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Abstract

The logic LAEq discussed in this paper is based on an approximate entailment re-
lation. LAEq generalises classical propositional logic to the effect that conclusions
can be drawn with a quantified imprecision. To this end, properties are modelled
by subsets of a distance space and statements are of the form that one property
implies another property within a certain limit of tolerance. We adopt the concep-
tual framework defined by E. Ruspini; our work is towards a contribution to the
investigation of suitable logical calculi.

LAEq is based on the assumption that the distance function is a quasimetric. We
provide a proof calculus for LAEq and we show its soundness and completeness for
finite theories. As our main tool for showing completeness, we use a representation
of proofs by means of weighted directed graphs.

1 Introduction

Reasoning about a particular topic means exploiting the logical relationships between
potential facts. For instance, if we know that some propertyα applies and thatα implies
another property β, we draw the conclusion that then also β applies. Under practical
circumstances, however, reasoning is often done in a somewhat flexible way. In fact,
we typically draw the indicated conclusion even if the presence of α does not imply
β strictly. Knowing that whenever α holds we are in a situation close to a situation
in which β holds is often considered as a sufficient basis for an inference. Reasoning
in such a way might be called “approximate” and its formalisation is the topic of the
present paper.

Approximate reasoning can be realised in many different ways. For an overview of the
many different approaches to this field, see, e.g., [HAH]. Here, we adopt the conceptual
framework that has been specified by E. Ruspini in his seminal paper [Rus] in 1991.
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Let us outline the main ideas. Assume that we are given a set of properties, suitable to
describe some objects under consideration. Let a universe of discourseW , customarily
called a set of worlds, be chosen, corresponding to the different possible states in which
the objects can be. We may then assume that at each world w an evaluation assigns to
each property ϕ its truth value “true” or “false”. Likewise, with each property ϕ we
may associate the subset of W consisting of those worlds at which ϕ holds. In this
framework, the canonical way of reasoning obeys the rules of classical propositional
logic (CPL). In particular, implicational relationships correspond to subsethood: for
two properties α and β to validate α → β means that the set A ⊆ W associated with
α is contained in the set B ⊆W associated with β.

Practical reasoning, however, should be robust with regard to small changes. To allow
for greater flexibility, Ruspini takes into account an additional aspect. The set of worlds
describes the variety of states of the objects under consideration and there might be a
natural way to specify the degree to which two such states resemble. A similarity
relation on W can be introduced for this purpose, mapping each pair of worlds v, w ∈
W to an element s(v, w) of the real unit interval, a larger value meaning a stronger
resemblance. Such a mapping can be understood as a graded version of an accessibility
relation in the sense of modal logic. In fact, for any given r ∈ [0, 1], we may define
the binary relation Rr on W requiring v Rr w if s(v, w) > r. Based on Rr, we may
define a possibility operator ♦r on the power set of W . The expression α→ ♦rβ then
generalises the classical implication. At a world w at which α is fulfilled, β might not
hold but still be regarded as an “example” of β. However,w will be a “typical example”
only if r = 1. For r close to 1, w might still be considered as a “good example”, but
for small r, the world w would be considered as a “bad example”.

Ruspini’s approach has been explored from a logical perspective in a series of papers by
numerous authors. A comprehensive study is the paper [EGGR]. The paper [DPEGG]
is a further early contribution and includes an application to interpolative reasoning
as required in rule-based fuzzy control. For a more recent article, which contains an
overview of different approaches, see [GoRo].

A logical calculus may also be based on a graded analogue of the classical implica-
tion, without the detour via modal operators. In fact, Ruspini defines the degree of
implication between properties α and β modelled by subsets A and B, respectively, by

I(B|A) = inf
v∈A

sup
w∈B

s(v, w).

We may hence define that α implies β to the degree r if I(B|A) > r. This idea is
exploited in the Ph.D. Thesis of R. Rodrı́guez [Rod] and is moreover the basis of the
paper [EGRV].

The logic LAEq that we consider in this paper is conceptually in line with these last
mentioned papers. Details differ, but our modifications do not affect the overall picture.
Our syntactical objects are of the form

α
d→ β, (1)

where α and β are formulas of CPL and d is a positive real number (possibly 0). The
two CPL formulas are interpreted by subsets of a quasimetric space. A quasimetric is
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defined similarly to a metric, but the axiom of symmetry is dropped. The statement
(1) is defined to be satisfied if the set of worlds associated with α is contained in the
d-neighbourhood of the set associated with β. We note that we work with a quasimetric
and not with the dual notion of a quasisimilarity. For this reason the values associated
with formulas are interpreted in the reverse way: the statement α d→ β is the weaker,
the larger the parameter d is. In particular, α 0→ β holds whenever α→ β is a tautology
of CPL.

LAEq could be regarded as a logic of quasimetric spaces. A different perspective on
logics of metric spaces as well as logics of more general distance spaces has been
developed in a further series of papers. In [KSSWZ], first-order logic on universes
endowed with a distance function is studied. Related contributions include [SSWZ],
[Kut], and [STWZ].

We may furthermore ask for the connections of our work to many-valued logic. We
deal with implications between crisp properties, endowed with real values that express
the degree to which the implicational relationships hold. The notion of a Graded Con-
sequence Relation between sets of Boolean formulas and a further Boolean formula has
been introduced by Chakraborty [Cha, ChDu]. A central aim has been the adaptation of
common logical concepts to a many-valued framework. In spite of the distinct scopes,
Chakraborty’s notion shares conceptually certain aspects with our framework: crisp
properties are dealt with on the base level, a degree is added on the metalevel. An exact
relationship has been established, however, only in a more general context. Namely,
Graded Consequence Relations were generalised to hold between a fuzzy subset of
formulas and a further formula; see, e.g., [DuCh, REGG]. In [REGG], it is pointed
out that Implicative Closure Operators capture the approximate entailment relation on
which the present work is based.

The present work follows up the previous papers [Rod, GoRo, EGRV]. To see in which
respect our work represents a progress, let us go further into detail. The present ap-
proach differs in two important points from [EGRV]. Firstly, the logic discussed in
[EGRV] is not based on a quasimetric but on a similarity relation. The relationship be-
tween a quasimetric and a similarity relation is an indirect one: a metric is a symmetric
quasimetric and a similarity relation can be regarded as a generalisation of a metric.
Secondly, in [EGRV], the language is required to consist of a fixed finite number of
variables and each world is assumed to correspond to what is called a maximal elemen-
tary conjunction, or m.e.c. for short. A m.e.c. is a conjunction of literals in which all
variables occur exactly once. Here, m.e.c.s are not used.

The latter aspect has in fact been the starting point for the present work: we no longer
assume that the number of variables is bound by a fixed finite number. This change im-
plies that we can not proceed in the same way as, e.g., in [EGRV]. The axiomatisation
of the logic cannot be done in the same style as before and the methods employed in
completeness proofs are no longer available, as there is no counterpart of a m.e.c. here.
In the proof system proposed in [EGRV], there are two axioms that rely on m.e.c.s.
The first one expresses the symmetry of the distance function; it corresponds to the re-
quirement that if a world is in the d-neighbourhood of another world, also the converse
relation holds. A further axiom is concerned with disjunctions; it corresponds to the
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fact that if a world is in the neighbourhood of the union of two sets, then it is already
in the neighbourhood of one of them.

A previous work whose aim has been to replace these two axioms is our contribution
[Vet]. In this case, we introduced an additional binary connective↗. For two subsets
A and B of a metric space, A↗ B was supposed to contain all those elements whose
distance to A is at most as large as their distance to B. The same connective has
also been considered in the framework of Logics of Comparative Similarity; see, e.g.,
[AOS]. The presence of↗ enabled us to overcome the problem of characterising the
neighbourhood of the union of sets. The problem of characterising the symmetry of the
distance function was not touched; symmetry was not assumed.

Here, we do not extend the language by additional connectives. Instead, we pose a
seemingly natural question: Do we really need the axioms involving m.e.c.s for the
axiomatisation of a logic of approximate entailment? Could it be the case that the
remaining axioms are already sufficient?

We contribute a step towards an affirmation of the latter question. In fact, using quasi-
metrics as distance functions, we provide a positive answer. For the associated approx-
imate entailment relation, we present a proof calculus that is restricted to the obviously
necessary minimum of rules; nonetheless, we establish its soundness and completeness.
We again have to include a finiteness condition though; we show the completeness of
our calculus w.r.t. finite theories.

We proceed as follows. In the introductory Section 2, we specify the logic LAEq , which
deals with graded implications of the form (1) and interprets properties by subsets of
a quasimetric space. Section 3 introduces the calculus LAE, based on a small set of
rules that are sound for LAEq . We furthermore establish that proofs in LAE can be
represented in the form of weighted directed forests, which are directed graphs whose
components are directed trees. In Section 4, we present a representation theorem for
quasimetric Boolean algebras. Section 5 then establishes our final result, according
to which provability in LAE coincides with the entailment relation of LAEq . Some
concluding remarks are contained in Section 6.

2 The Logic of Approximate Entailment
in Quasimetric Spaces

We are concerned in this paper with a logic of approximate entailment; our work may
be seen as a continuation of the contributions [Rod, GoRo, EGRV] to this topic. The
logics that have been considered under this name often differ in details. Here, our inten-
tion is to define and axiomatise a logic in close accordance with the original concepts
of Ruspini, presented in his well-known paper [Rus].

Let us specify the semantic framework. The symbol R̄+ will denote the extended
positive real line, that is, R̄+ = R+ ∪ {∞} = {r ∈ R : r > 0} ∪ {∞}. Here, ∞ is
a new element such that r < ∞ for any r ∈ R+. We extend the addition from R+ to
R̄+ requiring r +∞ =∞+ r =∞ for any r ∈ R̄+. The operations of minimum and
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maximum on R̄+ will be denoted by ∧ and ∨, respectively.

Definition 2.1. Let W be a non-empty set. A quasimetric on W is a mapping q : W ×
W → R̄+ such that for any v, w, x ∈W :

(M1) q(v, w) = 0 if and only if v = w;

(M2) q(v, x) 6 q(v, w) + q(w, x).

In this case, we call (W, q) a quasimetric space.

In a quasimetric space (W, q), the distance of some a ∈ W from some B ⊆ W is
defined to be

q(a,B) = inf
b∈B

q(a, b).

Moreover, for d ∈ R̄+, we define the set

Ud(B) = {a ∈W : q(a,B) 6 d}

as the d-neighbourhood of B. Finally, the Hausdorff quasidistance of some A ⊆ W
from some B ⊆W is

q(A,B) = sup
a∈A

q(a,B).

Note that we use the same symbol for the quasimetric, the distance of a point from a
set, and the Hausdorff quasidistance.

A quasimetric space (W, q) is called a min-space if, for any a ∈ W and B ⊆ W ,
there is a b ∈ B such that q(a,B) = q(a, b). This notion is due to [SSWZ], where the
importance of min-spaces in a logical setting has been pointed out.

Let us compile a few immediate observations.

Lemma 2.2. Let (W, q) be a quasimetric space, let a ∈ W , A,B ⊆ W , and c, d ∈
R̄+.

(i) q(a,B) = 0 if a ∈ B. If (W, q) is a min-space, also the converse holds.

(ii) q(a,B) 6 d if and only if a ∈ Ud(B).

(iii) Ud(∅) = ∅ if d <∞, and U∞(∅) = W .

(iv) a ∈ Ud(B) if there is a b ∈ B such that q(a, b) 6 d. If (W, q) is a min-space,
also the converse holds.

(v) Uc(Ud(A)) ⊆ Uc+d(A).

Moreover, the following properties are characteristic for the Hausdorff quasidistance.

Lemma 2.3. Let (W, q) be a quasimetric space and let A,B,C ⊆W .

(i) q(A,B) = 0 if A ⊆ B. If (W, q) is a min-space, also the converse holds.
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(ii) q(A,B) 6 d if and only if A ⊆ Ud(B).

(iii) q(A ∪B,C) = q(A,C) ∨ q(B,C).

(iv) q(A,B) > q(A,C) if B ⊆ C.

(v) q(A,C) 6 q(A,B) + q(B,C).

Proof. We only show (v). We calculate

q(A,B) + q(B,C) = sup
a∈A

inf
b∈B

q(a, b) + sup
b∈B

inf
c∈C

q(b, c)

= sup
a∈A

inf
b∈B

(q(a, b) + sup
b′∈B

inf
c∈C

q(b′, c))

> sup
a∈A

inf
b∈B

(q(a, b) + inf
c∈C

q(b, c))

= sup
a∈A

inf
b∈B

inf
c∈C

(q(a, b) + q(b, c))

> sup
a∈A

inf
c∈C

q(a, c) = q(A,C).

We next specify the logic LAEq . The language of LAEq includes a countably infinite
number of variables, denoted by small Greek letters, as well as the two constants ⊥
(false), and > (true). By a Boolean formula, we mean a formula built up from the
variables and the constants by means of the binary operations ∧ (and), and ∨ (or), as
well the unary operation ¬ (not). The connective→ (implies), is defined as usual.

Moreover, a graded implication, or an implication for short, is a triple consisting of
two Boolean formulas α and β as well as a number d ∈ R+. We write α d→ β and we
call d the degree of the implication.

A model for LAEq is a Boolean algebra (B;∩,∪, {,∅,W ) of subsets of a quasimetric
space (W, q) such that for each A ∈ B and d ∈ R+ also Ud(A) ∈ B.

Given a model B, an evaluation is a mapping v from the Boolean formulas to B in the
sense of classical propositional logic. That is, we require v(α ∧ β) = v(α) ∩ v(β),
v(α∨β) = v(α)∪v(β), v(¬α) = {v(α), and v(⊥) = ∅, v(>) = W . An implication
α

d→ β is said to be satisfied by an evaluation v if

v(α) ⊆ Ud(v(β)).

A theory is a set of implications. We say that a theory T semantically entails some
implication Φ in LAEq if, whenever all elements of T are satisfied by an evaluation v,
also Φ is satisfied by v.

Having specified the logic LAEq in formal respects, let us now explain its intended
meaning. First of all, we deal with Boolean formulas, interpreted by subsets of a fixed
set of worlds. The Boolean formulas hence refer to crisp properties.
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Furthermore, the role of the quasimetric is analogous to the role of the similarity rela-
tion in Ruspini’s framework. A major difference is, however, that we do not assume
symmetry here. Substituting the similarity relation by a quasimetric moreover means
that the order is understood in the opposite way. Let q be a quasimetric on a set of
worlds W . Then, for two worlds v and w, q(v, w) = 0 means coincidence, that is,
v = w. Moreover, the larger q(v, w) is, the less the worlds v and w resemble each
other. Finally, q(v, w) =∞ means that v and w are considered as unrelated.

The use of the dual order has practical reasons; the proofs will be easier to follow.
A further advantage is that we are in line with the common topological terminology.
We note that, however, a quasimetric can be identified with a quasisimilarity based
on the product t-norm. Here, we understand a quasisimilarity similarly to a similarity
relation [Rus], but without assuming symmetry. It is straightforward to see that under

the correspondence [0, 1]→ R̄+, d 7→
{
− ln d if d 6= 0,
∞ if d = 0

the two concepts coincide.

Let us finally recall the meaning of an expression of the form α
d→ β. This implication

to be satisfied means that any world at which α holds is in the d-neighbourhood of
the set of worlds at with β holds. Conversely, if the implication is not satisfied, then
there is a world w with the following property: α holds at w, and for all worlds v at
which β holds, we have q(w, v) > d. We conclude that the degree d of the implication
is a degree of imprecision: we may read α d→ β as “α implies β within the limit of
tolerance d”.

3 The calculus LAE

The purpose of this paper is to define a proof system for LAEq . To this end we introduce
a calculus denoted by LAE.

Recall that the syntactical objects of LAEq are graded implications and that we do
not allow to build compound formulas from statements of the form (1) by means of the
classical connectives. Exactly this possibility is admitted in [EGRV], where a two-level
language is used. Accordingly, the calculus of [EGRV] is based on axioms together
with the modus ponens as the only rule.

Our calculus LAE will instead be based on rules, suitable to derive implications from
implications; there are no connectives on the metalevel. The style of LAE might
be considered as somewhat similar to Skolem’s calculus for lattice theory; see, e.g.,
[NePl]. We are, in addition, inspired by the proof-theoretic methods in fuzzy logics
[MOG]; a remote resemblance with the sequent systems used in substructural logic
might thus be observable as well.

We assume from now on that the set of variables is fixed and that from these variables,
all Boolean formulas and implications are built up.

A rule of LAE consists of a possibly empty set of implications, called the assump-
tions, and one further implication, called the conclusion. We denote a rule writing the
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assumptions, if there are any, above the conclusion, using a separating horizontal line.

Definition 3.1. LAE consists of the following rules, where α, β, γ are any Boolean
formulas and c, d ∈ R+:

(R1) α
0→ β if α→ β is a tautology of CPL (R2)

α
0→ β

α ∧ γ 0→ β ∧ γ

(R3)
α

c→ β

α
d→ β

where d > c (R4)
α

c→ ⊥
α

0→ ⊥

(R5)
α

c→ γ β
c→ γ

α ∨ β c→ γ
(R6)

α
c→ β β

d→ γ

α
c+d→ γ

Let T be a theory and Φ be an implication. A proof of Φ from T in LAE is defined in
the usual way. We write T ` Φ if such a proof exists.

Comparing LAE with the axiom system of [EGRV, Def. 4.2], we may say that,
roughly, LAE incorporates the same axioms except for those involving m.e.c.s, which
are not available in the present context.

Our aim is to show the completeness of LAE with regard to the consequence relation
of LAEq , that is, semantic entailment in LAEq coincides with provability in LAE. The
soundness part does not cause difficulties.

Proposition 3.2. Let T be a theory and Φ an implication. If T proves Φ in LAE, then
T semantically entails Φ in LAEq .

Proof. If the assumptions of a rule are satisfied by an evaluation v, the conclusion is
satisfied by v as well. This is clear for (R1)–(R5). In case of (R6), it follows from
Lemma 2.2(v).

In spite of the seeming simplicity of the calculus LAE, the proof of the converse
of Proposition 3.2, given in Section 5, is not trivial. In the remainder of the present
section, we will define a certain way of representing proofs of LAE.

We will call two Boolean formulas α and β Boolean equivalent, in signs α ≈ β, if
α → β and β → α are tautologies of CPL. Assume α ≈ α′ and β ≈ β′; then the
implications α d→ β and α′ d→ β′ are in LAE derivable from each other. In fact, in
this case α′ → α and β → β′ are tautologies of CPL, hence α′ 0→ α and β 0→ β′

follow by (R1). From α
d→ β, we may then derive α′ d→ β′ applying twice (R6).

Similarly, we may infer α′ d→ β′ from α
d→ β. In the sequel, we will consider Boolean

formulas up to Boolean equivalence. Boolean formulas will in fact be dealt with in
disjunctive normal form.

Definition 3.3. A Boolean formula of the form ϕ or ¬ϕ, where ϕ is a variable, will be
called a literal. By a clause, we mean a finite set of literals, and by a clause set, we
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mean a finite set of clauses. A clause L is called inconsistent if there is a variable ϕ
such that L contains both ϕ and ¬ϕ, and consistent otherwise.

With a clause set
B = { {λi1, . . . , λiki} : 1 6 i 6 l}, (2)

where l > 0 and k1, . . . , kl > 0, we associate the Boolean formula∨
16i6l

∧
16j6ki

λij

and denote it by f(B). Here, an empty conjunction stands for> and an empty disjunc-
tion stands for ⊥.

We note that, in this paper, clause sets represent disjunctive normal forms. That is, we
interpret clauses conjunctively and sets of clauses disjunctively.

Clearly, each Boolean formula α is Boolean equivalent to a formula associated with a
clause set. In particular, ⊥ is, e.g., associated with the empty set {}; and > is, e.g.,
associated with the clause set consisting of a single empty clause, {{}}. We will call a
clause set B such that α≈ f(B) a clause set for α.

An implication of the following form is called basic:

λ1 ∧ . . . ∧ λn
d→

∨
16i6l

∧
16j6ki

µij ; (3)

here, n > 1, l > 0, and k1, . . . , kl > 1; moreover, {λ1, . . . , λn} and {µi1, . . . , µiki},
i = 1, . . . , l, are consistent clauses. In particular, we may identify a basic implication
with a triple consisting of a clause, a clause set, and a positive real.

A theory T consisting of basic implications will also be called basic. By the following
lemma, we may restrict our considerations to basic theories.

Lemma 3.4. Let T be a theory. Then there is a basic theory Tb such that any implica-
tion is provable from T if and only if it is provable from Tb.

Proof. Let us modify T as follows. Let α d→ β be contained in T . If ¬α or β is a
tautology of CPL, then α d→ β is derivable in LAEq by (R1) and (R3). In this case, we
drop it from T . W.l.o.g., we can otherwise assume that the implication is of the form∨

16i6l′

∧
16j6k′i

νij
d→

∨
16i6l

∧
16j6ki

µij ,

where l′ > 1 and l > 0 and, for all i, {νi1, . . . , νik′i}, {µi1, . . . , νiki} are non-empty

consistent clauses. We drop in this case α d→ β from T and add instead the basic
implications ∧

16j6k′i

νij
d→

∨
16i6l

∧
16j6ki

µij , (4)
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where i = 1, . . . , l′. By repeated application of (R5), we can derive α d→ β from the
implications (4). Conversely, by (R1) and (R6), we can derive the implication (4) for
each i from α

d→ β.

Proceeding in the same way for each element of T , we obtain a theory Tb that consists
of basic implications only.

In the sequel, we will identify proofs of LAE with certain weighted directed graphs
labelled by Boolean formulas. We will adopt the common terminology to denote the
relationship between nodes, like child, father, sibling, and descendant. Moreover, a
directed forest is a directed graph such that each component is a directed tree; the
latter’s designated elements are called roots then. The nodes without child are called
terminal nodes or leaves. A subtree as well as the subtree rooted at some node is
understood in the obvious way. A branch is a maximal subtree with the property that
each non-terminal node has exactly one child.

A weighted directed forest is a directed forest together with a map assigning to each
edge a positive real number, called its weight. Finally, all graphs with which we deal
will be labelled. However, to facilitate formulations, the mapping associating labels to
nodes will be kept implicit; we will simply identify the nodes with their labels.

Definition 3.5. A proof forest is a finite weighted directed forest each of whose nodes
is either a clause or the symbol >.

A node of a proof forest distinct from > is called proper. The length of a branch is
defined to be 0 if it contains > and else as the sum of the weights of its edges. By the
length of a proof forest, we mean the maximum of the lengths of its branches.

Let T be a basic theory and let ζ r→ η be an implication. Then a proof forest is called
a forest proof of ζ r→ η from T if the following conditions hold:

(T1) There is a clause set Bζ for ζ such that, for each clause L in Bζ , there is a
root that is a subset of L.

(T2) There is a clause set Bη for η such that, for any terminal clause L, there is
a clause in Bη that is a subset of L.

(T3) The length of the proof forest is at most r.

(T4) Let L be a non-terminal clause. Then the weights of all edges rooted at L
coincide; let c be this value. One of the following possibilities applies:

(A) c = 0 and T contains a basic implication of the form (3), where
d = 0, {λ1, . . . , λn} ⊆ L, and for each i = 1, . . . , l, a clause
L′ ⊆ {µi1, . . . , µiki} ∪ L is a child of L.

(B) c > 0 and T contains a basic implication of the form (3), where
d = c, {λ1, . . . , λn} ⊆ L, and for each i = 1, . . . , l, a clause
L′ ⊆ {µi1, . . . , µiki} is a child of L.

(C) c = 0, L is inconsistent, and > is the only child of L.
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(D) c = 0, and for some variable ϕ, called the splitting variable in
the sequel, L has exactly two children, one of which is a clause
consisting of ϕ and a subset of L and one of which is a clause
consisting of ¬ϕ and a subset of L.

For illustration, let us include an example. Figure 1 shows a forest proof of the impli-
cation

α ∧ β 0.3→ (¬δ ∧ ε) ∨ (δ ∧ ¬ε)

from the theory

T = {α 0→ ¬β ∨ γ, β ∧ γ 0.3→ δ ∨ ε, δ
0→ ¬ε}.

The block used for α ∧ β is {{α, β}}; the block for (¬δ ∧ ε) ∨ (δ ∧ ¬ε) is {{¬δ, ε},
{δ,¬ε}}. Note that the length of the two branches not terminating with > is 0.3; hence
the length of the forest proof is 0.3. We observe furthermore that all four cases of
condition (T4) occur. For instance, at the root {α, β}, case (A) of (T4) applies; at its
child {β, γ}, case (B) applies; at the root’s child {β,¬β}, case (C) applies; and at the
node {δ}, case (D) applies.

Figure 1: An example of a forest proof. Set brackets are omitted.

The rest of this section is devoted to the aim of showing that provability in LAE is
equivalent to the existence of proof forests.

We next show the first out of several technical lemmas, according to which a forest
proof may be assumed to fulfil certain additional conditions.

Improper nodes are labelled by > and this symbol represents falsity. By the following
lemma we can assume that the improper nodes are all terminal.

Lemma 3.6. Let there be a forest proof of ζ r→ η from a basic theory T . Then there is
a forest proof of ζ r→ η from T such that (i) any node > is terminal and (ii) a node >
does not have siblings.

Proof. Consider a non-terminal node >. We remove all children of > together with
the subtrees rooted at them. Then the length of the proof forest is smaller than before.
Moreover, each terminal node of the modified proof is a terminal node of the original
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proof; hence condition (T2) is still fulfilled. We conclude that the result is a forest
proof of ζ r→ η from T . Applying the same procedure in all applicable cases, the first
part follows.

Next, consider a clause L that has a child > as well as further children. Then case (A)
or (B) applies. Obviously, we can remove the subtree rooted at the child >. Arguing as
before, the second part follows as well.

Theorem 3.7. Let T be a basic theory, and let ζ r→ η be an implication. If there is a
forest proof of ζ r→ η from T , then T ` ζ r→ η.

Proof. By Lemma 3.6, we can assume that every node > is terminal and does not
possess siblings.

Let Bζ be a clause set for ζ according to (T1). If Bζ is empty, we have ζ ≈⊥ and the
assertion is clear from (R1) and (R3). Note that in this case the proof forest is arbitrary.
For the rest of the proof, we assume that Bζ is non-empty.

Let L̄ be any clause contained in Bζ and let us consider the tree whose root is a subset
of L̄. Our aim is to show T `

∧
L̄

r→ η. As ζ is Boolean equivalent to the disjunction
of all conjunctions of a clause in Bζ , the assertion will then follow by (R1) and (R5).
We claim:

(?) Let L be a proper node. Let S be the subtree rooted at L and let e be the length of
S. Then

∧
L

e→ η is provable in LAE from T . Moreover, if all leaves of S are >,
then

∧
L

0→ ⊥ is provable in LAE from T .

Our assertion follows from (?) applied to the root. Based on the following facts (a)–(c),
(?) follows by induction over the subtrees.

(a) Let the clause L be a leaf. Then, by (T2),
∧
L

0→ η is a tautology of CPL and hence
derivable by (R1).

(b) Let L be a non-terminal clause and let > be its only child. We claim that then
T `

∧
L

0→ ⊥. Indeed, in case that (A) or (B) applies to L, T contains
∧
L′

c→ ⊥ for
some L′ ⊆ L and c ∈ R+; by (R1) and (R4), the implication in question is derivable.
In case (C),

∧
L≈⊥, and we draw the same conclusion. Case (D) cannot apply.

(c) Let L be a non-terminal clause with the proper children L1, . . . , Ln. Let c be the
weight of the edges rooted at L. Assume that, for each i = 1, . . . , n, (?) holds for Li.
We claim that then T `

∧
L

c→
∨
i

∧
Li. Indeed, in case that (A) applies to L, let

α
0→ β be the used basic implication from T . Then there is a conjunction γ of literals

such that α ∧ γ is Boolean equivalent with
∧
L and β ∧ α ∧ γ →

∨
i

∧
Li is a CPL

tautology. We apply (R2) to prove α ∧ γ 0→ β ∧ α ∧ γ and by (R1), (R6) we derive∧
L

0→
∨
i

∧
Li. In case (B), we proceed similarly; the application of (R2) being

omitted. Case (C) cannot occur. In case (D), we use (R1).

Assume next that not all leaves of the subtree rooted at L are >. By assumption, we
have, for all i,

∧
Li

ei→ η, where ei is the length of the subtree rooted at Li. By (R5),
we can derive

∨
i

∧
Li

e→ η as well, where e is the largest value among the ei, and by

12



(R6) furthermore
∧
L
c+e→ η, and c+ e is the length of the subtree rooted at L.

Assume now that all leaves of the subtree rooted at L are >. By assumption, we then
have, for all i,

∧
Li

0→ ⊥. By (R5), (R6), and (R4), we derive
∧
L

0→ ⊥. In particular,
we derive

∧
L

0→ η, and 0 is the length of the subtree rooted at L. The proof of (?) is
complete.

Lemma 3.8. Let there be a forest proof of ζ r→ η from a basic theory T . Then there is
a forest proof of ζ r→ η from T such that each inconsistent clause is non-terminal and
has the only child >.

Proof. Let ϕ be a variable and let L be a clause containing ϕ and ¬ϕ. If L is non-
terminal, we remove each child of L together with the subtree rooted at it. Afterwards,
we add > as the only child of L and we endow the edge from L to > with the weight
0.

Then case (C) of condition (T4) applies at L. Furthermore, we readily check that the
modified forest proof is still a forest proof of ζ r→ η from T .

Theorem 3.9. Let T be a basic theory and let ζ r→ η be an implication. If T ` ζ r→ η,
then there is a forest proof of ζ r→ η from T .

Proof. By (T4), cases (A) or (B), each implication contained in T possesses a forest
proof.

We will now check for each of the rules (R1)–(R6) that whenever each assumption
possesses a forest proof, so does the conclusion. The assertion will then follow by
induction over the length of a proof in LAE.

Ad (R1). Let α → β be a tautology of CPL. Then there is a clause set Bα =
{L1, . . . , Ln} for α and a clause set Bβ for β such that, for each i, Li is a subset
of a clause in Bβ . Then the forest that consists of the single node > if Bα is empty,
and of the isolated nodes Li otherwise is a forest proof of α 0→ β.

Ad (R2). Assume that there is a forest proof of α 0→ β. Let γ be any Boolean formula;
then there is also a forest proof of α ∧ γ 0→ β ∧ γ, as follows from the following two
observations.

First, let λ be a literal; we construct a forest proof of α∧λ 0→ β∧λ as follows. If α≈⊥,
the forest proof consisting of the node > alone fulfils the requirement. Otherwise, we
add λ to the (proper) roots; and for all proper nodes L based on case (A) or (D), we
recursively add λ to the proper children of L if λ was added to L. The result fulfils the
requirements; for, if a node L is based on case (B) or (C), all branches through L end
up with >.

Second, assume that, for Boolean formulas γ1 and γ2, there are forest proofs of α ∧
γ1

0→ β ∧ γ1 as well as α ∧ γ2
0→ β ∧ γ2. Joining both these proofs, we get a forest

proof of α ∧ (γ1 ∨ γ2)
0→ β ∧ (γ1 ∨ γ2).
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Ad (R3). In view of (T3), a forest proof of α c→ β is also a forest proof of α d→ β,
where d > c.

Ad (R4). Let a forest proof of α c→ ⊥ be given. By Lemma 3.8 we can assume that
no leaf is inconsistent. We conclude that all leaves are >. Hence the proof forest is
actually a forest proof of α 0→ ⊥.

Ad (R5). Assume there are forest proofs of α c→ γ and β c→ γ. Then their union is a
forest proof of α ∨ β c→ γ.

Ad (R6). Assume there are forest proofs of α c→ β and β d→ γ. By Lemma 3.8, we
can assume that no terminal clause is inconsistent.

Assume first that β≈⊥. Then, as we have argued in case of the rule (R4), all leaves of
the first proof forest are >. Hence the first proof forest is a also forest proof of α c→ γ

and hence of α c+d→ γ.

Assume second that β is not Boolean equivalent to⊥. Let L be a proper leaf of the first
proof. Then we can enlarge the proof forest by applications of (T4)(D) to L such that
each new leaf L′ includes a root L̄ of the second proof. We then connect all children
of L̄, together with the subtrees rooted at them, to L′. Proceeding in the same way for
all proper leafs of the first proof, we obtain a forest proof of α c+d→ γ.

We summarise that LAE proves an implication ζ r→ η from a theory T exactly if there
exists a forest proof of ζ r→ η from T .

4 Quasimetric Boolean algebras

The propositions of our logic are interpreted by subsets of a quasimetric space. More-
over, the degree to which an implication is defined to hold is determined by the Haus-
dorff quasidistance, which assigns to any two elements of this algebra a positive real.

In this context we are led to the following notion. Recall that a Boolean algebra B is
called separable if B is generated by a countable subset.

Definition 4.1. A quasimetric Boolean algebra is a pair (B, p) consisting of a separable
Boolean algebra (B;∧,∨,¬, 0, 1) and a mapping p : B × B → R̄+ such that, for all
A,B,C ∈ B,

(QB1) p(A,B) = 0 if and only if A 6 B.

(QB2) p(A ∨B,C) = p(A,C) ∨ p(B,C).

(QB3) p(A,B) 6 p(A,C) if C 6 B.

(QB4) p(A,C) 6 p(A,B) + p(B,C).

We note that the present notion should not be confused with the notion of a metric
Boolean algebra, which is usually meant to be a Boolean algebra together with a mea-
sure on it.
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The aim of this section is to establish a representation theorem for quasimetric Boolean
algebras. The Boolean algebra B will be represented by a set of subsets of a set W and
the quasimetric p on B by the Hausdorff quasidistance induced by a quasimetric on W .

We will need in the sequel Stone’s representation theorem of Boolean algebras [Sik].
Recall that a subset F of a Boolean algebra B is called a prime filter if (i) a ∈ F and
a 6 b imply b ∈ F , (ii) a ∧ b ∈ F for any a, b ∈ F , and (iii) for each a ∈ B, exactly
one of a and ¬ a is in F .

Theorem 4.2. Let (B;∧,∨,¬, 0, 1) be a Boolean algebra. Then there is a compact
topological space W such that B is isomorphic with (C;∩,∪, {,∅,W ), where C is the
set of clopen subsets of W .

Proof (sketched). Let W be the set of prime filters of B. Define ι : B → P(W ), a 7→
{F ∈ W : a ∈ F}. Then ι is an injective homomorphism from B to P(W ), endowed
with the set-theoretical operations.

Let furthermore W be endowed with the coarsest topology whose open sets include
ι(a) for all a ∈ B. Then the image of B is the set of clopen subsets of W . Hence ι
induces an isomorphism as claimed.

Our representation theorem will not apply for quasimetric Boolean algebras in general;
we will assume two further properties.

Theorem 4.3. Let (B, p) be a quasimetric Boolean algebra such that the following
additional conditions are fulfilled.

(QB5) For all A,B,C ∈ B, there are AB , AC ∈ B such that A = AB ∨ AC and
p(A,B ∪ C) = p(AB , B) ∨ p(AC , C).

(QB6) For any sequence (Ai)i, from infi p(Ai, B) = 0 it follows Aj 6 B for
some j.

Then there exists a quasimetric space (W, q) and an injective Boolean homomorphism
ι from B to the algebra of subsets of W such that

p(A,B) = q(ι(A), ι(B))

for all A,B ∈ B.

Proof. Let W be the compact topological space consisting of the prime filters of B,
such that B can be identified with the set of clopen sets endowed with the set-theoretical
operations. Note that, by construction, each sequence A0 ⊇ A1 ⊇ . . . of elements of
B has a non-empty intersection; and conversely, as B is separable, there is for each
w ∈W a sequence A0 ⊇ A1 ⊇ . . . in B such that

⋂
iAi = {w}.

For a ∈W and B ∈ B, we put

q(a,B) = inf
a∈A,
A∈B

p(A,B), (5)
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and for a, b ∈W , we put
q(a, b) = sup

b∈B,
B∈B

q(a,B). (6)

In the rest of the proof, we will omit the explicit reference to B; capital Latin letters
will always vary over elements of B. Our first aim is to show that q : W ×W → R̄+ is
a quasimetric.

To see (M1), let a, b ∈ W such that q(a, b) = 0. Let B be such that b ∈ B. Then
infa∈A p(A,B) = 0. Hence there is a sequence A0 ⊇ A1 ⊇ . . . such that a ∈ Ai for
all i and infi p(Ai, B) = 0. We conclude from (QB6) that p(Aj , B) = 0 for some j;
from (QB1) that Aj ⊆ B; and hence a ∈ B. As B is an arbitrary set containing b, it
follows a = b.

To see (M2), let a, b, c ∈W . We calculate

q(a, b) + q(b, c) = sup
b∈B

inf
a∈A

p(A,B) + sup
c∈C

inf
b∈B′

p(B′, C)

= sup
c∈C

inf
b∈B′

(sup
b∈B

inf
a∈A

p(A,B) + p(B′, C))

> sup
c∈C

inf
b∈B′

( inf
a∈A

p(A,B′) + p(B′, C))

= sup
c∈C

inf
b∈B′

inf
a∈A

(p(A,B′) + p(B′, C))

> sup
c∈C

inf
a∈A

p(A,C)

= q(a, b).

It remains to prove that
p(A,B) = sup

a∈A
inf
b∈B

q(a, b) (7)

holds for any A,B ∈ B. To this end, we first prove some auxiliary facts.

(a) Let a ∈W and B,C ∈ B. Then q(a,B ∪ C) = q(a,B) ∧ q(a,C).

By (QB3), q(a,B ∪ C) 6 q(a,B) ∧ q(a,C). Let ε > 0 and choose some A such that
a ∈ A and q(a,B ∪ C) 6 q(A,B ∪ C) 6 q(a,B ∪ C) + ε. By (QB5), there are
A′, A′′ such that A = A′ ∪ A′′ and q(A′, B) ∨ q(A′′, C) = q(A,B ∪ C). If a ∈ A′,
we have q(a,B) 6 q(A′, B) 6 q(A,B ∪ C) 6 q(a,B ∪ C) + ε. Taking into account
the possibility a ∈ A′′ as well, we conclude q(a,B) ∧ q(a,C) 6 q(a,B ∪ C) + ε. As
ε is arbitrary, (a) follows.

(b) Let a ∈W and B ∈ B. Then q(a,B) = infb∈B q(a, b).

Clearly, q(a,B) 6 q(a, b) for any b ∈ B. Assume that c 6 q(a, b) for any b ∈ B. Let
ε > 0. For each b ∈ B, we have q(a, b) = supb∈C q(a,C) = supb∈C, C⊆B q(a,C)
and hence we may choose a Cb ⊆ B containing b such that c 6 q(a,Cb) + ε. By
compactness, there are finitely many elements b1, . . . , bk such thatCb1∪. . .∪Cbk = B.
We conclude c 6 q(a,Cb1)∧ . . .∧q(a,Cbk)+ε = q(a,B)+ε by (a). As ε is arbitrary,
c 6 q(a,B), and (b) follows.

(c) Let A,B ∈ B. Then there is an ā ∈ A such that p(A,B) = q(ā, B).
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By the separability of B and by (QB2), there is a sequence A = A0 ⊃ A1 ⊃ . . . in
B such that

⋂
iAi = {ā} for some ā ∈ W and p(A,B) = p(Ai, B) for any i. Then

q(ā, B) = inf ā∈A′ p(A′, B) = infi p(Ai, B) = p(A,B) and (c) is shown.

We finally turn to the proof of (7). Let A,B ∈ B. By (c), there is an ā ∈ A such
that p(A,B) = q(ā, B); consequently, p(A,B) = maxa∈A q(a,B). By (b), we have
q(a,B) = infb∈B q(a, b) for each a ∈ A. The assertion follows.

5 A completeness theorem for LAEq

This section contains the main result of the paper: we show that the calculus LAE is
complete with respect to the entailment relation of LAEq .

The proof of the completeness theorem will rely on the notion of a proof forest, de-
fined in Section 3, as well as on the representation of quasimetric Boolean algebras,
contained in Section 4. In addition, we will need a couple of auxiliary results on proof
forests (Lemma 5.1–5.8).

Lemma 5.1. Let T be a finite theory and let ζ, η be Boolean formulas such that T `
ζ

s→ η for some s ∈ R+. Then there is an r ∈ R+ with the following properties: (i)
r is the smallest value such that T ` ζ r→ η and (ii) r is a finite sum of weights of
implications in T .

Proof. Let LAE’ be the calculus obtained modifying LAE in the following way: rule
(R3) is dropped; and (R5) is replaced by

(R5’)
α

c→ γ β
d→ γ

α ∨ β c∨d→ γ
.

Assume that, for some s ∈ R+, there is a proof of ζ s→ η from T in LAE. From this
proof, we drop every application of (R3) and decrease the weights of the subsequent

implications accordingly, such that a proof in LAE’ is obtained. Let ζ s′→ η be the
proved implication. Then s′ 6 s and s′ is the sum of finitely many reals each of
which is the weights of some implication contained in T . This proof may in turn

transformed to a proof of ζ s′→ in LAE. Indeed, we replace each application of (R5’)
by an application of (R3) followed by (R5).

We conclude that if ζ s→ η is provable, then so is ζ s′→ η, where s′ is a sum of elements
of a finite set of positive reals. The assertions follow.

In the context of a forest proof, we will use the following additional notions. For a
non-terminal clause L, we say that a literal λ is introduced at L if L does not contain
λ, but some child of L does. Conversely, if L contains λ but no child of L does so, we
say that λ is dropped at L.

Furthermore, assume that the literal λ is contained in the non-terminal clause L and
one of the following conditions holds:
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1. Case (A) or (B) of condition (T4) applies at L. Moreover, with reference to the
notation of Definition 3.5, λ is not among λ1, . . . , λn. Finally, if λ is contained
in the child of L indexed by i ∈ {1, . . . , l}, λ is one of µi1, . . . , µimi

.

2. Case (C) applies at L. Moreover, L\{λ} is still inconsistent.

3. Case (D) applies at L. Moreover, λ is not contained in any children of L.

Then we call λ unused in L.

Lemma 5.2. Let there be a forest proof of ζ r→ η from T . Then there is a forest proof
of ζ r→ η from T such that there is no unused literal in any proper node.

Proof. Let the non-terminal clause L contain the unused literal λ. We remove λ from
L. Then, evidently, condition (A), (B), (C), or (D), respectively, applies to the new
node L\{λ} if this was the case before.

If L\{λ} is the root, we are done. Otherwise, let L′ be the father of L\{λ}. L′ still
fulfils the requirements of (T4) except for the case that, in the original proof forest, case
(D) is applied to L′ and λ is one of ϕ or ¬ϕ, where ϕ is the splitting variable. Then L′

has the child L\{λ} ⊆ L′ as well as a second child that contains the negation of λ. We
remove the latter together with the subtree rooted at it; and we remove the node L\{λ}
and connect its children directly to L′. Evidently, the result is again a forest proof of
ζ

r→ η from T .

We repeat the same procedure as long as it is applicable.

Note what it means that a forest proof does not have any unused variables. Namely,
let L be a non-terminal clause in such a forest proof. In case (A), if L contains any
literal λ in addition to λ1, . . . , λn, then λ is also contained in a child, where λ is not
among the respective literals µi1, . . . , µiki . In case (B), we have L = {λ1, . . . , λn}.
In case (C), L = {ϕ,¬ϕ} for some variable ϕ. Finally, in case (D), each λ ∈ L is also
contained in one of the two children of L.

By a standard clause set for a Boolean formula α, we mean a clause set B such that,
for any variable ϕ, the following holds: if ϕ is contained in a clause ofB, then ϕ occurs
in α positively, and if ¬ϕ is contained in a clause of B, then ϕ occurs in α negatively.

Lemma 5.3. Let there be a forest proof of ζ r→ η from T . Then there is a forest proof
of ζ r→ η from T such that the following holds. For each variable ϕ and each root L,
ϕ is contained in L only if ϕ positively occurs in ζ, and ¬ϕ is contained in L only if ϕ
negatively occurs in ζ. Similarly, for each variable ϕ and each leaf L, ϕ is contained
in L only if ϕ positively occurs in η, and ¬ϕ is contained in L only if ϕ negatively
occurs in η.

Proof. Let Bζ be a standard clause set for ζ. We construct a new forest proof as
follows. Let L be a clause in Bζ . Then L is chosen as a root of the new proof. We
apply to L (T4)(D) as many times as necessary such that eventually each leaf includes
a root of the original proof. For each such leaf L′, we connect to L′ all children of
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the corresponding root of the original proof, together with the subtrees rooted at them.
Proceeding in the same way for each clause in Bζ , the requirement of the first part of
the lemma are fulfilled.

Let Bη be a standard clause set for η. Then we apply (T4)(D) at each leaf as many
times as necessary such that each leaf L includes a clause L̄ in Bη . Next we replace
L with its subset L̄. If, in the original forest, (T4)(D) applied to the father L′ of L and
the splitting variable is now missing, we remove all descendants of L′, and we apply
the same procedure to L′, which then becomes a leaf including L̄. In this way, we
successively fulfil also the second part.

Lemma 5.4. Let there be a forest proof of ζ r→ η from T . Then there is a forest proof
such that the following holds. Let L be a non-terminal clause to which case (D) of
condition (T4) applies. Then the splitting variable ϕ does not occur in L.

Proof. Assume that ϕ does occur in L, that is, either ϕ or ¬ϕ is in L. Let then L′ be
the child of L that is included in L. We remove all descendants of L and we connect
instead the children of L′ directly to L.

Proceeding in the same way in all applicable cases, we fulfil the requirements of the
lemma.

Lemma 5.5. Let there be a forest proof of ζ r→ η from T . Let ϕ be a variable that
does not occur negatively in ζ or in η; and for any implication α d→ β contained in T ,
ϕ does not occur negatively in α or β. Then there is a forest proof in which the literal
¬ϕ does not occur.

A similar statement holds with respect to positive occurrences of ϕ.

Proof. We will show the first part; for the second part we can argue similarly. Accord-
ingly, assume that ϕ does not occur negatively in ζ or η, and for any element of T
given in the form (3), assume that the literal ¬ϕ does not occur.

Applying successively Lemmas 3.8, 5.4, 5.3, and 5.2, we can assume the following
additional properties of the forest proof under consideration: any inconsistent clause
has the only child >; (T4)(D) is not used when the splitting variable is already present;
¬ϕ does not occur in any root or leaf; and no unused literal occurs.

Assume that ¬ϕ occurs in the forest proof. Let L be a clause at which ¬ϕ is introduced
such that ¬ϕ is not introduced at any descendant of L. At L, only case (D) can apply;
hence L has two children L1 and L2 such that ϕ ∈ L1 and ¬ϕ ∈ L2. Let S be
the subtree whose root is L2 and that is maximal w.r.t. the property that its nodes are
clauses containing ¬ϕ. At the non-terminal nodes of S, then only cases (A) or (D) can
apply. Furthermore, at each leaf L′ of S, ¬ϕ is by assumption dropped. This means
that case (C) is applied to L′ = {ϕ,¬ϕ}.
We now modify the proof forest with the effect that ¬ϕ will no longer occur in any
descendant of L. We remove the subtree rooted at L1; and from each clause in S,
we drop ¬ϕ and add the elements of L instead. The former node L2 becomes L; we
replace the two coinciding nodes by a single one. Moreover, each leaf L′ of S is now

19



L ∪ {ϕ} and hence includes L1; we remove its only child > and connect the subtrees
rooted at the (former) children of L1, if there are any.

Since each weight in the subtree S is 0, the length of the modified proof forest is at
most the length of the original one; thus we obtain a proof forest of ζ r→ η from T
again. We proceed in the same way as long as the literal ¬ϕ is present.

It is the next lemma where we make use of the special properties of proof forests that
we have shown to be assumable.

Lemma 5.6. Let T be a basic theory. Then there is a basic theory T ′ including T with
the following property:

(E1) Let α, β, γ be Boolean formulas built up from variables that occur in T . If
T ` α d→ β ∨ γ for some d ∈ R+, then there are Boolean formulas αβ , αγ
such that the following is provable from T ′:

αβ
d→ β, αγ

d→ γ, αβ
0→ α, αγ

0→ α, α
0→ αβ ∨ αγ . (8)

(E2) Let ζ and η be Boolean formulas built up from variables that occur in T .
If T ′ ` ζ r→ η, then T ` ζ r→ η.

(E3) Every weight of an implication in T ′ is a finite sum of weights of implica-
tions in T .

Proof. Let (α, β, γ) be a triple of Boolean formulas built up from variables occurring
in T , such that α is the conjunction of literals. Assume that there is a d ∈ R+ such that
T ` α d→ β ∨ γ. Assume furthermore that d is the smallest weight with this property;
such a weight exists by Lemma 5.1 and is a sum of weights of implications contained
in T . Assume finally that there are no two Boolean formulas αβ , αγ such that all five
implications (8) are provable from T . Note that then d > 0.

Let then αβ and αγ be variables that are not among those occurring in T and add the
five basic implications (8) to T . Let T ′ arise from T by proceeding for each such triple
in the indicated way, in each case using two new variables.

Then, by construction, T ′ fulfils (E1) restricted to conjunctions of literals α and mini-
mal weights d. We readily check that T ′ actually fulfils (E1) in general. It is further-
more clear that T ′ fulfils also (E3).

To see that T ′ fulfils (E2), let ζ and η contain only variables present in T , and assume
that T ′ ` ζ r→ η. By Theorem 3.9, there is a forest proof of ζ r→ η from T ′.
Let (α, β, γ) be one of the triples that gave rise to an extension of T ; let α be the
conjunction of the literals λα1 , . . . , λ

α
n , n > 1. That is, T ′ contains the implications

(8) and the variables αβ and αγ occur exactly in these five implications. Assume that
at least one of these variables occurs in the forest proof. We shall show that we can
eliminate αβ and αγ . We can proceed in the same way for every pair of newly added
variables and (E2) will follow.
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By Lemma 5.5, we can assume that the proof forest does not contain the literals ¬αβ
and ¬αγ . By Lemma 5.3, we can furthermore assume that the variables αβ and αγ do
not occur in the roots and leaves. By Lemma 5.2, we may finally assume that there is
no unused literal.

Let L be a clause at which αβ or αγ is introduced. Then case (A) of condition (T4)
applies to L and α 0→ αβ∨αγ is the used implication. In particular, L ⊇ {λα1 , . . . , λαn}
and we can assume that L has exactly two children: the child L1 consisting of αβ and
a subset of L, as well as the child L2 consisting of αγ and a subset of L. Let S1 be
the subtree whose root is L1 and that is maximal w.r.t. the property that each node is
proper and contains αβ . Similarly, let S2 be the subtree S2 whose root is L2 and that
is maximal w.r.t. the property that each node is proper and contains αγ . Note that all
weights in S1 and S2 are 0. Moreover, at each leaf of S1, αβ is dropped on the basis of

αβ
0→ α or αβ

d→ β; similarly for S2. We modify the proof forest as follows.

Case 1: At all leaves of S1, case (A) is applied on the basis of αβ
0→ α. Then we

remove the subtree rooted at L2. Furthermore, in each node of S1, we replace αβ by
λα1 , . . . , λ

α
n . As a consequence, some nodes L′ have a child L′′ ⊆ L′; this is the case

where, in the original proof forest, case (A) applies on the basis of α 0→ αβ ∨ αγ
or αβ

0→ α. We then remove the descendants of L′ and connect the children of L′′

directly to L′.

Case 2: At all leaves of S2, case (A) is applied on the basis of αγ
0→ α. Then we

proceed similarly as in Case 1.

Case 3: There is a leaf L′1 = {αβ} of S1 at which case (B) is applied on the basis

of αβ
d→ β, and a leaf L′2 = {αγ} of S2 at which case (B) is applied on the basis of

αγ
d→ γ. We then remove all descendants from L and connect to L instead the subtrees

rooted at the children of L′1 and L′2 with weight d. Then condition (B) applies to L, the
used implication being α d→ β ∨ γ.

We finally apply Lemma 5.2 to ensure that there are no unused literals, and we repeat
the same procedure as long as the variables αβ and αγ occur.

Lemma 5.6 was only a preparatory step for the subsequent Lemma, which contains the
key argument for the proof of the completeness theorem for LAEq . Namely, we show
that a theory T can be extended to a theory T̄ such that condition (E1) applies for all
implications of the form α

d→ β ∨ γ provable from T̄ , not only for those provable in
the original theory T .

Lemma 5.7. Let T be a basic theory. Then there is a basic theory T̄ including T with
the following property:

(F1) Let α, β, γ be Boolean formulas built up from variables that occur in T̄ . If
T̄ ` α d→ β ∨ γ for some d ∈ R+, then there are Boolean formulas αβ , αγ
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such that T̄ proves the following:

αβ
d→ β, αγ

d→ γ, αβ
0→ α, αγ

0→ α, α
0→ αβ ∨ αγ . (9)

(F2) Let ζ and η be Boolean formulas built up from variables that occur in T .
If T̄ ` ζ r→ η, then T ` ζ r→ η.

(F3) Every weight of an implication in T̄ is a finite sum of weights of implica-
tions in T .

Proof. We put T0 = T , and for each i > 0, we let Ti+1 = T ′i , the extension of Ti
according to Lemma 5.6. We put T̄ =

⋃
i Ti.

Let Φ be an implication containing only variables occurring in T̄ . If T̄ ` Φ, there is
an i such that Φ contains only variables occurring in Ti and Ti proves Φ. Thus (F1)
holds by condition (E1) of Lemma 5.6. Furthermore, assume T̄ ` ζ r→ η, where the
variables occurring in ζ and η all occur in T . Then Ti ` ζ

r→ η for some i. By
condition (E2) of Lemma 5.6, if i > 1, Ti−1 ` ζ

r→ η, and arguing subsequently in the
same way we conclude that in fact T proves ζ r→ η, and (F2) follows. An inductive
argument also shows (F3).

The extension of a basic theory specified by Lemma 5.7 is easily seen to fulfil Lemma
5.1 as well.

Lemma 5.8. Let T be a finite theory and let T̄ be the extension of T according to
Lemma 5.7. Let ζ, η be Boolean formulas such that T̄ ` ζ s→ η for some s ∈ R+.
Then there is an r ∈ R+ with the following properties: (i) r is the smallest value such
that T̄ ` ζ r→ η and (ii) r is a finite sum of weights of implications in T .

Proof. By condition (F3) of Lemma 5.7, each weight of an implication contained in
T̄ is a sum of weights of implications contained in the finite theory T . Hence we can
argue as in the proof of Lemma 5.1.

We finally arrive at our main result.

Theorem 5.9. Let T be a finite theory and Φ an implication. Then T proves Φ in
LAE if and only if T semantically entails Φ in LAEq .

Proof. The “only if” part holds by Proposition 3.2.

To see the “if” part, assume that T does not prove the implication ζ r→ η. Let T̄ the
extension of T according to Lemma 5.7. By (F2), then also T̄ does not prove ζ r→ η.

For Boolean formulas α and β built up from variables occurring in T̄ , we put now
α 4 β if T̄ ` α 0→ β, and we put α≈β if α 4 β and β 4 α. Then≈ is an equivalence
relation inducing a Boolean algebra B. Note that B is separable because the number of
variables is countable.
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We denote the ≈-class of a Boolean formula α by 〈α〉. For each pair 〈α〉, 〈β〉 ∈ B, we
put

p(〈α〉, 〈β〉) = min {t ∈ R̄+ : T̄ ` α t→ β}, (10)

the existence of the minimum being ensured by Lemma 5.8. We shall write in the
sequel simply “p(α, β)” instead of “p(〈α〉, 〈β〉)”. For any pair of Boolean formulas
α, β and d ∈ R+, we have by (10)

T̄ ` α d→ β if and only if p(α, β) 6 d. (11)

We have to show that p fulfils the conditions (QB1)–(QB6). By Lemmas 4.3 and 2.3(ii),
it will then follow that there is a model such that all elements of T̄ , thus in particular
all elements of T , are satisfied, but ζ r→ η is not.

(QB1): By (11), we have p(α, β) = 0 iff T̄ ` α 0→ β iff 〈α〉 6 〈β〉.

(QB2): For any d ∈ R+, we have p(α ∨ β, γ) 6 d iff T̄ ` α ∨ β d→ γ iff T̄ ` α d→ γ

and T̄ ` β d→ γ iff p(α, β) ∨ p(α, γ) 6 d.

(QB3): Assume that 〈γ〉 6 〈β〉. Then T̄ ` γ 0→ β and hence p(α, β) 6 p(α, γ).

(QB4): Let p(α, β) 6 d and p(β, γ) 6 e. Then T̄ d+e→ γ and thus p(α, γ) 6 d + e. It
follows p(α, γ) 6 p(α, β) + p(β, γ).

(QB5): Assume that p(α, β ∨ γ) 6 d. Then T̄ ` α d→ β ∨ γ, and by condition (F1) of
Lemma 5.7, there are Boolean formulas αβ , αγ such that α≈ αβ ∨ αγ and T̄ ` αβ

d→
β, αγ

d→ γ, that is, p(αβ , β), p(αγ , γ) 6 d. We conclude that 〈αβ〉, 〈αγ〉 ∈ B are
such that 〈α〉 = 〈αβ〉 ∨ 〈αγ〉 and p(αβ , β) ∨ p(αγ , γ) 6 p(α, β ∨ γ).

To complete the proof of (QB5), we have to show that the last inequality is in fact an
equality. Let e = p(αβ , β) ∨ p(αγ , γ); then p(αβ , β) 6 e and p(αγ , γ) 6 e implies
T̄ ` αβ

e→ β and T̄ ` αγ
e→ γ, hence T̄ ` αβ ∨ αγ

e→ β ∨ γ and T̄ ` α e→ β ∨ γ,
that is, p(α, β ∨ γ) 6 e.

(QB6): Let 〈α0〉, 〈α1〉, . . . , 〈β〉 ∈ B be such that infi p(αi, β) = 0. By Lemma 5.8,
the smallest non-zero element in the image of p is the smallest among the non-zero
weights of the implications in T . Since T is finite, we conclude that there is a j such
that p(αj , β) = 0. By (QB1), we have 〈αj〉 6 〈β〉.

A final note concerns the notion of a min-space, which was mentioned in the Section
2. The countermodel constructed in the proof of Theorem 5.9 is in fact a min-space.
The quasimetric p, defined by (10), has by Lemma 5.8 the property that, given any
u > 0, the image of p contains only finitely many values smaller than u. The image of
the quasimetric q, defined by (5) and (6), is consequently contained in the image of p;
hence q has the same property. We conclude that Theorem 5.9 still holds if we modify
the definition of LAEq restricting the models to min-spaces.
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6 Conclusion

The logic of approximate entailment, which goes back to E. Ruspini [Rus], is based
on an idea that is as simple as convincing. The aim is to make precise what it means
for a property α to imply another property β approximately. Assume that α and β
correspond to subsets A and B, respectively, of a set of worlds W . Following [Rus],
all what we need to add is a distance function on W , that is, a map d assigning a value
to pairs of worlds that reasonably measures their distinctness. Then α is considered to
imply β to the degree of imprecision d if A is a subset of the d-neighbourhood of B.

To associate with this idea a logic on semantic grounds is straightforward; to axiomatise
this logic, however, turns out to be difficult. Those few sound rules that are listed in
Definition 3.1 are easily found; to continue on this basis is a challenge. Our question
has been if this small set of rules is not already sufficient to axiomatise a logic of the
mentioned kind. We have given an affirmative answer for the case where the models
are quasimetric spaces.

We may certainly say that the road to this goal was stony. It was necessary to develop
the basis of a proof theory for the proposed calculus and to prove quite an amount of
auxiliary lemmas. Future efforts in this area might well aim at different techniques, so
that the proof of our completeness theorem could be shortened.

The present work gives rise to a considerable amount of open problems. First to men-
tion, our completeness theorem covers finite theories; the case of infinite theories is
open. We note that we may hardly proceed along the same lines as we did here; our
procedure heavily relies on the finiteness assumption.

Second, we have introduced in [EGRV] a counterpart to the logic considered here,
called the Logic of Strong Entailment, or LSE for short. Whereas in LAEq implica-
tional relationships holding only approximately are considered, LSE not only requires
implications to hold exactly, but even to be invariant under quantified changes. We
wonder if a proof calculus along the present lines could be found for LSE as well.

Another question might not lead to immediate results, but should be explored nonethe-
less. The models constructed in the present context are, from the point of view of
applications, somewhat unnatural; the image of the distance function contains only
finitely many values below any given m ∈ R+. We ask if there is a logic of approxi-
mate entailment that corresponds more closely to the common situation that the set of
world is (a subset of) Rn, endowed with the Euclidean metric.

Speaking about the Euclidean metric, we are finally led to the probably most signifi-
cant open problem in the present context. What we have in mind is the symmetry of
the distance function. Does our completeness theorem still hold if we restrict to metric
spaces, that is, those spaces that are based on a symmetric quasimetric? We conjecture
that the answer is positive. We guess that proof-theoretical methods, however, are not
suitable to deal with this case. We propose to examine instead the question if quasi-
metric spaces can be suitably embedded in metric spaces, such that the quasimetric of
the former corresponds to the Hausdorff quasimetric of the latter space. A result of this
kind is contained in [Vit]; unfortunately, the proposed representation seems not to be
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applicable in the present context and an independent approach needs to be found.
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