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Abstract. Fuzzy logics are in most cases based on an ad-hoc decision about the inter-

pretation of the conjunction. If they are useful or not can typically be found out only by

testing them with example data. Why we should use a specific fuzzy logic can in general

not be made plausible. Since the difficulties arise from the use of additional, unmotivated

structure with which the set of truth values is endowed, the only way to base fuzzy logics

on firm ground is the development of alternative semantics to all of whose components we

can associate a meaning.

In this paper, we present one possible approach to justify ex post  Lukasiewicz Logic

as well as Basic Logic. The notion of ambiguity is central. Our framework consists

of a Boolean or a Heyting algebra, respectively, endowed with an equivalence relation

expressing ambiguity. The quotient set bears naturally the structure of an MV- or a

BL-algebra, respectively, and thus can be used to interpret propositions of the mentioned

logics.

Keywords:  Lukasiewicz Logic, Basic Logic, Boolean algebra, Heyting algebra, a-

equivalence relation, MV-algebra, BL-algebra

1. Introduction

To study fuzzy logics can be motivated in at least two different ways. Both
imply fundamental conceptual difficulties. In view of the origins of the field,
the intention is to find out appropriate ways to reason about vague state-
ments. The aim is to develop a framework for dealing with statements which
are not necessarily fully true or fully false, but which hold in general to a cer-
tain degree. A natural approach is to modify the classical propositional logic
accordingly. The simple idea is to associate with propositions generalized
truth values; rather than restricting to the values 0 and 1, elements from the
whole real unit interval are permitted. Whereas this initial step is natural,
the need to redefine the connectives brings arbitrariness into the concept;
there is in particular no criterion telling us in which way the conjunction
should be interpreted for values strictly between 0 and 1. A canonical choice
not being available, either an ad-hoc decision is made, or the connectives
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are required to fulfill certain properties believed to be natural and validity
is defined with regard to all these allowed choices. However we decide, as
long as the truth values of compound statements depend on the truth values
of the constituents in some specific way, we may develop a corresponding
formal calculus, to be called a fuzzy logic [COM, Haj, Got].

We may also come upon the field of fuzzy logics from the syntactical
side. Namely, certain proof systems allow a very clear view on which kind of
reasoning is allowed for a particular logic and which not. We have in partic-
ular those systems in mind which are based on Gentzen sequents or on one
of their generalizations. The question is then natural what is still derivable
when one or more rules are dropped. In particular, when discarding sub-
structural rules from Gentzen’s sequent system for classical or intuitionistic
propositional logic, we arrive at logics closely related to fuzzy logics. For
instance, Höhle’s Monoidal Logic [Hoe], whose extension by the prelinearity
axiom scheme gives the logic MTL, is obtained by dropping the contraction
rule from Gentzen’s calculus LJ [Tak].

Choosing whatever approach, we are faced with the problem that it is
not clear what we actually reason about. This is a natural consequence for
the second approach and may in that case not be seen as a problem. But
the conception of the first approach clearly refers to our intuition; however,
the drawn picture is not specific enough to justify a specific logic. Indeed,
only in the exceptional case, it is possible to associate with one of the known
fuzzy-logical calculi a clearly defined situation in which reasoning according
to this logic is appropriate.

It is our aim to contribute to a solution of this dilemma by proposing
for the most common fuzzy logics alternative semantics. In this paper, we
concentrate on two logics. We first study a logic whose logical connectives
were once chosen ad hoc: the  Lukasiewicz logic [COM]. Second, we consider
a logic which arose out of the undecidedness about a specific way to interpret
the logical “and”: the Basic Logic, the logic of continuous t-norms and their
associated residua [Haj].

Several approaches to endow fuzzy logics with alternative semantics have
been elaborated in the past. For a survey of ways how to interpret t-norm
based fuzzy logics, see [Par]. We note, however, that we demand here not
only an appealing interpretation of the conjunction; this problem seen iso-
lated is comparably easy to solve. What we want is an interpretation of
all what is needed to base the semantics of fuzzy logics on it – the im-
plication included. Actually not really many approaches can be found in
the literature fulfilling this requirement. Let us mention one particularly
convincing way to interpret reasoning according to fuzzy logics: the dialog
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games. The game-theoretic approach was originally developed by R. Giles
for  Lukasiewicz logic [Gil] and was generalized for further fuzzy logics by
C. Fermüller and others; see e.g. [Fer].

The concept on which this paper is based goes in a different direction.
Recall that the semantics of a typical fuzzy logic may be based on any
collection of algebras generating the same variety as the algebras used for
the canonical semantics. We search for appropriate representations of the
corresponding class of residuated lattices; in the first case, these are the
MV-algebras, in the second case BL-algebras. We do not intend to specify a
concrete situation; as an approach which is more specific about the referred
situation and which concerns the same pair of logics as we consider here, we
mention the Ulam-game based semantics [Mun, CiMu]. In the present work,
we rather stay on the abstract level; what we propose is a mathematical
framework which might offer a basis to develop a new way to interpret
the fuzzy logics taken into account here. It is actually our hope that our
framework will serve as a starting point for an interpretation which is more
specific, but also more convincing than what can be associated with the
standard semantics.

As opposed to many approaches to the interpretation of logics, we make
the notion of ambiguity central. We will start from a Boolean algebra or,
alternatively, from a Heyting algebra. Both kinds of algebras are adequate
to model systems of crisp properties. We will endow these algebras with a
certain kind of equivalence relation; this relation is meant to express am-
biguity of properties. Propositions of fuzzy logic will be interpreted in the
corresponding quotient set. The point is that, when choosing the relevant
notions in the right way, the quotient set naturally bears the structure of a
residuated lattice; indeed, what comes out is an MV- or BL-algebra.

The paper is organized as follows. We first review the foundational issue
of fuzzy logics and shortly elaborate our opinion on this delicate subject
(Section 2). The subsequent mathematical part is based on results of our
paper [Vet3], adapted to the present context. We deal with  Lukasiewicz
and Basic Logic (Section 3). We are first concerned with Boolean algebras
endowed with what we call an a-equivalence relation (Section 4). Endowing
a Boolean algebra with a measure and identifying elements whose comple-
ments are of equal size, provides an example of an a-equivalence relation.
Under an appropriate assumption called residuability, the quotient set is a
lattice and has the structure of a residuated monoid; in fact, what we get
is an MV-algebra, and every totally ordered MV-algebra can be the result
of this construction. In the following part of the paper, we modify our
definitions and results, aiming at constructing a larger class of residuated



4 Thomas Vetterlein

lattices (Section 5). Starting with Heyting algebras rather than Boolean al-
gebras, we are led to BL-algebras. So in the first case, we provide alternative
semantics for  Lukasiewicz logic, in the second case for Hájek’s Basic Logic
(Section 6).

2. The foundational problem of fuzzy logic

The interpretation of fuzzy logics has been an intensively discussed subject.
For a survey of contributions from the mathematical and applicational point
of view, we may refer for instance to [Urq]. Fuzzy logic is furthermore a
particularly prominent topic within the philosophy of vagueness. To get an
idea about the approaches to vagueness propagated by various philosophical
schools, see for instance [KeSm, Kee, Wil].

In this section, we like to summarize our point of view on the nature of
vagueness and on the difficulties in modelling this phenomenon by means
of formal logical calculi.

In our opinion, to approach the phenomenon of vagueness we should
analyze the role of statements in formal or natural languages from an em-
piristic point of view. We think that the contents of statements expressing
observations of what is around us, should not be thought of as referring
to something existing in some absolute sense. To assume that observations
themselves are something absolute might be useful; but to assume that there
is something absolute behind it, is not useful.

Certainly, most of the time, we all adopt the realists’ attitude, assuming
that the objects in the world would exist even if we did not observe them
and that physical laws are independent of our means of observation. Appar-
ently, even most physicists think this way, although this clearly contradicts
the basic principles of quantum theories and has caused an endless debate
on the proper interpretation of quantum phenomena. For the question how
to understand vagueness, the discussion seems to follow certain similar and
similarly hopeless lines. By tendency, vagueness is searched outside of us,
not as part of the very conditions under which we observe something. The
dilemma then is that things modelled in the realistic way, that is, by classical
physics, behave in an exact way, and it is difficult to bring this in line with
vague phenomena.

We find it useful for the present context to adopt the opposite way of
dealing with reality: to reduce the absolute to the sole fact that we observe
something. In fact, the easiest way to deal with the absurdities of quantum
physics is to understand this theory in a non-traditional way: the theory does
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not explain how particles move around the world, but how probabilities are
associated to specific sequences of observations.

This point of view simplifies not only modelling quantum phenomena,
but it helps considerably to understand mathematical modelling in general.
When designing a mathematical theory, we should not assume that we will be
able to describe what is going on outside of us, but just to bring structure into
our observations and to process it afterwards in our mind in a well-defined
manner. For example, the two most basic structures are the natural numbers
and the real numbers. There is simply no need to claim that in reality we
find objects properly characterized by means of these structures; it is more
appropriate to say that these structures are extremely useful to describe an
observed picture and to figure out the probable further development.

On a more basic level, consider the kind of propositions we deal with so
often in everyday life: the two-valued ones, assumed to be true or not true.
It is hard to justify that a proposition asserted about anything observed is
true in some absolute sense, that is, true independently from the observer.
We prefer to argue that a yes-no proposition serves to divide the set of
possibilities how a specific situation can be described, into two disjoint and
exhaustive subsets. These subsets are assumed to be disjoint and exhaus-
tive as long as we process the information without further reference to the
involved objects. But if we deal with these objects repeatedly, for instance
in a more precise manner, we might have to revise the classification. All in
all, classical logic provides us a thinking model, not more, and it need not
be considered as a copy of a part of reality.

In particular, the significance of mathematical modelling should not be
overestimated. It should not be understood as a tool to describe the reality
properly, but to sort our thoughts. The procedure to design a mathematical
theory is the following one. We begin with a type of situation which we would
like to describe, involving a constellation of objects. No situation is ever
described completely, but with respect to selected properties. The crucial
step is to endow a class of possible constellations of the involved objects with
algebraic structure, describing the mutual relationships. Formal statements
have to refer to this structure.

It is at the point of transition from an unstructured picture to a model
which involves some of its characteristic properties, that vagueness comes
into play. By a model, we mean either the well-defined structure on which a
formal argumentation relies, or a structure underlying implicitly a statement
of natural language. In any case, the creation of a model is nothing unam-
biguous, nothing perfect, and often only something temporary. It is based
on certain observations, and afterwards more specific or new observations
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may make the model obsolete. The lack of the possibility to make a fixed
picture in mind coincide with the object it refers to, is a source of vagueness.

Let us now turn to the peculiarities of nowadays’ fuzzy logic. The aim
of fuzzy logic is to take into account the mentioned inaccuracy of models.
There is nothing special about this; for the design of propositional fuzzy
logics, just the usual steps mentioned for the more general case are followed:
We extract structure from the picture which we have in mind, and make a
mathematical theory from it.

Even before starting, however we must be aware of the fact that we will
have to get along with the incompleteness of our theory in the same way as in
the case of any other mathematical theory. We can describe certain objects
in certain ways, but if we add new aspects, we cannot expect that our theory
can treat also these. For instance, when modelling ways to think about one
version of the sorites paradox using an appropriate logic, we cannot expect
that this logic is adequate also for all other versions, or even more absurdly,
for all other cases where vagueness appears.

There are many possibilities how to start; let us choose the picture that
we are given a region R of space and collection of subsets of R whose bor-
ders are unsharp. The common procedure is to take functions from R to a
structure expressing gradedness. The latter is a bounded and dense linear
order; so the rational unit interval would be the natural choice, but since
in mathematics we are more familiar with the reals, it is the real unit in-
terval which is practically always used. So we deal with fuzzy sets on R,
understood as functions u: R → [0, 1].

Next, we need to endow the set of fuzzy sets with an algebraic structure.
For fuzzy propositional logic, the basic decision made is: fuzzy sets are to be
connected pointwise. So what we have to consider in the end is just the real
unit interval. Recall why we chose it: because it is a bounded dense linear
order. So this is the structure associated with it.

In fuzzy logic, however, more structure is used. But any structure with
which our set of truth values is endowed is to be derived from relations
appearing in the situations which we are going to model. The dilemma
becomes manifest: The respective situations do in general not offer more
structure than the mentioned order-theoretical one. As opposed to that, the
structure which is actually used originates from elsewhere, namely from the
fact that the real numbers form a field.

If we want more structure, then it should arise from somewhere. We
provide in this paper possible ways of motivation; we shall try to justify two
specific fuzzy logics ex post.
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3.  Lukasiewicz Logic and Basic Logic

We consider in this paper two kinds of fuzzy logics: the  Lukasiewicz Logic  LL
[COM, Haj] and the Basic Logic BL [Haj]. Sometimes, to avoid confusion
with another, equally denoted logic, the latter is also called Basic Fuzzy
Logic. We restrict to the propositional versions.

We shortly review the basic formal facts. Propositions of  LL and BL are
built up from atomic propositions and the constant 0 by means of the bi-
nary connectives � an →. Let (F ;�,→, 0) be the algebra of propositions of
 LL and BL. A continuous t-norm algebra is a structure ([0, 1];∧,∨, �̄, →̄, 0),
where [0, 1] is the real unit interval, ∧ and ∨ denote, respectively, the infi-
mum and supremum of the reals w.r.t. their natural order, �̄ is any contin-
uous t-norm and →̄ is the residuum corresponding to �̄. The  Lukasiewicz
algebra is the continuous t-norm algebra based on the  Lukasiewicz t-norm
�L : [0, 1]2 → [0, 1], (a, b) 7→ (a + b− 1)∨ 0 and its residuum →L: [0, 1]2 →
[0, 1], (a, b) 7→ (1− a + b) ∧ 1.

In  LL, a proposition ϕ is called valid if every structure-preserving map-
ping from (F ;�,→, 0) to ([0, 1];�L,→L, 0) assigns 1 to ϕ. In BL, a proposi-
tion ϕ is called valid if every structure-preserving mapping from (F ;�,→, 0)
to the reduct ([0, 1]; �̄, →̄, 0) of a continuous t-norm algebra assigns 1 to ϕ.
For axiomatizations of  LL and BL, see [COM, Haj].

In this paper, we will propose an alternative way to interpret propositions
of  LL and BL; the real unit interval will no longer play a role then.

The set of canonical models, which in case of  LL contains just the
 Lukasiewicz t-norm algebra and which in case of BL contains all contin-
uous t-norm algebras, may be enlarged without changing the notion of va-
lidity. Namely, we may take the generated varieties: the  Lukasiewicz t-norm
algebra generates the variety of MV-algebras, and the continuous t-norm
algebras generate the variety of BL-algebras.

Definition 3.1. An algebra (L;∧,∨,�,→, 0, 1) is called a residuated lattice
if (L;∧,∨, 0, 1) is a bounded lattice, (L;�, 1) is a commutative monoid, and
a � b ≤ c iff a ≤ b→ c for all a, b, c ∈ L. Moreover, L is called divisible
if a ∧ b = a � (a → b) holds for any a, b ∈ L; L is called prelinear if
(a → b) ∨ (b → a) = 1 holds for any a, b ∈ L; L is called involutive if
(a→0)→0 = a holds for every a ∈ L.

A divisible, prelinear residuated lattice is called a BL-algebra. An invo-
lutive BL-algebra is called an MV-algebra.
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4. a-Equivalence relations on Boolean algebras

We shall prepare in this section a framework for the interpretation of the
propositions and the connectives of  LL, the  Lukasiewicz logic. The frame-
work will consist of a Boolean algebra and a certain type of equivalence
relation on it, to be called an a-equivalence relation, where the “a” stands
for “ambiguity”. We will show that, under a suitable condition, the set of
equivalence classes bears the structure of an MV-algebra.

The results in this and the next section are based on our work [Vet3],
where complete proofs and many further facts may be found. Note, how-
ever, that in [Vet3], the results are not put into the context of logics; as a
consequence, the terminology is chosen slightly different, and in particular,
the results are formulated in the dual order.

A Boolean algebra is a structure (L;∧,∨,¬, 0, 1), where (L;∧,∨, 0, 1) is
a bounded distributive lattice and ¬ is a complementation function. We
denote the relative complement of a w.r.t. b by a→b = ¬a∨b. Furthermore,
we say that two elements a, b of a Boolean algebra are non-implicative and
we write a

⊥

b if a→ b = b. Note that a

⊥

b if and only if a ∨ b = 1; in
particular, the relation

⊥

is symmetric.
Any Boolean algebra can be represented by a system B of subsets of some

fixed set X such that B is closed under intersection, union, complementation
and B contains the empty set and X. This is why we may say that any
Boolean algebra models a system of crisp properties.

The idea is now to model the case that we cannot refer to a property,
represented by an element of a Boolean algebra, unambiguously. We are go-
ing to reflect the ambiguity by an equivalence relation. There are certainly
many ways to choose an equivalence relation for this objective. The basic
requirement is in our case that it should preserve the strength of the prop-
erty. Namely, if we introduce a measure on the Boolean algebra assumed
to indicate the strength of the modelled property, then identifying elements
of equal measure provides the typical example of the notion which we will
introduce now.

Definition 4.1. Let (L;∧,∨,¬, 0, 1) be a Boolean algebra. Let ∼ be an
equivalence relation ∼ on L, and write a ≺∼ b if a′ ≤ b′ for some a′ ∼ a and
b′ ∼ b. ∼ is called an a-equivalence relation on L if the following conditions
hold:

(B1) If a ≺∼ b, then there is an a′ ∼ a such that a′ ≤ b.

(B2) Let a ∼ a′, b ∼ b′ and a ≤ b, a′ ≤ b′. Then b→a ∼ b′→a′.



A way to interpret  Lukasiewicz Logic and Basic Logic 9

(B3) Let a ∼ a′, b ∼ b′, and a

⊥

b, a′

⊥

b′. Then a ∧ b ∼ a′ ∧ b′.

Given an a-equivalence relation ∼ on an algebra L, we will in the sequel
denote the ∼-equivalence class of some element a by [a], and [L] = {[a]: a ∈
L} will be the quotient set w.r.t. ∼.

Example 4.2. Let (L;∧,∨,¬, 0, 1) be a Boolean algebra. Moreover, let
µ : L → [0, 1] be a measure on L in the real unit interval [0, 1]; this means
(i) µ(a ∨ b) = µ(a) + µ(b) for a, b ∈ L such that a ∧ b = 0, and (ii) µ(1) = 1.
Call the measure µ homogeneous if (i) a > 0 implies µ(a) > 0 and (ii) for
any a, b ∈ L such that µ(a) ≤ µ(b), there is an a′ ≤ b such that µ(a′) = µ(a).
Informally, as mentioned, we should think of each element of the Boolean
algebra as some crisp property, and its measure expresses its strength in
the sense that elements of smaller measure are stronger than those of larger
measure.

Now, for a, b ∈ L, define a ∼ b if µ(a) = µ(b). It is evident that ∼ is
an a-equivalence relation on L if µ is homogeneous. Note that ∼ has the
additional property that no a is equivalent to any element strictly below a.
The equivalence classes are in a one-to-one correspondence with the range
of µ; in particular, the induced order is total.

We should underline that, as seen from this example, an a-equivalence re-
lation ∼ on a Boolean algebra L is in general not compatible with the lattice
operations. However, by (B2), ∼ is compatible with the complementation.
Furthermore, ∼ is a congruence of L seen as a bounded poset.

Lemma 4.3. Let ∼ be an a-equivalence relation on a Boolean algebra L.
Then ∼ is compatible with the partial order; that is, setting

[a] ≤ [b] if a ≺∼ b for a, b ∈ L

makes ([L];≤, [0], [1]) a bounded poset, and ι : L → [L], a 7→ [a] is a sur-
jective homomorphism of bounded posets.

We wonder about the internal structure of the set [L] of ∼-equivalence
classes. We will compile a set of operations definable on [L] under a fur-
ther assumption. Namely, given a, b ∈ L, we may pointwise connect the
equivalence classes [a] and [b]. This gives in particular the set of meets
{a′∨b′ : a′ ∼ a, b′ ∼ b} and the set of joins {a′∧b′ : a′ ∼ a, b′ ∼ b}. In both
cases, we may, if possible, select an element which is up to ∼-equivalence
minimal or maximal with respect to the preorder ≺∼ .
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Definition 4.4. Let ∼ be an a-equivalence relation on a Boolean algebra
(L;∧,∨, ¬, 0, 1). Consider the bounded poset ([L];≤, [0], [1]). If, for every
a, b ∈ L, the set {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} contains a maximal element, we
say that [L] is residuable.

In other words, we require for every pair of elements a, b of the Boolean
algebra that there are ā ∼ a and b̄ ∼ b such that ā ∧ b̄ �∼ a′ ∧ b′ for any
a′ ∼ a and b′ ∼ b. Note that in this case the elements ā and b̄ are in general
by a and b not uniquely determined, but only the equivalence class of the
infimum ā ∧ b̄.

Lemma 4.5. Let ∼ be an a-equivalence relation on a Boolean algebra L such
that [L] is residuable. Let a, b ∈ L. Then

max {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b},
min {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b},
max {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b},
min {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b}

all exist. Moreover, let ā ∼ a and b̄ ∼ b represent the first listed element,
that is, assume ā∧ b̄ �∼ a′∧b′ for all a′ ∼ a and b′ ∼ b. Then [ā∧ b̄] = [a]∧ [b]
and [ā ∨ b̄] = [a] ∨ [b]. In particular, [L] is lattice-ordered.

Furthermore, rather than connecting pairs of equivalence classes point-
wise by the lattice operations, we may use the implication as well.

Lemma 4.6. Let ∼ be an a-equivalence relation on a Boolean algebra L such
that [L] is residuable. Let a, b ∈ L, and let ā ∼ a and b̄ ∼ b be such that
[ā ∧ b̄] = [a] ∧ [b]. Then

[ā→ b̄] = max {[a′→b′]: a′ ∼ a, b′ ∼ b}.

We are led to the possibility to endow [L] with the structure of a resid-
uated lattice.

Definition 4.7. Let ∼ be an a-equivalence relation on a Boolean algebra L
such that [L] is residuable. Then, for a, b ∈ L, let

[a]� [b] = min {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b},
[a]→ [b] = max {[a′→b′]: a′ ∼ a, b′ ∼ b},

and let 0 = [0] and 1 = [1]. We call the structure ([L];∧,∨,�,→, 0, 1) the
ambiguity algebra associated to the pair (L,∼).
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Example 4.8. Let L be the Boolean algebra generated by the intervals (u, v]
of the real unit interval, where 0 ≤ u ≤ v ≤ 1, by means of intersection,
union, and complementation. For a, b ∈ L, define a ∼ b if the Borel measures
of a and b coincide. Then [L] can be identified with [0, 1], ordered in the
natural way. Moreover, � is the  Lukasiewicz t-norm,→ is the  Lukasiewicz
implication. So the ([L];∧,∨,�,→, 0, 1) is the  Lukasiewicz t-norm algebra.

We are ready to formulate the main theorem of this section.

Theorem 4.9. Let ∼ be an a-equivalence relation on a Boolean algebra L
such that [L] is residuable. Then the ambiguity algebra ([L];∧,∨,�,→, 0, 1)
associated to (L,∼) is an MV-algebra.

Up to isomorphism, all totally ordered MV-algebras arise in this way.

We close this section with one more example.

Example 4.10. Let X = {(0, r) : r ∈ Z, r ≥ 0} ∪ {(1, r) : r ∈ Z, r ≤ 0}
and endow X with the lexicographical order. Then X can be seen as the
unit interval of the unital `-group Z × Z, where the addition is defined
componentwise, the order is the lexicographical one, and the unit element is
(1, 0). The MV-algebra to which this `-group interval gives rise is the Chang
algebra; cf. e.g. [COM].

Let us see how the Chang algebra is the result of our construction. Let L
be the set of all finite unions of intervals (u, v] = {x ∈ X : u < x ≤ v}, where
u ≤ v. Then L, endowed with the intersection, union, complementation,
and the constants ∅ and X, is a Boolean algebra. Given some a ∈ L, let
a = ∪̇i(ui, vi] be represented by disjoint intervals, and let µ(a) = Σi(ui−vi);
for any a, b ∈ L, define a ∼ b if µ(a) = µ(b). Then it is easily checked that
the ambiguity algebra [L] associated to (L,∼) is isomorphic to the Chang
algebra.

The difficult problem in the present context is to find reasonable sufficient
conditions for residuability. For this topic, we refer to [Vet3].

5. a-Equivalence relations on Heyting algebras

In this section, we generalize the framework introduced in Section 4. Rather
than Boolean algebras, we will use Heyting algebras. The aim is to develop
a representation theory not only for MV-algebras, but also for the more
general BL-algebras, the algebraic counterpart of BL.

A Heyting algebra is a bounded lattice (L;∧,∨, 0, 1) such that, for all
a, b ∈ L, the relative pseudocomplement of a w.r.t. b, given by

a→b = max {x: b ∧ x ≤ a},
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exists. Heyting algebras are distributive lattices such that ∧ and → form
an adjoint pair: a ∧ b ≤ c if and only if a ≤ b→ c for all a, b, c. For more
information, see for instance [RaSi].

For elements a, b of a Heyting algebra, we again say that a and b are
non-implicative and write a

⊥p

b if a→ b = b. Note, however, that

⊥p

, in
contrast to Boolean algebras, is in general not symmetric.

By distributivity, Heyting algebras can be represented by a lattice B of
subsets of a set X. Then B is closed under intersection and union and B
contains ∅ and X; in contrast to the case of Boolean algebras, however, B
is not necessarily closed under complementation. Instead, there is for any
two sets A,B ∈ B a largest one C ∈ B such that A ∩ C ⊆ B.

Consequently, we may interpret a Heyting algebra as a model of a set
of crisp properties such that the following holds: the conjunction and the
disjunction of any two properties exists, and for any two properties there is
a third one which, together with the first one, implies the second one.

We next present the adapted version of Definition 4.1 for the case of
Heyting algebras.

Definition 5.1. Let (L;∧,∨, 0, 1) be a Heyting algebra. Let ∼ be an equiv-
alence relation ∼ on L, and write a ≺∼ b if a′ ≤ b′ for some a′ ∼ a and b′ ∼ b.
∼ is called an a-equivalence relation on L if the following conditions hold:

(H0) a ∼ 1 implies a = 1.

(H1) If a ≺∼ b ≺∼ c and a ≤ c, then there is a b′ ∼ b such that a ≤ b′ ≤ c.

(H2) Let a ∼ a′, b ∼ b′. Then a ∨ b ∼ a′ ∨ b′ if and only if a→b ∼ a′→b′.

(H3) Let a ∼ a, b ∼ b′ and a

⊥p

b, a′

⊥p

b′. Then a ∧ b ∼ a′ ∧ b′.

As above, we denote by [L] the set of equivalence classes of an a-equiva-
lence relation ∼. By (H1), ≺∼ induces a partial order on [L], which will also
be denoted by ≤, and ι : L → [L], a 7→ [a] is a surjective homomorphism
of bounded posets.

Note the new condition (H0), which has the following immediate conse-
quence.

Lemma 5.2. Let ∼ be an a-equivalence relation on a Heyting algebra L. Let
a, b ∈ L. Then a ∼ b and a ≤ b imply a = b.

If ∼ is an a-equivalence relation on a Boolean algebra L, then the relation
∼ on L, viewed as a Heyting algebra, fulfills (H1)–(H3), but not necessarily
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the new condition (H0). We did not require (H0) above because it was not
needed. So if we were pedantic, we would have chosen a new notion for
Definition 5.1; we did not do so to keep the notation simple.

In the case of Boolean algebras, we suggested to imagine ∼ as a relation
identifying elements of equal extent. In a more general form, this picture
can be applied to the present context as well.

Example 5.3. Let (I;≤) be a totally ordered set. For every ι ∈ I, let
(Lι;∧,∨, 0, 1) be a Boolean algebra. Mimicking the ordinal sum construc-
tion, we combine these algebras to a new one as follows. Let L consist of
those (aι)ι∈I ∈

∏
ι∈I Lι such that, for κ ∈ I, aκ < 1 implies aι = 0 for all

ι > κ. Endow L with the pointwise order. Then L is obviously a lattice with
smallest the element (0)ι and the largest element (1)ι. It is straightforward
that L is actually a Heyting algebra.

Assume now in addition that, for every ι, µι : Lι → [0, 1] is a homoge-
neous measure on Lι. Define (aι)ι ∼ (bι)ι if µι(aι) = µι(bι) for all ι. We may
check that ∼ is an a-equivalence relation on L. The induced order is total.

We will now endow the quotient of a Heyting algebra with respect to an
a-equivalence relation with the structure of a residuated lattice, analogously
to the procedure in Section 4. As to be expected, we will have to require
here stronger conditions to obtain similar results. We are then again led to
a class of residuated lattices, which is larger than before.

Definition 5.4. Let ∼ be an a-equivalence relation on a Heyting algebra
(L;∧, ∨,¬, 0, 1). Consider the bounded poset ([L];≤, 0, 1). If, for every
a, b ∈ L, the set {[a′∧b′]: a′ ∼ a, b′ ∼ b} contains a minimal and a maximal
element, we say that [L] is residuable.

Mutatis mutandis, Lemma 4.5 holds for Heyting algebras as well. So we
can define the operations � and → as above.

Definition 5.5. Let ∼ be an a-equivalence relation on a Heyting algebra L
such that [L] is residuable. Then we define for a, b ∈ L

[a]� [b] = min {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b},
[a]→ [b] = max {[a′→b′]: a′ ∼ a, b′ ∼ b},

and we let 0 = [0] and 1 = [1]. We call the structure ([L];∧,∨,�,→, 0, 1)
the ambiguity algebra associated to the pair (L,∼).

Theorem 5.6. Let ∼ be an a-equivalence relation on a Heyting algebra L
such that [L] is residuable. Then the ambiguity algebra ([L];∧,∨,�,→, 0, 1)
associated to (L,∼) is a divisible residuated lattice.



14 Thomas Vetterlein

It is open if an ambiguity algebra associated to a Heyting algebra ful-
fills prelinearity. We will introduce an additional condition to ensure this
property.

Definition 5.7. Let L be a Heyting algebra L, and let ∼ be an a-equivalence
relation on L. Then we say that [L] is prelinear if the following condition
holds:

(PL) Let a, b ∈ L be such that a∧ b �∼ a′∧ b′ for all a′ ∼ a and b′ ∼ b. Then
c1 ∼ c2, c1 ≥ a→b and c2 ≥ b→a imply c1 = c2 = 1.

In other words, [L] is prelinear if [a ∧ b] = [a] ∧ [b] implies [a→b] ∨ [b→
a] = 1.

We arrive at this section’s main theorem.

Theorem 5.8. Let ∼ be an a-equivalence relation on a Heyting algebra
L such that [L] is residuable and prelinear. Then the ambiguity algebra
([L];∧,∨, �,→, 0, 1) associated to (L,∼) is a BL-algebra.

Moreover, all totally ordered BL-algebras arise in this way.

Again, we add examples to illustrate the meaning of this theorem.

Example 5.9. Let X = R+ ∪ {∞}, that is, the positive cone of the totally
ordered group of reals, enriched with one additional element ∞ on top. Let
L consist of the following subsets of X: (i) the empty set ∅ and (ii) the
unions a of finitely many intervals (u, v] = {x ∈ X : u < x ≤ v}, where
u ≤ v, such that ∞ ∈ a. Then L, endowed with the intersection, union, and
the constants ∅ and X, is a Heyting algebra of subsets of X.

Given a, b ∈ L, let a ∼ b if neither a nor b is the empty set and if the Borel
measure of the complement of a and b coincides. Then we may check that
the ambiguity algebra [L] associated to (L,∼) is isomorphic to the product
algebra.

Example 5.10. To construct the third standard BL-algebra, let X = [0, 1]
be the real unit interval, and let L consist of the subintervals [0, a], where
a ∈ [0, 1]. Then L is a Heyting algebra of subsets of X. Let ∼ be the
equivalence relation on X which does not identify any pair of elements.
Then the ambiguity algebra [L] associated to (L,∼) is isomorphic to the
Gödel algebra.

6. Alternative semantics for fuzzy logics

In this last section, we shall make explicit how our results apply to fuzzy
logics.
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Recall that the varieties of MV- and BL-algebras are generated by their
totally ordered members. So in view of Theorems 4.9 and 5.8, we may base
the semantics of  LL and of BL on ambiguity algebras arising from Boolean
or Heyting algebras, respectively.

Definition 6.1. Let ∼ be an a-equivalence relation on a Boolean algebra
L such that [L] is residuable, and let ([L];∧,∨,�,→, 0, 1) be the ambiguity
algebra associated to (L,∼). An evaluation of the propositions F of  LL in
[L] is a mapping v : F → [L] such that, for α, β ∈ F ,

v(α� β) = v(α)� v(β),
v(α→β) = v(α)→v(β),

v(0) = 0.

A proposition ϕ is called valid in [L] if v(ϕ) = 1 for all evaluations in [L].
Similarly, let ∼ be an a-equivalence relation on a Heyting algebra L such

that [L] is residuable and prelinear. Let ([L];∧,∨,�,→, 0, 1) be the ambi-
guity algebra associated to (L,∼). Define an evaluation of the propositions
of BL, and define a proposition of BL to be valid, analogously to the case of
 LL.

Theorem 6.2. A proposition ϕ of  LL is valid in  LL if and only if for all
pairs of a Boolean algebra L and an a-equivalence relation ∼ on L such that
[L] is residuable, ϕ is valid in the ambiguity algebra [L] associated to (L,∼).

Similarly, a proposition ϕ of BL is valid in BL if and only if for all pairs
of a Heyting algebra L and an a-equivalence relation ∼ on L such that [L]
is residuable and prelinear, ϕ is valid in the ambiguity algebra [L] associated
to (L,∼).

7. Conclusion

To justify the use of a specific t-norm based many-valued logic, its seman-
tical framework must be more specific, compared to the common case that
the real unit interval endowed with a t-norm is used. Working towards
this aim, we have proposed alternative semantics for  Lukasiewicz and Basic
Logic. The idea was to derive the corresponding algebraic structures, MV-
and BL-algebras, in some natural way. The result is as follows: We use
pairs consisting of a Boolean or Heyting algebra and an equivalence relation
subject to conditions which are chosen in accordance with the case that el-
ements of equal strength are identified; under a natural assumption, the set
of equivalence classes gives rise to an MV- or a BL-algebra, respectively.



16 Thomas Vetterlein

It would be desirable to have similar results for further fuzzy logics. Note
however that, like e.g. in case of the logic MTL, a general structure theory
for the algebras of the corresponding varieties is typically not available; this
makes approaches like the present one difficult. Furthermore, for many fuzzy
logics, first-order versions were defined, and to develop an approach like the
present one also for these logics would again be certainly desirable. However,
here the problems are located even on a more basic level. Namely, we find
that to interpret first-order fuzzy logics properly is even much more involved
than in case of the propositional logics; at least we have to admit that we
have not yet found a satisfying approach.

On the positive side, however, we are convinced that apart from the
approach chosen here, there are many more possibilities how to approach
the aim of making the content of fuzzy logics like  LL and BL more clear.
Further research can continue along as many lines as specific situations can
be imagined in which a certain fuzzy logic is applicable.
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