syntax-based system is to
check a patient’s accessible digital data with regard to
specific conditions and react appropriately if the condi-
tions apply. Needless to say, medical data do not always
permit a clear distinction between whether a specific
condition is fulfilled or not; borderline cases defy this
stipulation. When the assumptions of an implication
are approximately but not entirely fulfilled, it is, from a
strict point of view, not possible to draw any conclusion.
However, a conclusion can well be desirable. This situ-
ation suggests the implementation of methods provided
by fuzzy logic. In fuzzy logic, a conclusion is permitted,
provided that appropriate modifications are applied to

the result: the outgoing statement is weakened with re-
gards to content. The simplest way to realise this idea is
to assign a weight to the outcome. In case of more than
one possible outcome, several distinct outputs might re-
sult, all weighted with a value strictly smaller than 1.

Based on these considerations, a conservative exten-
sion of Arden Syntax was proposed by S. Tiffe in his
Ph.D. thesis [2]. The principle is to generalise classical
two-valued logic to a many-valued logic; the extension
is named Fuzzy Arden Syntax. The work presented here
has taken up this line and led to an alternative version
of Fuzzy Arden Syntax, whose full specification can be
found in [3]. A comparison to Tiffe’s work is contained
in Section 11.

2. Fuzzy logic to process vague information

The features which has been added to Arden Syntax
aim at simplifying programmes which process indeter-
minate data by means of fuzzy logic. Let us review very
shortly the significance of this methodology.

As a starting point for the development of fuzzy logic,
often Zadeh’s article in 1965 is seen [4]. The field has
since then developed enormously and into several dif-
ferent directions. Among the numerous general mono-
graphs on the topic we may recommend [5].

The main idea is to generalise the notion of a truth
value. Rather than using two truth values 0 and 1, mod-
elling “false” and “true”, respectively, typically the el-
ements of the entire real unit interval [0, 1] are used.
When a truth value is associated with a vague statement,
it expresses the degree to which a proposition is true. In
particular, 0 expresses the clear falsity while 1 expresses
the clear truth of a proposition; anything between the
two just expresses a tendency.

Fuzzy logic is at present widely used for controlling
tasks and in automated decision support. Its use is im-
plied in all cases in which the precise specification of a
problem is not possible or too complex, where, however,
a specification in vague terms is available and assumed
to be fully sufficient for the practical needs. In control-
ling applications, for example, instruction sets are of-
ten available in natural language. A standard method to
use these instructions directly, dealing with the involved
vagueness in an amazingly efficient way, is due to Mam-
dani and Assilian [6]. Variants of the Mamdani-Assilian
controller exist, according to one of which, e.g., the sys-
tem FuzzyKBWean [7] is based, which provides rec-
ommendations to the clinical personnel of an optimal
choice of instrument parameters when weaning off an
intensive care patient from intubation. In CDS, a prob-
lem may be to specify a pathological state on base of

2

the lower and upper boundaries of laboratory values.
The use of fuzzy sets rather than sharp intervals prevents
the otherwise inevitable discontinuities of such specifi-
cations. Boundary cases are treated appropriately and
jumps of the output by arbitrary small change of the in-
put are avoided. The medical expert systems CADIAG
are an example; see, e.g., [8].

By default, fuzzy logic is rather specific about the
type of truth degrees dealt with. A truth value in fuzzy
logic does not represent uncertainty in the sense of lack
of knowledge. It rather represents to what degree some
well-specified fact, represented, e.g., by a real number,
is in accordance with a vague notion, like, e.g., a natu-
ral language expression. For instance, a body tempera-
ture of 38.5◦ is in partial, but not full accordance with
the concept of “high fever”, and could be described by
a value, say, 0.3. The statement “high fever” associ-
ated with a truth value 0.3 is sharply to be distinguished
from the statement that the patient has high fever with
the probability 0.3; in the former case, uncertainty is not
involved.

In the present context, however, we will adopt a
broader viewpoint about the nature of truth degrees. In
medicine, values of the real unit interval are frequently
used not only to express degrees of applicability of a
vague concept, but also of uncertainty, or more specif-
ically the probability of some event. In Fuzzy Arden
Syntax, the meaning of truth values is not predefined;
we do not intend to prevent the user from using a prob-
abilistic interpretation or an interpretation according to
some more general framework of uncertainty manage-
ment. We will actually in the sequel explicitly include
this possibility. We note, however, that Fuzzy Arden
Syntax does not contain special functions supporting
reasoning under uncertainty; after all its design aims at
supporting the procession of vague rather than uncertain
information. To include probability theory or some kind
of plausibility logic could motivate a further extension
of the language.

We note that fuzzy analoga have been proposed for
several programming languages. The aim has been to
simplify inferences based on methods of fuzzy logic. In
particular, the language HALO [9] has been described
as “fuzzy Pascal”. The language FRIL [10] extends Pro-
log, so as to deal with uncertainty of data and rules;
similar aims are followed in [11]. The programming
languageL [12] does not refer to an existing language,
but takes up the concept ofW-recursiveness, which is an
adaption of the notion of recursiveness for fuzzy func-
tions. Active research is still being conducted in this
field; a recent paper [13] could well be added to the list.

On the very basic level, Fuzzy Arden Syntax is com-

parable to these programming languages. Apart from
that, however, the intentions are not comparable. Recall
that Arden Syntax provides programmes which read, in
the ideal case, like a specification of a medical proce-
dure proposed under certain circumstances. Our aim
was not only to provide fuzzy equivalents for the stan-
dard data types found in any language; we were primar-
ily interested in rendering more flexible those compo-
nents which were introduced into Arden Syntax in order
to adapt it for use in medicine.

3. Arden Syntax

Fuzzy Arden Syntax is based on Arden Syntax and
every programme written in Arden Syntax runs under
Fuzzy Arden Syntax without any alteration of its effect.
That is, Fuzzy Arden Syntax is backward compatible
with Arden Syntax. We tried to keep all changes to the
necessary minimum. The official Arden Syntax specifi-
cations can be found in [1]. It would be impossible to
enumerate them here. Nevertheless, we intend to make
the main features of Fuzzy Arden Syntax comprehen-
sible even to those without a profound knowledge of
HL7’s Arden Syntax. To this end we will explain a few
basic principles of Arden Syntax and provide a sample
programme. Moreover, when presenting Fuzzy Arden
Syntax we will provide integrated specifications.

As mentioned earlier, Arden Syntax is typically used
to realise a CDSS. An Arden-Syntax-based CDSS is
highly modular; it is composed of a possibly high num-
ber of programming units named Medical Logic Mod-
ules, or MLMs for short. The set of MLMs is not hierar-
chically structured; each MLM may be considered and
can be read and understood independently. However,
MLMs may call each other, such that some MLMs may
be considered subroutines of other MLMs. An MLM
may take over data and return data. The execution of an
MLM may be dependent on a specific event communi-
cated from the outside.

A host system provides the user interface, access to
the patient data base, and control over the execution of
MLMs. All requests originating from the user or an
MLM are processed by the host. The host specifies a
set of events and communicates the occurrence of any
event to the MLMs concerned. An event may reflect,
for instance, a specific change in the patient database.

A typical MLM refers to a specific event which may
take place at any time in the database. Whenever this
event occurs, the MLM is triggered and causes, or re-
minds the users to take, the appropriate action.

This phenomenon is demonstrated by one of the sam-
ple MLMs from [1]. The MLM Penicillin Allergy

3

is executed whenever a penicillin is prescribed at the
hospital where the system is in use or, more precisely,
when the corresponding change is made in the database.
A warning is issued when an allergy against penicillin
is registered for the respective patient. What follows is
a brief version of the MLM which can be found in [1,
X3.3].

maintenance:

mlmname: Penicillin Allergy;;

arden: version 2.5;;

institution:

Columbia-Presbyterian Medical Center;;

[...]
library:

[...]
knowledge:

[...]
data:

Penicillin Order := event

{Medication Order (Penicillin)};

Penicillin Allergy :=

read last {Allergy (Penicillin)};

;;

evoke:

Penicillin Order;

;;

logic:

if exist(Penicillin Allergy)

then conclude true;

endif;

;;

action:

write ”Caution, the patient has the

following allergy to penicillin

documented: ” | |

Penicillin Allergy;

;;

[...]
end:

An MLM consists of three main parts, named cate-
gories, each of which consists of several entries, named
slots. The first two categories, namelymaintenance

andlibrary, contain metadata, of which only the con-
tent of three slots are of interest to the programmer.
These are are shown in the above example and are pre-
sumably self-explanatory.

The programme itself is located in the last category
namedknowledge. In theknowledge category, there
are always a data, a logic, and an action slot, which
are executed in this order, as well as an evoke slot.
In the data slot of our example, we first find the event

Penicillin Order defined, which occurs whenever
penicillin is ordered. The definition of an event is given
within curly brackets; this part is interpreted by the host
system and the syntax is specific for the medical in-
stitution mentioned in the maintenance category. The
next line contains a database query; theread command
causes a list to be read containing the notifications of an
allergy of the patient to penicillin. The result is stored
in the variablePenicillin Allergy. The effect of the
key word last is that all entries but the last one are
deleted from the list. Note that in the present case, only
one entry is needed.

The events evoking this MLM are specified in
the evoke slot. In this example, it is the event
Penicillin Order, which has been defined in the data
slot.

The logic slot contains the part of the programme
whose purpose is to decide whether the subsequent
action slot will be executed or not. A command
of the form conclude ActionCondition, where
ActionCondition is some Boolean variable, contains
the decision: ifActionCondition is true, the action
slot is performed; otherwise the MLM is terminated at
this point.

In the above example, the programme first checks
whether the listPenicillin Allergy is empty. If this
is not the case the commandconclude true is exe-
cuted, meaning that the programme jumps to the begin-
ning of the action slot.

The action slot defines the action to be taken, pro-
vided that the need for an action has been identified in
the logic slot. In the above example, a warning message
is sent to the host, which will be displayed on the user’s
interface.

4. The concept underlying Fuzzy Arden Syntax

Fuzzy Arden Syntax incorporates new concepts into
Arden Syntax in order to assist in processing informa-
tion that may not be completely determinate. It is based
on the observation that, in medicine, we typically draw
conclusions from real parameters in a way that the exact
values do not really matter. Besides, we frequently infer
information from facts which are not seen to be clearly
true, but are considered true to a certain degree which
high enough to allow a conclusion.

In contrast, a typical MLM written in Arden Syntax
does depend on exact values and only deals with the two
truth values “true” and “false”. Consequently, a small
change of a parameter may cause a sharp change in an
outgoing recommendation; for, if a recommendation de-
pends on a real value, a limit value must be chosen and

4

this limit is typically chosen ad hoc because a precise
limit point is rarely available.

A solution would be to specify a limit point in a rough
manner rather than precisely, and issue differentiated
recommendations in borderline cases. Similarly, state-
ments which merely express a tendency rather than a
simple “true” or “false” should also be permitted. The
new features of Fuzzy Arden Syntax simplify the inte-
gration of such elements.

To illustrate the problem, let us consider a further
example of an MLM written in Arden Syntax. The
MLM UTI SUTI is based on the specification of noso-
comial infections by the US-American Centers for Dis-
ease Control and Prevention [14]; it determines whether
a hospitalised patient has a symptomatic urinary tract
infection, or SUTI for short. This MLM, which is part
of the MONI system [15], is designed as a subroutine of
another MLM; it expects two input parameters, namely
a code for the patient’s hospital stay, which is stored
in the variableStay, and a date, stored in the variable
Day. It yields a Boolean truth value indicating whether
a SUTI is present or not.

maintenance:

mlmname: UTI SUTI;;

arden: version 2.5;;

[...]
knowledge:

[...]
data:

(Stay, Date) := argument;

Temperature :=

read {temp (Stay, Date)};

/⋆ Body temperature. ⋆/

if Temperature >= 38

then Fever := true;

endif;

Urgency :=

read {urge urinate (Stay, Date)};

/⋆ Urge to urinate? ⋆/

Micturition :=

read {mict (Stay, Date)};

/⋆ Increased frequency of urination? ⋆/

Dysuria := read {dys (Stay, Date)};

/⋆ Painful urination? ⋆/

Suprapubic tenderness :=

read {suprtend (Stay, Date)};

/⋆ Suprapubic tenderness? ⋆/

Organ urine culture :=

read {org urine cult (Stay, Date)};

/⋆ Number of microorganisms of ≤ 2 species. ⋆/

if Organ urine culture >= 1e5

/⋆ if number of species is ≥ 105/cm3 ⋆/

then Urine culture := true;

endif;

;;

evoke:

;;

logic:

UTI SUTI := (Fever OR Urgency OR

Micturition OR Dysuria OR

Suprapubic tenderness)

AND Urine culture;

conclude true;

;;

action:

return UTI SUTI;

;;

end:

The result, which indicates whether a UTI-SUTI in-
fection is present, depends on two real parameters and
four yes-no questions. Vagueness is involved in all
cases. For instance, in order to check whetherFever is
true, the patient’s body temperature must be compared
with a sharp value simply because this variable is two-
valued; the limit value depends on an ad-hoc choice.
With regard to the variableDysuria, the patient is re-
quired to specify whether or not the condition is present
and this may be difficult in the borderline case. The
final result may be negative but would well have been
positive in case of a slight change in the manner of de-
termining the input parameters.

The aim underlying the conception of Fuzzy Arden
Syntax is to process, in a convenient way, statements
that are not necessarily entirely false or entirely true,
and thus render it unnecessary for an MLM’s author
or user to make odd decisions about borderline cases.
The following principle is essential. To write or to
understand a Fuzzy Arden Syntax programme should
not cause essential difficulties for those already familiar
with Arden Syntax. Certainly, the user must be aware
of certain modifications. The program text should,
however, remain practically unchanged when based on
fuzzy logic rather than classical logic.

The main decisions underlying Fuzzy Arden Syntax
have been made in accordance with fuzzy set theory
and fuzzy logics. In particular, as a set of truth val-
ues, all (representable) reals between 0 and 1 are used.
The MLM UTI SUTI illustrates the usefulness of ex-
tending the set of truth values. We argue that for input
parameters likeDysuria which are subjective in nature,
it is more appropriate to use generalised truth values
rather than two-valued ones. Similarly, for those input

5

parameters which result from a measurement, such as
Temperature, derived propositions likeFever should
be considered fuzzy and assigned non-sharp truth val-
ues in borderline cases. To what extent does the MLM
needs to be modified under Fuzzy Arden Syntax in or-
der to incorporate these demands? As a matter of fact
the programme can remain practically unchanged. All
that needs to be specified is the degree of impreciseness,
which is easily done by formulating the comparison in-
volving body temperature as follows: “Temperature

>= 38.5 fuzzified by 0.5”. In Section 9 we will
show what this example, when fuzzified, looks like in
Arden Syntax and in Fuzzy Arden Syntax.

Let us now indicate the contexts in which fuzziness
appears in Fuzzy Arden Syntax. The former data type
boolean now takes values within the real unit interval
[0, 1]. If an if-then-else command depends on a vari-
able containing, say, 0.7, the programme splits. Both the
then-block and the else-block are executed: the former
weighted 0.7, the latter weighted 0.3. The two branches
may be reunified if the programmer wishes to do so. The
variables are then aggregated, in a way that the weight
of each branch is taken into account.

For every data type involving real values – number,
time, duration – a fuzzy counterpart is added. Piece-
wise linear fuzzy sets over the respective base set can
be represented. Distinctions like “the patient is young”
or “middle-aged” or “old” can be made in a conve-
nient way, namely without the necessity to specify
sharp borders. Moreover, a fuzzy set can be defuzzi-
fied afterwards by means of a single command. E.g.,
the behaviour of a Mamdani-Assilian controller can be
achieved without noteworthy effort.

Finally, all non-compound data types are endowed
with an additional component called the degree of appli-
cability. This component stores a truth value expressing,
for instance, the degree to which it would be reasonable
to use the value in the variable’s main component. It
is 1 by default, and whenever the programme branches
it is reduced automatically according to the weight as-
signed to the branch. The programmer may decide to
make explicit use of this component but is not required
to do so.

When processing vague data, one general problem in-
evitably encountered in fuzzy logic is the fact that there
is no canonical choice for the connectives on the ex-
tended set of truth values. As we also cannot solve this
problem, the programmer may choose between several
options in Fuzzy Arden Syntax. Non-default options
must be specified within a newly introduced category,
namedfuzzy options. The available options will be
explained in the relevant context.

Let us finally consider the question how well a Fuzzy-
Arden-Syntax-based CDSS might be accepted by the
user. As a matter of fact, clinicians supporting the for-
mulation of MLMs or using a fuzzy-logic-based envi-
ronment will be asked for a slightly different point of
view than before. In the process of writing an MLM,
clinicians are asked to provide data together with an ex-
plicit indeterminacy, like, e.g., fuzzy boundaries of lab-
oratory parameters. Furthermore, the user of an MLM
will be faced with the fact that in general more differ-
entiated information is provided in the output than be-
fore. In practice this can mean that a set of weighted
alternatives is presented as result, a possibly uncommon
situation.

Note that both mentioned points actually represent a
progress. Ad-hoc decisions about exact boundaries of
the normal range of some parameters are no longer nec-
essary. Furthermore, complex results just occur in bor-
derline situations; to provide a simplified output in such
cases would hide the actual complexity of the situation.

In both cases, however, a minimal understanding of
the nature of continuous truth degrees must be assumed.
We are decidedly optimistic in this respect. We can
rely on a rich experience in the cooperation with clin-
icians; the concept of a graded applicability is usually
quite easily understood and the acceptance is high.

5. Data types in Fuzzy Arden Syntax

We will now begin describing the features of Fuzzy
Arden Syntax in a systematic way. For additional infor-
mation, we refer to [3].

Our first issue is to explain the data types. To main-
tain the clarity of the presentation, the data types incor-
porated already in Arden Syntax willnot be separately
marked.

There are simple and compound data types. In gen-
eral, a variable is bound to a data type by assignment
and a declaration is not necessary; thus Fuzzy Arden
Syntax is loosely typed as is Arden Syntax. Further-
more, a variable may contain the valuenull. This is
to reflect that the variable is undefined, as for instance
when the defining expression is erroneous.

Every simple data type contains three components:
the main value, the primary time, and the degree of ap-
plicability. The following explanations refer to the main
component; the meaning of the other two will be ex-
plained later. Neither the second nor the third compo-
nent needs to be explicitly addressed at any time; both
can safely be ignored if not needed.

In Fuzzy Arden Syntax, the data type of propositional
variables is denoted bytruth value or – for reasons

6

of backwards compatibility – equivalentlyboolean. A
variable of this type stores real numbers between 0 and
1. We may write:

Var := truth value 0;

or, equivalently, Var := false;

Var := truth value 0.667;

Var := truth value 1;

or, equivalently, Var := true;

A variable of typenumber or, equivalently,crisp

number stores real numbers which can be represented
in the available floating point format. A variable of
type time or crisp time stores a date, a time, and
optionally the referred time zone. A variable of type
duration or crisp duration stores a length in time.
For example:

NumberVar := 3.4e-11;

TimeVar := 2007.11.15t10:43:02.347;

DurationVar := 3 months 4 days 4 minutes

0.51 seconds;

We next turn to the fuzzy data types. The data type
fuzzy number is dedicated to fuzzy sets over the reals.
Needless to say, fuzzy sets cannot be allowed to have
an arbitrarily complicated structure. This is no essential
restriction. In medicine, as in most other applications,
specific truth values do not have a specific meaning.
Consequently, we may confine ourselves to fuzzy sets
of a simple form. We will assume that we may partition
the reals into a finite number of (possibly unbounded)
intervals on each of which the fuzzy set is linear and
continuous.

Formally, a fuzzy setu : R → [0, 1] can be stored
in a variable of typefuzzy number if the following
condition is met: There area1 < a2 < . . . < ak,
k ≥ 1, in R such thatu is linear on each open inter-
val (a1, a2), . . . , (ak−1, ak), u is constant on (−∞, a1) and
(ak,∞), and for eachx ∈ R, u(x) coincides either with
the left limit or the right limit ofu at x. If u is continu-
ous, we then define

Fuzzyset u := fuzzy set (a1,t1), (a2,t2),

..., (ak,tk);

whereti = u(ai) for i = 1, ..., k. Thus, for instance, the
fuzzy set

R→ [0, 1], s 7→



























1 if s< 150
1
10(160− s) if 150 ≤ s< 160

0 if s≥ 160,

expressing the predicate “small” for body size in cen-
timetres, is defined by:

Small := fuzzy set (150, 1), (160, 0);

Discontinuities are, as usual, allowed to include the
characteristic functions, which are not likely to be re-
quired in applications, but should at least be definable.
(Recall that characteristic functions correspond to sub-
sets; it maps all elements of a setA to 1 and all elements
of the complement ofA to 0.)

At discontinuity points we denote the left as well as
the right limit. The first assignment is taken to be the
value at that point, unless the second one appears twice.
For instance,

TwotoThree := fuzzy set (2, 0), (2, 1),

(2, 1), (3, 1), (3,0);

gives the characteristic function of the set [2, 3] ⊆ R.
Furthermore, the triangular normal fuzzy sets are

likely to appear frequently. This refers to those fuzzy
sets whose graph forms a symmetrical triangle around
one point, which is mapped to 1. A simplified notation
is permitted for these: an expression of the formfuzzy

set (a − b,0), (a,1), (a + b,0), wherea, b ∈ R

andb > 0, may also be written as:

a fuzzified by b

All definitions concerning the data typefuzzy

number apply mutatis mutandis to the data typesfuzzy

time andfuzzy duration as well. Thefuzzified

by operator, for instance, may be used for pairs of a
time and a duration; e.g., when referring to the time pe-
riod approximately three days before the current time
we may use the expression:

3 days ago fuzzified by 12 hours

For the sake of completeness we mention that one
more simple data type namedstring exists. A vari-
able of this type stores text.

As mentioned earlier, two additional components are
included in each simple data type. The so-called pri-
mary time is stored in the second component. This is
typically the time at which the value emerged, which
could be the time the value was measured. When read-
ing data from the patient database this component may
be filled automatically with a provided value; no ex-
plicit command is needed. Details are implementation-
dependent, and the primary time isnull if not specified.

The third component contains what we call the de-
gree of applicability, or applicability for short. This is
a truth value expressing the degree to which the main
value may be considered applicable. Typical examples
would be:

(i) We wish to derive a statement about the develop-
7

ment of a quantity within the last 24 hours. The
limit of 24 hours is chosen ad hoc and should be
considered fuzzy. We may collect the values from
the last, say, 28 hours, and assign to each value a
degree of applicability of 1 if it originates from the
preceding 24 hours, else successively smaller val-
ues. The applicabilities may then be used to weight
the values accordingly in the subsequent calcula-
tion.

(ii) In Fuzzy Arden Syntax a programme arriving at a
point where the continuation depends on a condi-
tion which is neither clearly false nor clearly true,
will split. Before executing one of the branches
the set of variables is duplicated and the applica-
bilities are reduced according to the weights of the
branches.

(iii) The degree of applicability is also at the user’s free
disposal. For instance, it may be attached to a vari-
able in order to express that this value is not fully
reliable.

The third component of a variableVar can be read
and changed through the expressionapplicability

of Var. By default it is set to 1 and it is never unde-
fined.

Two compound data types exist:list andobject.
A list variable stores a sequence ofn values of a simple
data type, wheren ≥ 0 is dynamic. An object vari-
able stores a fixed number of values of a simple data
type; the components are denoted by specific identifiers,
which must be declared in advance. For reasons which
will become apparent in Section 10 below, the key word
object may be replaced bylinguistic variable.

6. Operations in Fuzzy Arden Syntax

The question as to how one should interpret the logi-
cal connectives for generalised truth values, has always
been a delicate one. A generally valid recommendation
cannot be made. In fact, it would even not be permissi-
ble to say that a specific type of application requires a
specific set of connectives.

Only a few basic properties are usually required,
namely those which are found to be natural for the re-
spective connective. The conjunction is commonly in-
terpreted by a function⊙ : [0, 1]2 → [0, 1] which is
associative, commutative, neutral with respect to 1, and
in both arguments isotone. Such a function is called a t-
norm [16]. The disjunction is usually taken as the corre-
sponding t-conorm, and the negation as the subtraction

from 1. This standard is assumed in Fuzzy Arden Syn-
tax as well; however, subroutines to interpret the con-
nectives may also be defined by the programmer.

The three basic operations to combine truth values,
areand, or, andnot. To interpretand, the user may
opt for the Łukasiewicz t-norm⊙Ł, the product t-norm
⊙P, or the Gödel t-norm⊙G, where

a⊙Ł b = max {a+ b− 1, 0},

a⊙P b = a · b,

a⊙G b = min {a, b}

for a, b ∈ [0, 1]. The choice is realised by an option
in the fuzzy options category. By default, the Gödel t-
norm is used. Furthermore, theand connective may be
specified by the user, in which case the command

conjunction by

MLM ‘UserspecifiedConjunction’;

must appear. Here,UserspecifiedConjunction

must be the name of an MLM which accepts two truth
values as its input and returns one truth value as out-
put. It is presumed that this MLM encodes a t-norm.
As usual in Arden Syntax, however, it is not checked
whether this MLM fulfils any of the special properties
which are expected from a conjunction.

The interpretation of the disjunction and the negation
may be chosen in a similar fashion, independent of the
conjunction. However, we presume the user will make
use of this freedom only in the exceptional case. By
default the conjunction is the t-conorm⊕ associated to
the t-norm⊙ in use, that is

⊕ : [0, 1]2→ [0, 1], (a, b) 7→ 1− ((1− a) ⊙ (1− b)).

Thus, in case that the default t-norm is used the max-
imum of the two truth values is taken. Moreover, the
negation is, by default, the standard negation

[0, 1]→ [0, 1], t 7→ 1− t.

Note that if one of the three standard t-norms, its cor-
responding t-conorm and the standard negation is cho-
sen, then the sharp truth values 0 and 1 are connected
as in classical two-valued logic. Thus, the compatibility
with Arden Syntax is ensured in this case, the special
treatment ofnull included.

In the present context two further connectives, de-
notedat least andat most, are important. In medi-
cal literature, when listing symptom combinations spec-
ifying a situation in which the presence of a certain dis-
ease is assumed we frequently encounter phrases like

8

“at least two of the following conditions must be met:
. . .”. By default these connectives are defined by the ba-
sic ones. For instance, letList be a list of truth values;
then the expression

at least n of List

is the disjunction of all conjunctions of exactlyn entries
in List. We easily check that if the default connec-
tives are used, the displayed expression returns then-th
largest value inList. The connectiveat most is spec-
ified similarly.

However, there are further reasonable possibilities to
interpretat least. In Fuzzy Arden Syntax, a user-
defined definition can be given, which need not be re-
lated to the chosen t-norm. For instance, the following
interpretation has been proposed to interpretat least

n of List:

min {v1 + . . . + vk, n}
n

,

wherev1, ..., vk are the truth values contained inList.
A few other logical operations are provided. For in-

stance,any of List is the disjunction of the truth val-
ues contained in the listList. These operations depend
on the three main connectives mentioned, and we will
not enumerate them.

We next turn to the operations with numbers. Number
variables may be connected by the basic arithmetic op-
erations+,−, ⋆, /. A few other common functions are
available. For time and duration variables these opera-
tions are also defined whenever it makes sense.

For variables storing fuzzy sets, addition and subtrac-
tion as well as multiplication with, and division by, pos-
itive crisp reals are defined according to Zadeh’s exten-
sion principle, provided that the respective operation is
defined in the crisp case as well. Zadeh’s extension prin-
ciple [4] is the canonical way to extend operations on
real numbers to fuzzy sets. For instance, the sumu+ v
of fuzzy setsu andv overR is defined by

(u+ v)(x) = sup{u(y) ∧ v(z) : y+ z= x}

for x ∈ R.
Finally, numbers as well as times and durations may

be compared with respect to their natural order. The
comparison of two crisp numbers yields a crisp truth
value.

Furthermore, fuzzy sets being available, we need a
way to query the compatibility of crisp values with
properties modelled by fuzzy sets. A crisp numberr,
contained, say, inVar, may be correlated to a fuzzy
numberu contained, say, inFuzzyVar, by the expres-
sion

Var is FuzzyVar

which simply gives the value ofu at r, that is, u(r).
Moreover, the expressionVar <= FuzzyVar returns
sup {u(x) : r ≤ x}, and similarly,Var >= FuzzyVar

returns sup{u(x) : r ≥ x}. Analogous definitions apply
for fuzzy times and fuzzy durations.

Finally, if FuzzyVar stores a fuzzy set, we may call
a defuzzification function by

defuzzified Fuzzyset

returning an element of the respective domain. Centre-
of-gravity defuzzification and mean-of-maximum de-
fuzzification are predefined (for these methods, see,
e.g., [5]). A user-defined function may be chosen in the
fuzzy options category as well.

One operation is especially important in Arden Syn-
tax and has been modified in Fuzzy Arden Syntax.
Given a list, we may form a sublist by means of the
operatorwhere. We may actually think of thewhere

operator as an operator forming a subset. In Fuzzy Ar-
den Syntax this operator should serve to form a fuzzy
subset. Let a list

List := Value1, ..., Valuen;

be given, and letCondition(·) be an expression of
type truth value with one free variable. Then

List where Condition(it)

arises fromList as follows: For eachi, the de-
gree of applicability of Valuei is connected with
Condition(Valuei) by theand-operator. The result,
if defined and> 0, is stored as the new applicability of
Valuei; otherwise, the entryValuei is removed from
the list.

To see how this command works, let us reconsider the
above example. We may produce a list with a patient’s
body temperature from the last approximately 24 hours
using the following:

TempatureList := read {temperature} where

it occurred within the past 24 hours

fuzzified by 4 hours;

This leads, just as proposed above, to a list of values
from the last 28 hours where the applicability of the val-
ues from the time period between 28 hours ago and 24
hours ago is reduced: The older the value is, the smaller
is its applicability.

9

7. Conditional statements and branching in Fuzzy
Arden Syntax

Conditions in Fuzzy Arden Syntax may be indeter-
minate. The truth values vary continuously from 0 to
1. Therefore, a command directing the programme flow
into one of two or more blocks must be carefully in-
terpreted, depending on the content of the respective
propositional variable.

In full accordance with what we are familiar with, an
if-then-else statement in Fuzzy Arden Syntax would be
as follows:

if Condition

then /block 1/
else /block 2/

endif;

whereCondition is an expression of type truth value.
However, its manner of execution is one of the main
differences between Arden and Fuzzy Arden Syntax.

The command is executed as follows. IfCondition

is 1, block 1 is executed; ifCondition is 0 or null,
block 2 is executed. If, however,Condition is t ∈
(0, 1), the programme splits:block 1andblock 2, named
programme branches in the sequel, will be executed in
parallel. To this end, each branch is provided with its
own set of variables which, accordingly, are duplicated.
Moreover, the degree of applicability of each variable
is in case ofblock 1multiplied by t, in case ofblock 2
multiplied by 1− t. t and 1− t are called the relative
weights ofblock 1andblock 2, respectively.

The programme may branch several times. Each
command executed during the run of the programme is
assigned a weight in the straightforward manner. The
weight is 1 as long as the programme does not split;
when the weight isw and the programme enters a branch
with relative weightt, the weight will be reduced tow· t.

In a branch of weightw, the range of the degree of
applicability of any variable is [0,w]. Whenever the
content of a variable is changed its applicability will be
reduced tow if necessary.

The number of branches into which the programme
may split at a time is not limited to two. Branching into
n+ 1 blocks is coded as follows:

if Condition1 then /block 1/
elseif Condition2 then /block 2/
. . .

elseif Conditionn then /block n/
else /block n+ 1/

endif;

In this case the relative weightti of the i-th branch is

given byConditioni, wherei = 1, ..., n. The case that
Conditioni is undefined is treated liketi = 0, in which
case the branch is not executed. Moreover, if the sum
of the ti is strictly smaller than 1, the relative weight of
block n+ 1 will be 1 − t1 − ... − tn, else this block is
skipped.

The possibility of letting the programme branch into
more than two programme blocks is one of the signif-
icant features of Fuzzy Arden Syntax. Quite often we
have to distinguish between conditions of the formVar

is FuzzySet1, . . ., Var is FuzzySetn, whereVar is
a crisp value andFuzzySet1, . . . are fuzzy values. We
allow an abbreviating syntax for this case, namely,

switch Var

case Value1 /block 1/
. . .

case Valuen /block n/
default /block n+ 1/

endswitch;

The same is possible if the conditions are of the form
Var = Value1, . . . for any data type of the involved
variables.

An example will follow in Section 10. In the follow-
ing we will describe how one proceeds after completion
of an if-then-else command.

8. Conditional statements and aggregation in Fuzzy
Arden Syntax

Once all branches of a programme have completed
their execution in parallel because of an unsharp condi-
tion, it is difficult to issue a general recommendation as
to how one should proceed. Two possibilities exist:

(A) The programme remains split, that is, all subse-
quent commands are executed in parallel as well,
the action slot included.

(B) The programme reunifies. The multiplied variables
are merged into single ones.

Both options are available in Fuzzy Arden Syntax;
possibility (A) is the default. The more appropriate op-
tion in the individual situation should be decided on the
basis of the specific application.

If (A) is selected the MLM’s results will be provided
by each branch separately. The unit to which the results
are sent – the host system or the calling MLM – must be
prepared to deal with the situation.

If the MLM sends information to the host, the host
system has to process possibly divergent information.
The key tool to be used is the third component of the

10

data: the degree of applicability must then be inter-
preted by the host in order to conclude the relevance
of the received data. For instance, when displaying the
information to the user a clear statement as to the appli-
cability must be added or the information must be mod-
ified in another appropriate way. The user in turn has to
understand that the data, in case of low applicability, is
to be interpreted as one of several possibilities.

If the MLM is called by another MLM and returns
data the calling MLM splits accordingly as well.

The possibility (B) implies that the task of combining
divergent pieces of information is executed within the
MLM itself. To opt for (B), the final line of an if-then-
else statement is modified: after the key wordendif or
endswitch, respectively, the key wordaggregate is
added. Thus, when writing

if Condition then /block 1/
else /block 2/

endif aggregate;

the two branches unify after their execution. The pro-
gramme weight is then set to the sum of the weight of
the branches, i.e., to the same value as before.

Moreover, corresponding variables are aggregated.
Let Var be a variable defined in at least one branch. As
far as the main component is concerned, the procedure
is as follows. If the content ofVar is the same in each
branch, the content is taken over. Otherwise, ifVar is
defined in all branches and of the same simple data type
exceptstring, the contents are aggregated according
to a predefined method. IfVar is of the same compound
type in all branches, we proceed successively with the
components in the same manner.

In the remaining casesVar is set tonull. E.g., this is
applicable when a string variable is assigned a different
text in two branches. No method is currently able to ag-
gregate text automatically or make a canonical choice.

The aggregation method may be specified in the
fuzzy options slot, separately for crisp and fuzzy data.
Numerous methods are available to aggregate data and
the implementation of a user-defined function is possi-
ble. By default the weighted mean is calculated. Thus,
e.g., the valuesr1, ..., rn with degrees of applicability
t1, ..., tn, respectively, are aggregated to

t1r1 + ... + tnrn

t1 + ... + tn
;

the same formula is used for crisp and fuzzy data. In
the fuzzy case another predefined method is available,
namely, the supremum of ther i , cut off at heightti , may
be taken:

(r1 ∧ t̄1) ∨ . . . ∨ (rn ∧ t̄n); (1)

here,t̄i is the constantti function,∧ connects two fuzzy
sets by the pointwise minimum, and∨ connects two
fuzzy sets by the pointwise maximum.

To aggregate the contents of variables with respect to
the remaining two components is straightforward. The
primary time ofVar is taken over if coincident in all
branches. If distinct times appear we can no longer as-
sume that these times are related to the time at which
the value emerged; the primary time will be set tonull

in this case.
Furthermore, as might be expected, the degrees of ap-

plicability are added. Thus, if left unchanged during the
execution of all branches, the applicabilities prior to the
execution of the if-then-else statement, will be restored.

The conclude command is treated exactly in the
same manner as the if-then statement. Thus, the com-
mand

conclude Condition;

is interpreted as “ifCondition applies, then jump to the
action part, else quit the programme”. In other words,
if Condition yields a value> 0, the applicabilities of
all variables are multiplied by this value, and the action
slot is executed. IfCondition is 0 or undefined, the
programme or this branch of the programme is termi-
nated.

9. Fuzzy Arden Syntax versus Arden Syntax

This section will deal with the example from Section
4: the MLM UTI SUTI. Let us see how a “fuzzified”
version of this MLM looks in Arden Syntax on the one
hand and in Fuzzy Arden Syntax on the other hand.

In Arden Syntax the result would look as follows,
provided the logical connectives are chosen as the Fuzzy
Arden Syntax default connectives.

maintenance:

mlmname: UTI SUTI FuzzyEmulation;;

arden: version 2.5;;

[...]
knowledge:

[...]
data:

(Stay, Date) := argument;

Temperature := read {temp (Stay, Date)}

if Temperature <= 38

then Fever := 0;

elseif Temperature <= 39

then Fever := 39 - Temperature;

else Fever := 1;

11

endif;

Urgency := read {urg (Stay, Date)};

Micturition :=

read {mict (Stay, Date)};

Dysuria := read {dysuria (Stay, Date)};

Suprapubic tenderness :=

read {suprtend (Stay, Date)};

Organ urine culture :=

read {org urine cult (Stay, Date)};

if Organ urine culture >= 1e5

then Urine culture := 1;

elseif Organ urine culture >= 5e4

then Urine culture :=

(Organ urine culture - 5e4) / 5e4;

else Urine culture := 0;

endif;

;;

evoke:

;;

logic:

UTI SUTI FuzzyEmulation :=

minimum (maximum(Fever, Urgency,

Micturition, Dysuria,

Suprapubic tenderness),

Urine culture);

conclude true;

;;

action:

return UTI SUTI FuzzyEmulation;

;;

end:

It is not necessary to print the MLMUTI SUTI from
section 4 again in order to show what the fuzzy version
looks alike under Fuzzy Arden Syntax. The following
changes must be made: (i) replaceTemperature

> 39 by Temperature >= 39 fuzzified by

1; (ii) replace Organ urine culture >= 1e5 by
Organ urine culture >= 1e5 fuzzified by

5e4.
Fuzzy logical calculations have to be stated explicitly

in Arden Syntax. This makes the programme more cum-
bersome. The only advantage might be transparency. In
Fuzzy Arden Syntax, practically nothing changes in the
programme text. The user who is familiar with Arden
Syntax, however, must have some knowledge of the dif-
ferent ways in which the programme is interpreted.

Note that in case of emulation under Arden Syntax as
well as in case of Fuzzy Arden Syntax, further process-
ing of the result is not included in the MLMs. However,
as the input values are provided in a more differentiated
way, the result has to be treated in a more differenti-

ated way as well. Considerably more effort is needed to
communicate a result to the user if vagueness or uncer-
tainty are involved. In the example, there will be more
than the possibilities of “a SUTI applies” and “there is
no evidence of a SUTI”. The result is a continuous truth
degree, to which one message from a larger set of mes-
sages should be associated, the two mentioned ones rep-
resenting the extreme cases.

10. Fuzzy inference with Fuzzy Arden Syntax

This section illustrates how fuzzy inference may be
realised in Fuzzy Arden Syntax.

In applications, fuzzy sets usually appear when par-
titioning a domain of values into subdomains without
sharp borders and typically a conditioning according to
this partition follows. A fuzzy partition over a domain
M is a partition of unity overM, that is, a finite set
u1, ..., un of fuzzy sets such thatu1(x)+. . .+un(x) = 1 for
eachx ∈ M. In Fuzzy Arden Syntax, a fuzzy partition is
conveniently stored in an object variable; we recall that
instead of the key wordobject, we may equivalently
use the key wordlinguistic variable.

Let us consider the following declaration:

RangeofAge := linguistic variable

[Young, Middle Aged, Old];

Age := new RangeofAge;

Consequently, we have created three variables,
namelyAge.Young, Age.Middle Aged, andAge.Old.
Each of these variables is ready to be used like any vari-
able of a simple data type. We proceed by assigning
these three variable fuzzy sets which form a partition of
unity over the positive durations:

Age.Young := fuzzy set (0 years, 1),

(25 years, 1), (35 years, 0);

Age.Middle Aged := fuzzy set

(25 years, 0), (35 years, 1),

(65 years, 1), (75 years, 0);

Age.Old := fuzzy set

(65 years, 0), (75 years, 1);

We may now use the blurred age ranges for distinc-
tions as follows:

switch AgeofPatient

case Age.Young

DoseforPatient := LowDose;

case Age.Middle Aged

DoseforPatient := MiddleDose;

default

DoseforPatient := HighDose;

endswitch aggregate;

12

Then the variableDoseforPatient will contain
a weighted mean of the three valuesLowDose,
MiddleDose, andHighDose, where the weights reflect
the, possibly partial, compatibility ofAgeofPatient

with the three age ranges.
The example may be modified to include the case

that the doses are fuzzy as well. IfDose.Low,
Dose.Middle, Dose.High is a further partition of
unity we may write as follows:

switch AgeofPatient

case Age.Young

DoseforPatient := Dose.Low;

case Age.Middle Aged

DoseforPatient := Dose.Middle;

default

DoseforPatient := Dose.High;

endswitch aggregate;

DoseTobetaken :=

defuzzified DoseforPatient;

In this caseDoseforPatient contains the result of
the aggregation of three fuzzy sets rather than the aggre-
gation of three crisp values. The outcoming fuzzy set is
defuzzified to the crisp valueDoseTobetaken.

Note that, when choosing the supremum as the
aggregation method for fuzzy sets, our last sample
programme imitates a Mamdani-Assilian controller.
Namely, it first determines to which extend the input
value, i.e., the age, is compatible with each of the three
conditions; let t1, t2, t3 be the resulting truth values.
Then, the fuzzy sets modelling a low, middle, and high
dose, sayr1, r2, r3, respectively, are aggregated to

(r1 ∧ t̄1) ∨ (r2 ∧ t̄2) ∨ (r3 ∧ t̄3).

Finally, the last command defuzzifies this fuzzy set and
provides a sharp output value. For an explanation of a
Mamdani-Assilian controller, see, e.g., [5]. Note that
the text of the programme is not more complicated than
the text of if-then rules.

11. Fuzzy Arden Syntax: a view back and forward

Our work relies on ideas which were developed in the
Ph.D. Thesis of S. Tiffe [2] in 2003. When comparing
our proposal to Tiffe’s, we see that most elements were
modified. Some of the changes are due to the fact that
[2] is based on the older Arden Syntax version 2.1 and
several improvements in Arden Syntax have been ef-
fected since that time. To explain all differences would
exceed the present framework; the interested reader is
referred directly to [2]. However, we shall list some
facts.

• Tiffe’sdegree of presenceanddegree of applicabil-
ity were replaced by our degree of applicability and
the program weight, respectively. The function of
these values and their mutual relationship between
these two concepts has been newly defined. Fur-
thermore, a truth value describing the applicability
is associated with any data type and can be manu-
ally modified.

• In [2], a canonical way how to proceed after pro-
gramme branching is not proposed; instead, sev-
eral different possibilities are presented. In con-
trast, we have decided to let always all branches
of a split programme be executed in parallel and
we require the user to specify how the results are
recombined.

The difference is most evident in case of differ-
ent texts sent to the host by different branches. If,
for instance, there are results “Give medicament
M immediately” and “To give medicamentM is
not recommended” from two program branches, it
seems inappropriate to select one of these texts on
the basis of their applicabilities. The user should
rather specify how to deal with contradictory rec-
ommendations.

• We do not fuzzify while- or for-loops. Actually, in
[2] a warning against while-loops is already con-
tained.

• To process continuous truth values, we have gen-
eralised the existing boolean data type rather than
introducing a new data type.

Furthermore, we allow to associate the valuenull

to a variable storing a truth value. It is a difference
not to specify a truth degree or to use the value 0.

• We have strictly simplified the usage of linguistic
variables. In particular, the use of external MLMs
to define fuzzy sets are not necessary. The new
features of Arden Syntax version 2.5 compared to
2.1 made these improvements possible.

An implementation of Fuzzy Arden Syntax according
to the specification [3] is in progress. Whereas for the
user, the transition from Arden to Fuzzy Arden Syntax
might not be serious, the effort needed for an imple-
mentation of the extended language is quite high. The
implementation of a Fuzzy Arden Syntax compiler will
presumably be finished in the last quarter of 2009. Its
subsequent use within the new data management sys-
tem of the Vienna General Hospital is scheduled. After-
wards, a systematic test of the fuzzy extension will be
undertaken.

13

12. Conclusion

We have outlined the specification of an extension of
the programming language Arden Syntax, which is de-
signed for CDS applications in medicine. Our primary
reason for elaborating Tiffe’s Fuzzy Arden Syntax is to
incorporate the possibility to deal with indeterminate
data, i.e., when the processed information is vague or
uncertain.

We focused on keeping Fuzzy Arden as simple as Ar-
den Syntax. The syntax is kept as close to natural lan-
guage as is the case with Arden Syntax and ensures easy
comprehension of an MLM’s contents. Indeed a pro-
gramme text, when fuzzy rather than crisp data is pro-
cessed, remains practically the same in typical applica-
tions. When a Mamdani-Assilian inference is realised
the programme text is closely correlated to the text of
the if-then rules on which the inference is based.

The advantage of Fuzzy Arden Syntax when com-
pared to Arden Syntax is evident. The actual benefits
of Fuzzy Arden Syntax will have to be proven in clini-
cal practice.

References

[1] Arden Syntax for Medical Logic Systems, Version 2.5, Health
Level Seven, 2005.

[2] Tiffe S. Fuzzy Arden Syntax: Representation and Interpreta-
tion of Vague Medical Knowledge by Fuzzified Arden Syntax,
Ph.D. Thesis, Technical University Vienna, Vienna 2003.

[3] Vetterlein T, Mandl H, Adlassnig KP. Vorschläge zur Spez-
ifikation der Programmiersprache Fuzzy Arden Syntax
(Proposal of a specification of the programming language
Fuzzy Arden Syntax – in German), Technical Report, Vi-
enna University of Technology, Vienna 2008; available at
http://www.meduniwien.ac.at/user/

thomas.vetterlein/articles/FuzzyArdenSpezif.pdf

(last accessed: 20 October, 2009).
[4] Zadeh LA. Fuzzy sets, Information and Control 1965, 8:338–

353.
[5] Nguyen HT, Walker EA, A first course in fuzzy logic, Chapman

& Hall /CRC, Boca Raton 2006.
[6] Mamdani EH, Assilian S. An experiment in linguistic synthesis

of fuzzy controllers. Int. J. Man-Mach. Stud. 1975, 7:1–13.
[7] Schuh C, Hiesmayr M, Ehrengruber T, Katz E, Neugebauer, T,

Adlassnig KP, Klement EP, Fuzzy Knowledge-Based Weaning
from Artificial Ventilation (FuzzyKBWean). In: M. Jamshidi,
M. Fahti, F. Pierrot (eds.) Proceedings of the World Automation
Congress 1996, TSI Press, Albuquerque 1996, 583-588.

[8] K.-P. Adlassnig, G. Kolarz, CADIAG-2: Computer-Assisted
Medical Diagnosis Using Fuzzy Subsets, in: M. M. Gupta, E.
Sanchez (eds.), “Approximate Reasoning in Decision Analysis”,
North-Holland Publ. Comp., Amsterdam 1982; 219 - 247.

[9] Clark DF, Kandel A. HALO—a fuzzy programming language,
Fuzzy Sets Systems 1991;44:199–208.

[10] Baldwin JF, Martin TP, Pilsworth BW. Fril: Fuzzy and Eviden-
tial Reasoning in Artificial Intelligence, John Wiley & Sons,
New York 1995.

[11] Munakata T, Notes on implementing fuzzy sets in Prolog,Fuzzy
Sets Systems 1996;98:311–317.

[12] Morales-Bueno R, Conejo R, Pérez de la Cruz JL, Clares B.
An elementary fuzzy programming language, Fuzzy Sets and
Systems 1993;57:55–73.

[13] Zhao X, Li F. Denotational semantics of dynamic fuzzy logic
programming language. In: Zhang YQ, Lin YT, eds.: Proceed-
ings of the IEEE International Conference 2006 on Granular
Computing. Piscataway: IEEE Computer Society Press; 2007:
pp. 409–412.

[14] Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC
definitions for nosocomial infections. In: Olmsted RN, ed.:
APIC Infection Control and Applied Epidemiology: Principles
and Practice. St. Louis: Mosby; 1996: pp. A-1–A20.

[15] Adlassnig KP, Blacky A, Koller W. Artificial-intelligence-based
hospital-acquired infection control. Studies in Health Technol-
ogy and Informatics 2009;149:103–10.

[16] Klement EP, Mesiar R, Pap E. Triangular Norms, Kluwer Acad.
Publ., Dordrecht 2000.

14

