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Abstract

A left-continuous (l.-c.) t-norm � is called regular if there is an n < ω such that the map
x 7→ x � a has, for any a ∈ [0, 1], at most n discontinuity points, and if the function mapping
every a ∈ [0, 1] to the set {x ∈ [0, 1] : limy↘x y � a = x} behaves in a specifically simple way.
The t-norm algebras based on regular l.-c. t-norms generate the variety of MTL-algebras.

With each regular l.-c. t-norm, we associate certain characteristic data, which in particular spec-
ifies a finite number of constituents, each of which belongs to one out of six different types. The
characteristic data determines the t-norm to a high extent; we focus on those t-norms which are
actually completely determined by it. Most of the commonly known l.-c. t-norms are included in
the discussion.

Our main tool of analysis is the translation semigroup of the totally ordered monoid ([0, 1];≤,
�, 0, 1), which consists of commuting functions from the real unit interval to itself.

1 Classifying left-continuous t-norms -
a hopeless case?

In fuzzy logics, the real unit interval is frequently used as a model of statements involving vagueness.
The question then arises how to interpret the conjunction. It is believed to be natural to interpret
the conjunction in fuzzy logics by a binary function � : [0, 1]2 → [0, 1] with the following minimal
properties: commutativity, associativity, monotonicity in both arguments, and neutrality of the truth
value 1. Then, � is called a t-norm. It is furthermore common to interpret a fuzzy logic’s implication
→ in a way that the conjunction and the implication form an adjoint pair. This is reasonable: for
two propositions α and β, α → β should be understood as the weakest proposition γ such that α
together with γ implies β. In order to ensure the existence of a residuum, the t-norm must be assumed
left-continuous.

To justify any further property of the function interpreting the conjunction in fuzzy logics is difficult.
So it might be reasonable not to go beyond the mentioned conditions; there is actually no need to
make a specific choice. Esteva and Godo’s logic MTL [EsGo], for instance, is based on the whole set
of left-continuous t-norms together with their respective residua.

However, we might not feel comfortable with a notion which is purely based on abstract axiomatics.
We should wonder with what kind of functions we actually work when applying MTL or a related
logic. Unfortunately, the insight gained from many years of research on left-continuous t-norms, is
generally not considered as satisfactory. At least, there are well-understood subclasses. We have
in particular a fully satisfactory theory for continuous t-norms; see [MoSh] or e.g. [KMP]. As an
example of a further condition which turned out to be strong enough to allow a structure theory, we
mention cancellativity; see [Hor].
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How to describe left-continuous t-norms in general, remains mysterious though. Generally applicable
tools for an analysis being unknown, various ways of their construction were proposed; see [Jen4] for
an overview. Now, out of the work summarized in [Jen4], quite a large collection of different t-norms
arose. As we are not able to deal with the general case, we decided to review this collection of well-
known left-continuous t-norms and tried to detect common properties. Our paper is motivated by
the aim to systematize and to characterize a class of as many left-continuous t-norms as possible; at
the very least, the well-known ones should be included.

By now, there have been just a few efforts to bring the known constructions methods into a single
line. One such approach is contained in the author’s work [Vet1], in which the observation is made
that, apart from few known cases, left-continuous t-norms can be represented by means of totally
ordered Abelian groups.

The approach on which the present paper is based, is not related to the ideas used in [Vet1]. Rather
than working with the abstract notion of a totally ordered group, we refer to a common source of
inspiration about the properties of t-norms: a t-norm may be visualized by means of its graph, which
is a three-dimensional geometrical object. However, we slightly modify this approach; we work with
the – two-dimensional – vertical cuts through the three-dimensional graph.

Namely, a t-norm is a binary operation � on the real unit interval making ([0, 1];≤,�, 0, 1) a totally
ordered commutative monoid. We may associate with it its semigroup Λ of (inner right) translations.
Λ then actually possesses the structure of a totally ordered monoid as well and, as such, Λ is isomorphic
to ([0, 1];≤,�, 0, 1). So rather than studying �, we may equally well study Λ, and this is what we
propose here. Now, the translation by an element a ∈ [0, 1] is the function [0, 1]→ [0, 1], x 7→ x� a;
this is nothing but the vertical cut at the point a. So from the geometrical point of view, Λ may be
considered as the set containing all the vertical cuts of �.

We introduce in this paper so-called regular left-continuous t-norms. From the universal-algebraic
point of view, regularity might be considered as a not too serious restriction: we will show that the
t-norm algebras based on a regular left-continuous t-norm and the corresponding residuum, generate
the whole variety of MTL-algebras.

Now, if a left-continuous t-norm is regular, we may partition the real unit interval into certain
subintervals, called basic intervals, and we may consider the set of translations restricted in an
appropriate way to one of them. It turns out that the resulting restricted translation semigroup,
which is actually again a totally ordered monoid, belongs to one out of six different isomorphism
types. The number of basic intervals and their respective isomorphism types is contained in what we
call the characteristic data of a regular left-continuous t-norm. The characteristic data determines
the t-norm, up to isomorphism, to a high extent, and we consider here the case that the t-norm is
actually fully determined by it. We cover in this way most of the left-continuous t-norms explicitly
defined somewhere in the literature, as far as known to us.

The paper is organized as follows. We start with the one-to-one correspondence between t-norm
monoids and the totally ordered monoids of their translations, and we characterize the latter (Section
2). We then introduce our basic notion – regularity (Section 3), and we discuss the implications with
regard to the variety of MTL-algebras. We next see how to bring structure into the translation
semigroup by means of regularity (Section 4). The next part is preparatory; we discuss certain
systems of continuous and idempotent functions (Section 5). We then describe the basic constituents
of regular left-continuous t-norms (Section 6) and how the t-norm is built up from these constituents
(Section 7). We conclude with a list of examples, to illustrate how specific t-norms are characterized
within our framework (Section 8). We also add the example of a set of non-regular left-continuous t-
norms, closed under the pointwise formation of the arithmetic mean; we answer in this way a question
proposed in [AFS] positively (Section 9).

2 Left-continuous t-norms as functional algebras

We study in this paper the totally ordered monoids which are based on left-continuous t-norms.

Definition 2.1 Let [0, 1] be the real unit interval, endowed with its natural order. An operation
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� : [0, 1]2 → [0, 1] is called a t-norm if, for all a, b, c ∈ [0, 1], (i) (a � b) � c = a � (b � c), (ii)
a� b = b�a, (iii) a�1 = a, and (iv) a ≤ b implies a� c ≤ b� c. A t-norm � is called left-continuous,
or l.-c. for short, if for every a ∈ [0, 1], the function (0, 1]→ [0, 1], x 7→ x� a is left-continuous.

Let � be a l.-c. t-norm. Then we call ([0, 1];≤,�, 0, 1) the t-norm monoid based on �. Moreover, let
→ : [0, 1]2 → [0, 1], (a, b) 7→ max {x : a�x ≤ b} be the residuum of �; then we call ([0, 1];∧,∨,�,→,
0, 1) the t-norm algebra based on �.

In other words, a t-norm monoid is a structure ([0, 1];≤,�, 0, 1), where [0, 1] is the naturally ordered
real unit interval, ([0, 1];≤,�, 1) is a totally ordered commutative monoid, and · � a preserves, for
any a, arbitrary suprema. In the sequel, a totally ordered commutative monoid (L;≤,�, 1) will be
called a tomonoid, and a structure (L;≤,�, 0, 1) such that (L;≤,�, 1) is a tomonoid with the bottom
element 0 and the top element 1, will be called a 0, 1-tomonoid. Using these notions, a t-norm monoid
is a 0, 1-tomonoid such that · � a preserves, for any a, arbitrary suprema.

Alternatively, we may view a t-norm monoid as a strictly two-sided commutative quantale whose base
set is [0, 1] endowed with the natural order.

For an overview of results on totally ordered semigroups, see [HoLa] and the references given herein.
For tomonoids in particular, see the comprehensive article [EKMMW]. As a rich source of information
about quantales, we refer to [Ros]. For an account focused directly on t-norms, see [KMP].

We have been originally interested in a classification of l.-c. t-norm algebras, since it is them to play
the important role for the semantics of fuzzy logics. However, apart from our considerations about
the question how comprehensive the class of regular l.-c. t-norms is within the class of all l.-c. t-norms,
our analysis will concern exclusively the monoidal operation �; this is why we will deal mostly with
t-norm monoids rather than t-norm algebras. For our general aim to classify l.-c. t-norm algebras,
this is certainly not a restriction as → is definable from the monoidal operation and the order.

The main idea of this paper is to examine the set of inner right translations of the semigroup ([0, 1];�)
rather than the t-norm itself. This is a set of pairwise commuting functions from [0, 1] to [0, 1]. We
introduce and discuss the relevant notions step by step.

Definition 2.2 Let � be a l.-c. t-norm. We denote by

λ�a : [0, 1]→ [0, 1], x 7→ x� a

the translation by a ∈ [0, 1] based on �. The set of all translations based on � will be denoted by

Λ� = {λ�a : a ∈ [0, 1]}.

Because we have to do with a commutative semigroup with an identity, the attributes “right” and
“inner” are superfluous in the present context; this is why we speak simply about “translations”.
Furthermore, in the sequel, we will drop the superscript � and write λa and Λ rather than λ�a and
Λ�, respectively, whenever the reference to a specific t-norm is clear.

Geometrically, Λ consists of the vertical cuts through the graph of the t-norm. Namely, cutting the
three-dimensional graph {(x, y, x� y) : x, y ∈ [0, 1]} of a t-norm � by a vertical plane parallel to the
x-axis at the point a ∈ [0, 1] on the y-axis, yields the graph of λ�a , the translation by a.

However, the most convenient way to visualize the set Λ of all translations based on a t-norm makes
use of just two dimensions. Namely, it is most instructive to visualize λa, where a ranges over [0, 1],
as a continuum of functions; we start with the largest function, λ1, which is always the identity
function of [0, 1], proceed successively to smaller ones, and end up finally with λ0, which is always
the constant 0 function. Throughout this paper, we implicitly rely on this way to imagine a t-norm
as a little “movie”. Corresponding graphical illustrations for several l.c. t-norms can be found in the
paper [Vet2].

We further note that, apart from the theory of totally ordered semigroups and the theory of quantales,
the theory of functional equations is involved here, although we will make relatively limited use of it.
For facts originating from this field, we refer to [KCG].

We next establish the exact properties of the set of translations based on a l.-c. t-norm. On these
properties, the results of this paper fully rely.
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In what follows, we will frequently deal with functions which preserve or reverse the order or the strict
order from one poset to another one, and we will use the following simplified terminology. We call a
function ϕ : P → Q between the posets (P ;≤) and (Q;≤) increasing, strictly increasing, decreasing,
or strictly decreasing if, for a, b ∈ P , a < b implies ϕ(a) ≤ ϕ(b), ϕ(a) < ϕ(b), ϕ(a) ≥ ϕ(b), or
ϕ(a) > ϕ(b), respectively. Increasing or decreasing bijections will also be called order isomorphisms
or order antiisomorphisms, respectively, and in the case of a coincidence of the domain and the range,
order automorphisms or order antiautomorphisms, respectively.

Moreover, a function f ∈ [0, 1] → [0, 1] is called left-continuous if f is left-continuous on (0, 1] and
continuous at 0. Note that if f(x) ≤ x for all x ∈ [0, 1], then continuity at 0 it automatic. We also
recall at this point that each increasing left-continuous function f : [0, 1] → [0, 1] is regulated, that
is, all right-side limits exist. We write

f+(a) = lim
x↘a

f(x), a ∈ [0, 1)

and, in addition, we set f+(1) = f(1). – Similar remarks apply for functions from any other closed
real interval to itself.

Theorem 2.3 Let Λ be the set of translations based on a l.-c. t-norm �. Then Λ contains functions
from [0, 1] to [0, 1] with the following properties:

(T1) Every f ∈ Λ is increasing.

(T2) Every two functions in Λ commute, that is, f ◦ g = g ◦ f for any f, g ∈ Λ.

(T3) For every t ∈ [0, 1], there is exactly one f ∈ Λ such that f(1) = t.

(T4) Every f ∈ Λ is left-continuous.

Conversely, let Λ be a set of functions from [0, 1] to [0, 1] fulfilling (T1)–(T4). Then there is a l.-
c. t-norm � such that Λ is the set of translations based on �. The t-norm � is uniquely determined
by

a� b = f(a), where f ∈ Λ is such that f(1) = b (1)

for a, b ∈ [0, 1].

Proof. It is not difficult to see that the set of translations based on a l.-c. t-norm fulfils the conditions
(T1)–(T4).

Conversely, assume that Λ is a set of mappings from [0, 1] to [0, 1] fulfilling (T1)–(T4). By (T3), we
may associate with every t ∈ [0, 1] a unique λt ∈ Λ such that λt(1) = t. It follows that � : [0, 1]2 →
[0, 1] is well-defined by (1).

We then have a� b = λb(a) = λb(λa(1)) = λa(λb(1)) = λa(b) = b� a by (T2); so � is commutative.
Furthermore, (a� b)� c = λc(a� b) = λc(λb(a)) = λb(λc(a)) = (a� c)� b again by (T2); so in view
of the commutativity of �, the associativity follows as well. Moreover, a � 1 = 1 � a = λa(1) = a.
And a ≤ b implies a� c = λc(a) ≤ λc(b) = b� c by (T1). Finally, � is l.-c. because, by (T4), every
f ∈ Λ is.

So � is a l.-c. t-norm, and obviously, Λ contains exactly the translations based on �. 2

In other words, there is a one-to-one correspondence between the l.-c. t-norms and the functions from
[0, 1] to [0, 1] fulfilling (T1)–(T4). Note that this correspondence can be extended to all t-norms, by
dropping the condition (T4).

We now proceed to endow a l.-c. t-norm’s set of translations with the usual algebraic structure. Λ is a
semigroup under composition, and there is natural partial order. So with each pair f, g : [0, 1]→ [0, 1],
we associate their composition f ◦g. Furthermore, for pairs of functions f, g : [0, 1]→ [0, 1], we denote
the pointwise order by ≤; f < g will mean f ≤ g and f(x) < g(x) for at least one x.

Definition 2.4 Let � be a l.-c. t-norm, and let Λ be the set of translations based on �. Endow Λ
with the pointwise order ≤, with the composition of functions ◦, and with the constants 0 and id.
Then we call (Λ;≤, ◦, 0, id) the translation tomonoid of �.
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The basic properties of the order ≤ and of the operation ◦ on Λ are stated next.

Lemma 2.5 Let � be a l.-c. t-norm. Then Λ, the set of translations based on �, has the following
properties:

(T5) (Λ;≤), where ≤ is the pointwise order, is isomorphic to ([0, 1];≤), where ≤ is the natural order.
The bottom element of Λ is

0 : [0, 1]→ [0, 1], x 7→ 0,

and the top element of Λ is
id : [0, 1]→ [0, 1], x 7→ x.

Moreover, suprema in Λ are calculated pointwise.

(T6) Λ is closed under composition, that is, f ◦ g ∈ Λ for any f, g ∈ Λ.

Proof. These properties are not difficult to check from the fact that Λ consists of the translations
based on �. 2

Alternative proof. We find it instructive to see how (T5)–(T6) derive from the axioms (T1)–(T4); the
following procedure may be seen as an illustration. So let us assume that Λ is a set of functions from
[0, 1] to [0, 1] such that (T1)–(T4) hold.

Again, in view of (T3), let us denote the unique f ∈ Λ such that f(1) = t by λt, where t ∈ [0, 1]. Let
λt, λu ∈ Λ be such that t ≤ u. We then have λt(x) = λt(λx(1)) = λx(λt(1)) = λx(t) ≤ λx(u) = λu(x)
for all x by (T2) and (T1); so the order of Λ is total. By (T3), (Λ;≤) is isomorphic to ([0, 1];≤).

Furthermore, λ0 is constant 0; so 0 ∈ Λ. And for every x ∈ [0, 1] we have λ1(x) = λx(1) = x; so
λ1 = id ∈ Λ. Clearly, Λ is bounded by 0 and id.

Finally, let tι, ι ∈ I, be a subset of [0, 1], and let t =
∨
ι tι. Then

∨
ι λtι = λt. Using (T4), we have

λt(x) = λx(t) = λx(
∨
ι tι) =

∨
ι λx(tι) =

∨
ι λtι(x) for every x ∈ (0, 1]. So suprema are calculated

pointwise. This finishes the proof of (T5).

For f, g ∈ Λ, let k ∈ Λ be the unique function such that k(1) = f(g(1)). Then, for any x ∈ [0, 1], we
have k(x) = k(λx(1)) = λx(k(1)) = λx(f(g(1))) = f(g(λx(1))) = f(g(x)), so k = f ◦ g, and (T6) is
shown. 2

The correspondence between a l.-c. t-norm and the set of translations based on it, may easily be
shown to preserve the respective algebraic structure; cf. [ClPr, Chapter 1.2].

Theorem 2.6 Let � be a l.-c. t-norm. Then the t-norm monoid based on �, ([0, 1];≤,�, 0, 1),
and the translation tomonoid of �, (Λ;≤, ◦, 0, id), are isomorphic. The isomorphism is given by
[0, 1]→ Λ, t 7→ λt.

Proof. It is a well-known fact that ([0, 1];�), a commutative semigroup with identity, is isomorphic
to its (inner right) translation semigroup (Λ; ◦). Also the remaining facts are straightforward to see.

2

We finally endow the translation tomonoid of a l.-c. t-norm with a topology. Namely, we will assume in
the sequel that the translation tomonoid is endowed with the supremum metric. Uniform convergence
refers to this metric.

The following lemma originates from [Fra, Lemma 1.12].

Lemma 2.7 Let f : [0, 1] → [0, 1] be continuous, and let gi : [0, 1] → [0, 1], i < ω, be increasing
left-continuous functions such that g0 ≤ g1 ≤ . . . and, for each x ∈ [0, 1], f(x) =

∨
i gi(x). Then the

sequence (gi)i converges to f uniformly.

Lemma 2.8 Let (Λ;≤, ◦, 0, id) be the translation tomonoid of a l.-c. t-norm, and let f ∈ Λ be con-
tinuous and > 0. Then f is the uniform limit of a sequence of functions strictly below f .
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Proof. Let a ∈ (0, 1] such that f = λa, and let b0 ≤ b1 ≤ . . . < a be such that
∨
i bi = a. Then by

(T3), f =
∨
i λbi in Λ. By (T5), (λbi)i converges to f pointwise; so (λbi)i converges to f uniformly

by Lemma 2.7. 2

In what follows, we will characterize t-norms only up to isomorphism. We recall that two t-norms
�1 and �2 are called isomorphic if there is an order automorphism ϕ : [0, 1] → [0, 1] such that
a �2 b = ϕ−1(ϕ(a) �1 ϕ(b)), a, b ∈ [0, 1]. This is obviously the same as to say the t-norm monoids
([0, 1];≤,�1, 0, 1) and ([0, 1];≤,�2, 0, 1) are isomorphic. The corresponding notion for the translation
tomonoids is conjugacy; cf. [KCG, Chapter 8].

Definition 2.9 Let F and G consist of functions from [0, 1] to [0, 1]. Then F and G are called
conjugate if there is an order automorphism ϕ : [0, 1]→ [0, 1] such that G = {ϕ−1 ◦ f ◦ ϕ : f ∈ F}.

Lemma 2.10 Let �1 and �2 be l.-c. t-norms with associated sets of translations Λ�1 and Λ�2 . Then
�1 are �2 are isomorphic if and only if Λ�1 and Λ�2 are conjugate.

Proof. Let ϕ be an order automorphism ϕ such that ϕ(a) �1 ϕ(b) = ϕ(a �2 b) for all a, b ∈ [0, 1].
Then λ�2

b (a) = a�2 b = ϕ−1(ϕ(a)�1 ϕ(b)) = ϕ−1(λ�1
ϕ(b)(ϕ(a))) for a ∈ [0, 1]. It follows that Λ�1 and

Λ�2 are isomorphic.

Conversely, let Λ�1 and Λ�2 be conjugate, ϕ being the order automorphism. Let a, b ∈ [0, 1]. Then
ϕ−1 ◦ λ�1

ϕ(b) ◦ ϕ ∈ Λ�2 and ϕ−1(λ�1
ϕ(b)(ϕ(1))) = b; hence λ�2

b = ϕ−1 ◦ λ�1
ϕ(b) ◦ ϕ. So ϕ(a) �1 ϕ(b) =

λ�1
ϕ(b)(ϕ(a)) = ϕ(λ�2

b (a)) = ϕ(a�2 b). 2

3 Regular left-continuous t-norms

In this paper, we study l.-c. t-norms subject to two conditions. The first one is as follows.

Definition 3.1 Let � be a l.-c. t-norm. We say that � has few discontinuity points if there is an
n < ω such that each translation based on � has at most n points of discontinuity.

In other words, a l.-c. t-norm has few discontinuity points if the number of points at which the maps
λa : [0, 1] → [0, 1], x 7→ x � a, where a ∈ [0, 1], are not continuous, is globally bounded by a finite
number.

Let us ask how strong this condition is, first in the informal way. As a rule of thumb, we may say
that l.-c. t-norms defined in a finitary way, that is, by distinction of finitely many cases which are
distinguished by means of algebraic inequalities involving finite expressions and to each of which a
finite algebraic expression is assigned, all have few discontinuity points.

So the t-norms found in the literature with an explicit definition, typically have this property. On
the other hand, we have:

• Hájek’s t-norm defined in [Haj2, proof of Theorem 2] has translations with infinitely many
discontinuity points.

• Hliněná’s t-norm defined in [Smu, Proposition 1] has translations whose discontinuity points
are even dense in [0, 1].

More t-norms of this type can be derived using the construction method presented in [JeMo2, Section
5]. More specifically, H-transformations as defined in [Mes] lead to t-norms similar to Hájek’s.

We now turn to a serious way to decide if a condition for left-continuous t-norms is against our aim
to develop a general structure theory. The following might be a reasonable criterion. Recall that the
variety generated by all t-norm algebras ([0, 1];∧,∨,�,→, 0, 1), where � is a l.-c. t-norm, consists
of the MTL-algebras. So we may ask: Is the variety generated by those t-norm algebras which are
based on l.-c. t-norms fulfilling the given condition, the whole variety of MTL-algebras? We recall
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the definition of MTL-algebras; for further basic information on them as well as the logic MTL, see
[EsGo].

Definition 3.2 An algebra (L;∧,∨,�,→, 0, 1) is an MTL-algebra if (i) (L;∧,∨, 0, 1) is a bounded
lattice, (ii) (L;�, 1) is a commutative monoid, (iii) a�b ≤ c if and only if a ≤ b→ c for all a, b, c ∈ L,
and (iv) (a→ b) ∨ (b→ a) = 1 for all a, b ∈ L.

For l.-c. t-norms with few discontinuity points, the question can be answered affirmatively. The
following construction is due to Jenei and Montagna [JeMo1].

Example 3.3 Let (L;≤,�, 0, 1) be a finite 0, 1-tomonoid. We may add the residuum → of �, given
by

a→ b = max {x : a� x ≤ b} for a, b ∈ L, (2)

and replace the order relation by the infimum and supremum operations; then (L;∧,∨,�,→, 0, 1) is
an MTL-algebra.

We are going to enlarge the set L as follows; let

L̂ = {(a, r) : a ∈ L \ {0}, r ∈ (0, 1]} ∪ {(0, 1)}, (3)

endowed with the lexicographical order. Note that then L̂ is isomorphic to the real unit interval. For
(a, r), (b, s) ∈ L̂ define

(a, r)� (b, s) = (a, r) ∧ (b, s) ∧ (a� b, 1). (4)

We have constructed the structure (L̂;≤,�, (0, 1), (1, 1)), about which we can say the following
[JeMo1]:

Lemma 3.4 (L̂;≤,�, (0, 1), (1, 1)) from Example 3.3 is again a 0, 1-tomonoid. Moreover, the resi-
duum → of � exists, and (L̂;∧,∨,�,→, (0, 1), (1, 1)) is an MTL-algebra. The mapping ϑ : L →
L̂, a 7→ (a, 1) is an isomorphic embedding of MTL-algebras.

We draw the obvious conclusions.

Lemma 3.5 Let (L;∧,∨,�,→, 0, 1) be a finite totally ordered MTL-algebra. Then L may be isomor-
phically embedded into a t-norm algebra ([0, 1];∧,∨,�,→, 0, 1), where � is a l.-c. t-norm with few
discontinuity points.

Proof. Let L̂ be the MTL-algebra constructed from L as shown in Example 3.3. Clearly, L̂ is
isomorphic to a l.-c. t-norm algebra. It is not difficult to check that each translation based on the
t-norm has less discontinuity points than there are elements in L; so the t-norm has few discontinuity
points. 2

Theorem 3.6 The t-norm algebras based on l.-c. t-norms with few discontinuity points generate the
variety of MTL-algebras.

Proof. By Lemma 3.5, any finite totally ordered MTL-algebra is a subalgebra of a t-norm algebra
based on a l.-c. t-norm with few discontinuity points. Moreover, the variety MTL is generated by its
finite totally ordered members [CMM]. The assertion follows. 2

We now turn to our second condition; the restriction of the number of discontinuity points is not yet
enough to make an easily comprehensible structure theory for l.-c. t-norms possible. We need some
preparations.

Definition 3.7 For any increasing left-continuous function f : [0, 1] → [0, 1] such that f ≤ id, we
define

Q(f) = {x ∈ [0, 1] : f+(x) = x}.
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Moreover, let � be a l.-c. t-norm. Then we put

q�(a) = Q(λ�a )

for each a ∈ [0, 1]. Finally, let C([0, 1]) be the set of closed subsets of [0, 1], and partially order C([0, 1])
by the set-theoretic inclusion.

Again, whenever the reference to a specific t-norm � is clear, we will write q instead of q�.

When visualizing an element f of a translation tomonoid Λ by its graph, Q(f) represents the inter-
section of the closure of the graph of f and the graph of the identity function. Moreover, we have
q(f(1)) = Q(f); so given Λ and some a ∈ [0, 1], we determine q(a) by first selecting among the
graphs of the functions in Λ the unique one whose right-most point is (1, f(1)) = (1, a), and second
associating with it the intersection of its closure with the identity line.

In the next lemma, we call the element x of a subset C of [0, 1] a right-limit point of C if x = 0 or,
for any 0 < ε ≤ x, (x− ε, x) has a non-empty intersection with C.

Lemma 3.8 Let f : [0, 1] → [0, 1] be increasing, left-continuous and below the identity. Then Q(f)
is a closed subset of [0, 1]. If x is a right-limit point of Q(f), in particular if x is in the interior of
Q(f), then f(x) = x. Conversely, if f(x) = x, then x ∈ Q(f). Finally, we have 0 ∈ Q(f).

Proof. Elementary. 2

Concerning q, we have the following obvious property:

Lemma 3.9 Let � be a l.-c. t-norm. Then q is an increasing mapping from [0, 1] to C([0, 1]) such
that q(0) = {0} and q(1) = [0, 1].

Apart from monotonicity, there is little more to say about q in general. Let

q−(a) =
∨
x<a

q(x) =
⋃
x<a

q(x) for a ∈ (0, 1], (5)

q+(a) =
⋂
x>a

q(x) for a ∈ [0, 1). (6)

Then we have q(a)− ⊆ q(a) ⊆ q(a)+ for a ∈ (0, 1), and the inclusions can be proper: q preserves
from [0, 1] to C([0, 1]) in general neither suprema nor infima. Indeed, q may not preserve suprema
even if � is continuous; for instance, in case that � is the product t-norm, q(a) = {0} for a < 1, but
q(1) = [0, 1].

We will require that q has intervalwise a simple structure; our condition is as follows. Here, for a
subinterval K of [0, 1], we denote by CK the set of subsets of K which are relatively closed in K.

Definition 3.10 Let � be a l.-c. t-norm. We say that q is simple if there is a finite partition
(0, 1] =

⋃̇
1≤i≤k(bi, ci] such that, for each i, the function

qi : [0, 1]→ C(bi, ci), x 7→ q(x) ∩ (bi, ci) (7)

fulfills the following conditions: (i) For each x ∈ [0, 1], qi(x) is of the form [d, ci) for bi < d ≤ ci, or
(bi, d] for bi ≤ d < ci, or equal to (bi, ci). (ii) For some u, v ∈ (0, 1] such that u ≤ v, qi(t) = ø for
t < u, qi(t) = (bi, ci) for t ≥ v, and, provided that u < v, qi|[u,v] is an order isomorphism between
[u, v] and a maximal chain in C(bi, ci).
Let us call a l.-c. t-norm � regular if � has few discontinuity points and q is simple.

Note that even simplicity of q does not imply that q preserves suprema or infima. However, it
preserves infima up to finitely many single points. For a closed set C ⊆ [0, 1], let us call x ∈ C a
singleton of C if x > 0 and x is an isolated point of C. We put

regcl(C) = {x ∈ C : x is not a singleton of C}.
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Lemma 3.11 Let q be simple. Then, for every a ∈ [0, 1], q(a) is the union of finitely many closed
subintervals of [0, 1]. Moreover, provided that a < 1, we have

regcl(q+(a)) ⊆ q(a) ⊆ q+(a).

Proof. The first assertion is clear by condition (i) of Definition 3.10 and the fact that q(a) is closed.

Let a ∈ [0, 1). By the monotonicity of q, we have q(a) ⊆ q+(a).

Let furthermore (0, 1] =
⋃̇

1≤i≤k(ai, bi] be given according to Definition 3.10. Then q(a) ∩ (ai, bi) =
q+(a)∩(ai, bi) for each i; so q(a) differs from q+(a) by a subset of the boundary points a1, b1, ..., ak, bk.
Since q(a) is closed, the points in q+(a) \ q(a) are isolated points of q+(a); it follows regcl(q+(a)) ⊆
q(a). 2

To find l.-c. t-norms in the literature which have few continuity points, but which are not regular, is
not very easy. We have the following situation.

• All continuous t-norms are regular.

• A finite ordinal sum of regular l.-c. t-norms is again regular.

• All l.-c. t-norms constructed from regular l.-c. t-norms by means of annihilation, rotation, or
rotation-annihilation are again regular. See [Jen4] for an overview on these constructions.

Our counterexample is somewhat artificial in nature. Namely, consider {0, 1
3 ,

2
3 , 1}, the four-element

totally ordered MV-algebra. Embed then L into a l.-c. t-norm algebra, as explained in Example 3.3.
The l.-c. t-norm � arising in this way has few discontinuity points; but q is not simple. In particular,
� is not regular. In Section 9, an explicit definition of � and similar l.-c. t-norms can be found.

We devote the remainder of this section to the proof that the t-norm algebras based on regular l.-
c. t-norms generate the variety of MTL-algebras. To this end, we will modify the construction of
Example 3.3.

Example 3.12 Let (L;≤,�, 0, 1) be a finite 0, 1-tomonoid. We will use the following auxiliary
notation. For any a > 0, we denote by Pa the immediate predecessor of a w.r.t. the total order.
Furthermore, we write a W b if b is a non-zero idempotent, a� b = a and a� Pb < a.

Let L̂ be defined by (3), endowed with the lexicographical order. Define � : L̂2 → L̂ as follows: for
(a, r), (b, s) ∈ L̂ such that (a, r) ≤ (b, s) let

(a, r)� (b, s) = (b, s)� (a, r)

=


(a, rs) if a W b and a = b,
(a, r

1
s ) if a W b and a < b,

(a, r) ∧ (a� b, 1) else.

(8)

For the structure (L̂;≤,�, (0, 1), (1, 1)) defined this way, we have:

Lemma 3.13 Let (L;≤,�, 0, 1) be a finite 0, 1-tomonoid. Then (L̂;≤,�, (0, 1), (1, 1)), as defined in
Example 3.12, is again a 0, 1-tomonoid.

Proof. Clearly, (L̂;≤) is a total order with bounds (0, 1) and (1, 1). By construction, � is commutative,
and (1, 1) is easily seen to be a neutral element.

Note next that for any (a, r), (b, s) ∈ L̂,

(a, r)� (b, s) = (a� b, t) (9)

for some t. Furthermore, if either r = 1 or s = 1, we have

(a, r)� (b, s) = (a, r) ∧ (b, s) ∧ (a� b, 1). (10)

9



We now show that � is in both variables increasing. Note first that (0, 1) is an annihilator in L̂. Let
now (a, r), (b, s) ∈ L̂ be such that (0, 1) < (a, r) ≤ (b, s), and let A = (a, r)�(b, s). It is easily checked
that A depends monotonously on r and on s. So it suffices to show that B = (Pa, 1)� (b, s) ≤ A and
C = (a, r)� (Pb, 1) ≤ A.

Assume first that a W b and a = b. Then A = (a, rs), and a is a non-zero idempotent. We conclude
B,C < A from (9).

Assume next that a W b and a < b; then A = (a, r
1
s ). Since Pa � b < a and a � Pb < a, we again

use (9) to conclude B,C < A.

Assume that a W/ b and a� b = a; then A = (a, r). We have B < A by (9), and C ≤ A by (10).

Finally, assume that a W/ b and a� b < a; then A = (a� b, 1). We have B,C ≤ A by (9).

We next show the associativity of �. Assume (a, r) ≤ (b, s) ≤ (c, t). We have to check that A =
[(a, r)� (b, s)]� (c, t) and B = (a, r)� [(b, s)� (c, t)] and C = [(a, r)� (c, t)]� (b, s) all coincide.

Assume that the first case in (8) applies at least to one pair among a, b, c; this means there are two
equal idempotents among a, b, c. If a = b = c, we have A = B = C = (a, rst). If a = b < c, all three
values equal (a, rs). Finally, let a < b = c. If then a W b; then we get (a, r

1
st ). If a W/ b and a�b = a,

we have (a, r). If a W/ b and a� b < a, we get (a� b, 1).

Assume now that the first case of (8) does not apply for any pair among a, b, c, but that the second
case of (8) does apply at least to one pair. Assume first that a < b < c and a W b. Note that then
a� b� c = a, b� c = b, a W/ c, and b W/ c. We get A = B = C = (a, r

1
s ).

Assume next that a ≤ b < c and both a W c and b W c. Note that then a � b � c = a � b < a and
a W/ b. We get (a� b, 1) in all three cases.

Assume now that a ≤ b < c, a W c and b W/ c. Note again that a� b� c = a� b < a and a W/ b and
furthermore a W/ b� c. We again get (a� b, 1).

Finally, assume that a ≤ b < c, a W/ c, and b W c. Then a W/ b. If a�b = a, we get (a, r); if a�b < a,
we get (a� b, 1).

Let us now assume that for all pairs a, b and a, c and b, c the third possibility in (8) applies. Note
that then, (10) holds for any (a, r), (b, s) ∈ L̂. In case a � b = a, we calculate A = C = (a, r), and
since a � b � c = a and a ≤ b � c, we get also B = (a, r). In case a � b � c = a � b < a, we have
A = B = C = (a � b, 1). Finally, in case a � b � c < a � b < a, we get A = B = C = (a � b � c, 1).
The proof is complete. 2

Lemma 3.14 Let (L;≤,�, 0, 1) be a finite 0, 1-tomonoid, and let (L̂;≤,�, (0, 1), (1, 1)) be the 0, 1-
tomonoid defined in Example 3.12. Then the residuum→ of � exists in L and in L̂, and (L;∧,∨,�,→,
0, 1) as well as (L̂;∧,∨,�,→, (0, 1), (1, 1)) are MTL-algebras. The mapping ϑ : L → L̂, a 7→ (a, 1)
is an isomorphic embedding of MTL-algebras.

Proof. Defining→ by (2), we get an MV-algebra (L;∧,∨,�,→, 0, 1), as was already stated above. To
see that also L̂ can be expanded to an MV-algebra, we have to show that in L̂, we can define→ by (2).
Let (a, r), (b, s) ∈ L̂. Note that, for any (x, t) ∈ L̂, the second component of (a, r)�(x, t) depends on t
continuously, and t takes values in (0, 1]. It follows that the maximum of {(x, t) : (a, r)�(x, t) ≤ (b, s)}
always exists.

Clearly, ϑ preserves the order, and ϑ is injective. Moreover, let a, b ∈ L. We see from (10) that
(a, 1) � (b, 1) = (a � b, 1). Again by (10), (a, 1) → (b, 1) = max {(x, t) : (a, 1) � (x, t) ≤ (b, 1)} =
max {(x, t) : (x, t) ∧ (a� x, 1) ≤ (b, 1)} = max {(x, t) : x ≤ b or a� c ≤ b} = max {(x, t) : a� x ≤
b} = (a→ b, 1). So we have shown that ϑ : L→ L̂, a 7→ (a, 1) is a homomorphism of MTL-algebras.

2

Lemma 3.15 Let (L;≤,�, 0, 1) be a finite totally ordered MTL-algebra. Then L may be isomorphi-
cally embedded into a t-norm algebra ([0, 1];∧,∨,�,→, 0, 1), where � is a regular l.-c. t-norm.
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Proof. Let (L̂;≤,�, (0, 1), (1, 1)) be the 0, 1-tomonoid constructed from L as in Example 3.12. From
Lemma 3.14 and the fact that L̂ is order-isomorphic to the real unit interval, we may conclude
that (L̂;∧,∨,�,→, (0, 1), (1, 1)) is isomorphic to a l.-c. t-norm algebra. Let ι : L̂ → [0, 1] be the
isomorphism.

We have to show that the t-norm � is regular. Discontinuities of translations associated � can arise
only at the points ι(a, 1), where a ∈ L; so � has few discontinuity points.

It remains to prove that q is simple. Consider any of the intervals Ia = {ι(a, r) : r ∈ (0, 1]}, where
a ∈ L \ {0}. Let b be the smallest idempotent ≥ a such that a� b = a.

Assume first that a is idempotent. Then b = a, and a W b. So for all r ∈ (0, 1], we have (a, r)�(b, 1) =
(a, r), and (a, r)� (b, s) = (a, rs) < (a, r) if s < 1.

Assume next that a is not idempotent; then a < b. We claim that a � Pb < a and consequently
a W b. Indeed, assume a�Pb = a, and let k ≥ 1 be large enough such that c = (Pb)k is idempotent;
then a � c = a < c < b in contradiction to the minimality of b. So (a, r) � (b, s) = (a, r

1
s ), where

r, s ∈ (0, 1]. In particular, (a, r) � (b, 1) = (a, r) and for r ∈ (0, 1), we have (a, r) � (b, s) < (a, r) if
s < 1.

So in both cases, q(t) contains the whole interval Ia for all t ≥ ι−1(b, 1), and q(t) has empty intersection
with the interior of Ia for all t < ι−1(b, 1). 2

So we arrive at the announced result:

Theorem 3.16 The t-norm algebras based on regular l.-c. t-norms generate the variety of MTL-
algebras.

Proof like for Theorem 3.6. 2

4 The basic intervals and their associated algebras

In this section, we start examining the regular l.-c. t-norms in a systematic manner. The structural
characteristics which we will compile, refer to the associated translation tomonoids. Namely, using
the simplicity of the function q from Definition 3.7, we will partition the unit interval into certain
subintervals and restrict the translations to them in a specific way. As we will see later, each of
the resulting restricted translation tomonoids belongs, up to isomorphism, to one out of six different
types.

Throughout this section, let � be a regular l.-c. t-norm.

Lemma 4.1 There is a finite chain 0 = a0 < a1 < . . . < ak = 1 such that, for any i ∈ {1, ..., k},
exactly one of the following possibilities hold:

(Cont) For a unique vi ∈ (0, 1], we have: (α) [ai−1, ai] ⊆ q(t) for t ≥ vi; (β) (ai−1, ai) ∩ q(t) = ø for
t < vi; and (γ) [ai−1, ai] is a maximal closed interval with the properties (α) and (β).

(Idp-l) For a uniquely determined pair ui, vi ∈ [0, 1] such that ui < vi, there is an order antiisomor-
phism m : (ui, vi]→ [ai−1, ai) such that q(t) ∩ (ai−1, ai) = [m(t), ai) for t ∈ (ui, vi).

(Idp-r) For a uniquely determined pair ui, vi ∈ [0, 1] such that ui < vi, there is an order isomorphism
m : (ui, vi]→ (ai−1, ai] such that q(t) ∩ (ai−1, ai) = (ai−1,m(t)] for t ∈ (ui, vi).

Proof. Choose 0 = a0 < a1 < . . . < ak = 1 such that (0, 1] =
⋃̇

1≤i≤k(ai−1, ai] is a partition as
specified in Definition 3.10. Assume that this partition is a coarsest w.r.t. the conditions of Definition
3.10.

Let 1 ≤ i ≤ k. There are three possibilities:

Case (i): There is a vi ∈ (0, 1] such that (ai−1, ai) ⊆ qi(t) if t ≥ vi, and (ai−1, ai)∩ qi(t) = ø if t < vi.
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Case (ii): There is a pair ui, vi ∈ [0, 1] such that ui < vi and an order isomorphism [ui, vi] →
{[d, ai) \ {ai−1} : ai−1 ≤ d ≤ ai}, t 7→ q(t) ∩ (ai−1, ai).

Case (iii): There is a pair ui, vi ∈ [0, 1] such that ui < vi and an order isomorphism [ui, vi] →
{(ai−1, d] \ {ai} : ai−1 ≤ d ≤ ai}, t 7→ q(t) ∩ (ai−1, ai).

Evidently, these possibilities are mutually exclusive. In case (i), conditions (α) and (β) of (Cond)
are obviously fulfilled. In view of our assumption that the partition is coarsest, also the maximality
condition (γ) is assured. Finally, in case (ii), (Idp-l) is fulfilled; in case (iii), (Idp-r) is fulfilled. 2

Accordingly, we will associate with the t-norm a number of specific points.

Definition 4.2 Let 0 = a0 < a1 < . . . < ak = 1 be such that for each i ∈ {1, ..., k} (Cont) or (Idp-l)
or (Idp-r) holds, in accordance with Lemma 4.1. Then (ai−1, ai], 1 ≤ i ≤ k, are called basic intervals
of �.

Let i ∈ {1, ..., k} be such that (Cont) holds, and let vi be as specified in (Cont). Then (ai−1, ai] is
called a continuity interval; and vi is called the opening point of (ai−1, ai]. Furthermore, let ui ≤ vi
be minimal such that λt(ai) ∈ (ai−1, ai] for all t ∈ (ui, vi]. Then (ui, vi] is called the parameter set
associated to (ai−1, ai].

Similarly, let i be such that (Idp-l) or (Idp-r) holds, and let ui, vi be as specified by (Idp-l) or (Idp-r),
respectively. Then (ai−1, ai] is called an idempotency interval or, more specifically, a left- or right-
idempotency interval, respectively; and vi is called the opening point of (ai−1, ai]. Moreover, (ui, vi]
is called the parameter set associated to (ai−1, ai].

Assume finally that any two parameter sets associated to idempotency intervals either coincide or are
disjoint. Then we call (a0, a1, . . . , ak) a frame for �.

Note that the continuity intervals are assigned to the l.-c. t-norm � in a unique way. So the union
of all idempotency intervals is uniquely determined as well. Indeed, a point x > 0 is in some
continuity interval iff x it is not in an idempotency interval iff there is a y < x such that the set
{q(t) ∩ (y, x) : t ∈ [0, 1]} is only two-element. The choice of the idempotency intervals themselves is
not unique, though; for instance, a left-idempotency interval may be divided into two intervals of this
type. Uniqueness might be achieved by a maximality condition; we do not make such a requirement,
not to complicate matters unnecessarily.

We rather assume now that a fixed choice of basic intervals has been made. We will actually assume
that we are given a frame (a0, . . . , ak); this is easily seen to be possible.

Lemma 4.3 There is a frame for �.

Proof. Let 0 = a0 < a1 < . . . < ak = 1 be such that for each i ∈ {1, ..., k} (Cont) or (Idp-l) or (Idp-r)
holds, in accordance with Lemma 4.1. Let there be two parameter sets (ui, vi] and (uj , vj ] associated
to the distinct idempotency intervals (ai−1, ai] and (aj−1, aj ], and assume that ui < uj < vi < vj .

We may then replace the basic intervals (ai−1, ai] and (aj−1, aj ] by four intervals. Namely, we choose
m1 ∈ (ai−1, ai] and m2 ∈ (aj−1, aj ] such that the new basic intervals (ai−1,m1], (m1, ai], (aj−1,m2],
(m2, aj ] have the parameter sets (ui, uj ], (uj , vi], and (vi, vj ]. Note that (uj , vi] is the parameter set
associated to two of the four basic intervals.

Proceeding in the same way with any pair of distinct parameter sets with non-empty intersection, we
obtain a frame for �. 2

We next collect the basic facts about the two types of basic intervals.

Definition 4.4 A function e : [0, 1] → [0, 1] is called idempotent if e ◦ e = e. An idempotent e is
called proper if 0 < e < id.

Lemma 4.5 Let e : [0, 1] → [0, 1] be left-continuous, increasing, and below the identity. Then e is
idempotent if and only if (i) Q(e) has no singletons and (ii) e is determined by Q(e) in the following

12



way:

e(x) =

x if x is a right-limit point of Q(e),
the largest element of
Q(e) strictly below x

else
(11)

for x ∈ [0, 1].

Proof. Let e be an idempotent. For x ∈ [0, 1], if x is a right-limit point of Q(e), then e(x) = x by
Lemma 3.8. Let x 6∈ Q(e). Then e(x) ≤ e+(x) < x. Because e(e(x)) = e(x) and e is increasing, e is
constant e(x) on [e(x), x]. Moreover, e(x) ∈ Q(e) by Lemma 3.8, and e(x) < y ≤ x implies y 6∈ Q(e);
so e(x) is the largest element below x of Q(e). Finally, let x ∈ Q(e) \ {0} such that x is a right-limit
point of the complement of Q(e). By left-continuity, e(x) is the largest element of Q(e) strictly below
x. So (11) is shown.

Assume furthermore that x > 0 is a singleton of Q(e). If then x < 1, there is an y > x such that,
by (11), e(y) = e(x) ≤ x < y. If x = 1, then, by (11), e is constant e(1) < 1 on (e(1), 1), so even
on [e(1), 1] by idempotency and left-continuity; but this contradicts x ∈ Q(e). So there can be no
singleton in Q(e).

Conversely, it is clear that any e fulfilling (i) and (ii) is idempotent. 2

Lemma 4.6 For any f ∈ Λ, we have regcl(Q(f ◦ f)) = regcl(Q(f)).

In particular, for any t ∈ [0, 1], q(t) \ q(t� t) has an empty interior.

Proof. Because f ◦ f ≤ f , we have Q(f ◦ f) ⊆ Q(f). Moreover, if x is in the interior of Q(f), then
f(x) = x by Lemma 3.8; so f(f(x)) = x and again by Lemma 3.8, x ∈ Q(f ◦ f). So the interior of
Q(f) equals the interior of Q(f ◦ f), and the first assertion follows.

Furthermore, Q(f) \Q(f ◦ f) contains only singletons of Q(f). The second part follows as well. 2

Lemma 4.7 Let t ∈ (0, 1].

(i) Let t be in the parameter set of an idempotency interval. Then λt is idempotent.

(ii) Let t be an opening point of any basic interval. Then λt is idempotent.

Proof. Let t be either contained in the parameter interval of an idempotency interval, or let t be
an opening point of a continuity interval. In view of Lemma 4.1, we conclude that q(t) \ q(s) has a
non-empty interior for any s < t.

Assume now that λt is not idempotent. Then λt ◦ λt is different from λt, and this means by (T3)
that t � t = λt(λt(1)) < λt(1) = t. So it follows from Lemma 4.6 that q(t) \ q(t � t) has an empty
interior. The assertions are proved. 2

Lemma 4.8 Let (a, b] be a continuity interval with parameter set (u, v]. Then we have:

(i) λv|(a,b] = id|(a,b], and for any x ∈ (a, b) and t < v, we have λt(x) ≤ λ+
t (x) < x.

(ii) For any t ∈ (u, v), λt is not idempotent.

Proof. (i) Because q(v) ⊇ [a, b], λv(x) = x for x ∈ (a, b] by Lemma 3.8. For x ∈ (a, b) and t < v, we
have q(t) ∩ (a, b) = ø, so λ+

t (x) < t. The inequality λt(x) ≤ λ+
t (x) holds in general.

(ii) Let x ∈ (a, b) be such that a < λt(x). So λt(x) ∈ (a, b), and it follows λt(λt(x)) < λt(x) by part
(i). So λt is not idempotent. 2

Lemma 4.9 Let (t, u] and (v, w] be the parameter sets of two distinct basic intervals. Then either
both (t, u] and (v, w] are associated to idempotency intervals and (t, u] = (v, w], or both are associated
to continuity intervals and u = w, or (t, u] and (v, w] are disjoint.
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Proof. Assume that (t, u] and (v, w] are not disjoint. If then (t, u] is associated to an idempotency
interval, (v, w] cannot be associated to a continuity interval by Lemmas 4.7(i) and 4.8(ii). So (v, w] is
associated to an idempotency interval as well, and by our general assumption to work with a frame,
the two intervals must coincide. Similarly, if (t, u] is associated to a continuity interval, then so is
(v, w]. Since q(u) and q(w) are idempotent by 4.7(ii), we conclude u = w by Lemma 4.8(ii). 2

We are now ready to describe in more detail how the parameter sets are related to the basic intervals.

Lemma 4.10 Let d be the opening point of some basic interval. Then there is a c < d such that
(c, d] is a basic interval with the parameter set (c, d]. For each t ∈ (c, d], λt is constant t on [d, 1].

Assume that (c, d] is an idempotency interval. Let (a, b] be a further basic interval with opening point
d; then b ≤ c. In this case, also (a, b] is an idempotency interval, and (c, d] is the parameter set of
(a, b].

Assume that (c, d] is a continuity interval. Let (a, b] be a further basic interval whose opening point
is d; then b ≤ c. In this case, also (a, b] is a continuity interval.

Finally, the interval (c, d] does not contain any further opening point apart from d.

Proof. λd is idempotent by Lemma 4.7, and λd(1) = d. So, by Lemma 4.5, there is a w < d such that
λd(x) = x for x ∈ (w, d], and λd(x) = d for x ∈ [d, 1].

It follows that q(d) ∩ (d, 1] = ø, q(d) ⊇ [w, d], and for any t < d, q(t) ∩ [w, d] is a proper subset of
[w, d] and in particular d 6∈ q(t). Furthermore, any basic interval with opening point d is contained
in q(d), which in turn is contained in [0, d].

Let now (c, d′] be the basic interval containing d, and let (u, v] be the associated parameter set. By
Lemma 4.9, the opening point d cannot be in the interior of (u, v]; so either d ≤ u or v < d or v = d. If
d ≤ u, then [w, d] ⊆ q(d) ⊆ q(u), in contradiction to q(u)∩ (c, d′] = ø. If v < d, then d ∈ (c, d′] ⊆ q(v)
contradicts the fact that d 6∈ q(t) for any t < d. So d = v, and (u, d] is the parameter set associated
to the basic interval (c, d′]. But then (c, d′] ⊆ [0, d] and d′ ≥ d; so actually, d = d′, and (u, d] is the
parameter set associated to (c, d].

From q(d) ⊇ (c, d], we have λd(x) = x for x ∈ (c, d]. So for t ∈ (c, d] and x ∈ [d, 1], we conclude
λt(x) = λx(t) = λd(t) = t, that is, λt is constant t on [d, 1] for all t ∈ (c, d].

It moreover follows that for any t ∈ [0, 1], λt(d) > c if and only if t > c; so u = c, that is, the
parameter set of (c, d] is actually (c, d] itself.

The second, third and forth paragraph follow from Lemma 4.9. 2

So we see that a point d may be an opening point of a finite number of basic intervals, all of which
are either idempotency of continuity intervals. Moreover, one of these intervals is distinguished by
the fact that its right border is d. So it is of the form (c, d] for some c < d, and (c, d] is then also its
parameter set. The remaining basic intervals with opening point d, if there are any, are located on
the left side of c.

Definition 4.11 A basic interval (a, b] is called primary if its opening point is b, otherwise secondary.

We now come to a construction which is simple, but fundamental for this paper. Namely, for each
basic interval [a, b], we may restrict the action of any translation f ∈ Λ to [a, b] as follows.

Definition 4.12 Let (a, b] be some basic interval. For any f ∈ Λ, let

f(a,b] : [a, b]→ [a, b], x 7→ f(x) ∨ a (12)

and put Λ(a,b] = {f(a,b] : f ∈ Λ}. We endow Λ(a,b] with the pointwise order ≤; with the composition
of functions ◦; with the constant 0(a,b] : [a, b]→ [a, b], x 7→ a; and with the constant id(a,b] : [a, b]→
[a, b], x 7→ x. Then (Λ(a,b];≤, ◦, 0(a,b], id(a,b]) is called the basic tomonoid associated with (a, b].

For any f ∈ Λ, we call f(a,b] the projection of f into Λ(a,b]. Moreover, we say that f ∈ Λ crosses Λ(a,b]

if 0(a,b] < f(a,b] < id(a,b].
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So given a translation f ∈ Λ and a basic interval (a, b], we have that f(a,b](x) = f(x) if x > a and
f(x) > a, and else f(a,b](x) = a. Geometrically, we may visualize the transition from f to f(a,b] as
follows: We consider the graph of f |[a,b], that is, {(x, f(x)) : x ∈ [a, b]}, and we project any point
(x, f(x)) such that x ∈ [a, b] and f(x) < a, to (x, a); the points which are then located within the
triangle with vertices (a, a), (b, a), and (b, b), form the graph of f(a,b].

Note that f(a,b] coincides with f on {x ∈ (a, b] : f(x) > a}. So there is a d ∈ [a, b] such that
f(a,b](x) = a for x ∈ [a, d], and f(a,b](x) = f(x) > a for x ∈ (d, b]. Furthermore, we have f(a,b] = 0(a,b]

iff f(x) ≤ a for any x ∈ (a, b] iff f(a,b] maps the whole interval [a, b] to a. Similarly, f(a,b] = id(a,b] iff
f(x) = x for any x ∈ (a, b] iff f(a,b] is the identity on [a, b]. In particular, f crosses Λ(a,b] iff f(b) > a
and, for some x ∈ (a, b], f(x) < x.

To determine a basic tomonoid, it is enough to consider the translations by the elements of the
associated parameter set:

Lemma 4.13 Let (a, b] be a basic interval with the associated parameter set (u, v]. Then

Λ(a,b] = {λt(a,b] : t ∈ [u, v]}.

Proof. We have λu(a,b] = 0(a,b] and λt(a,b] > 0(a,b] if t > u; similarly, λv(a,b] = id(a,b] and λt(a,b] <
id(a,b] if t < v. 2

We next see how the a translation tomonoid and one of the basic tomonoids are related, and in
particular that the latter, endowed with the pointwise order and the operation ◦, is indeed a tomonoid.

Lemma 4.14 Let (a, b] be a basic interval.

(i) (Λ(a,b];≤) is isomorphic to ([0, 1];≤). The bottom element is 0(a,b] and the top element is id(a,b].
Moreover, the suprema are calculated pointwise.

(ii) Λ(a,b] is closed under ◦, and the mapping

ι(a,b] : Λ→ Λ(a,b], f 7→ f(a,b].

is a homomorphism of the tomonoids (Λ;≤, ◦, 0, id) and (Λ(a,b];≤, ◦, 0(a,b], id(a,b]). Moreover,
ι(a,b] preserves arbitrary suprema.

Proof. We clearly have 0(a,b] ≤ f(a,b] ≤ id(a,b] for all f ∈ Λ. From the definition of f(a,b], it is obvious
that the order of Λ(a,b) is total and that ι is monotone. We furthermore easily see that, for any set
fι ∈ Λ, ι ∈ I, we have

∨
ι fι(a,b] = (

∨
ι fι)(a,b]. In particular, the order of Λ(a,b] is complete. It also

follows that suprema are calculated pointwise. Finally, we easily check that, for f, g ∈ Λ, we have
f(a,b] ◦ g(a,b] = (f ◦ g)(a,b].

The proof of part (ii) is done; for part (i), it remains to show that (Λ(a,b];≤) is isomorphic to ([0, 1];≤).

To this end, assume first that (a, b] is an idempotency interval with the associated parameter set
(u, v]. Then λt is idempotent for each t ∈ (u, v], and consequently λt(a,b] is uniquely determined by
q(t)∩ (a, b). So by Lemma 4.13, the map [u, v]→ Λ(a,b], t 7→ λt(a,b] is a bijection, which is moreover
an order isomorphism. In particular, Λ(a,b] is order-isomorphic to [0, 1].

Assume now that (a, b] is a continuity interval with the associated parameter set (u, v]. Then, by
Lemma 4.8(i), λt(x) < x for all t < v and x ∈ (a, b). Let f, g ∈ Λ be such that f(a,b] < g(a,b]. Then
f(x) ∨ a < g(x) for some x ∈ (a, b); note that g(x) ∈ (a, b). Now, id(a,b] = λv(a,b] is the pointwise
supremum of all λt(a,b], where t < v; so for some t, we have f(x) ∨ a < λt(g(x)) < g(x), that is,
f(a,b] < (λt ◦ g)(a,b] < g(a,b]. It follows that the order of Λ(a,b] is dense.

Moreover, {λr(a,b] : r ∈ [0, 1] ∩ Q} is dense in Λ(a,b]. So (Λ(a,b];≤) is a complete totally ordered set
which is moreover dense and separable; consequently, Λ(a,b] is order-isomorphic to [0, 1]. 2

A basic tomonoid Λ(a,b] inherits most of the properties of the translation tomonoid Λ. In the sequel, by
one of the conditions (Ti), i = 1, ..., 6, to hold for Λ(a,b], we understand that in (Ti), each appearance
of Λ, 0, or id is replaced by Λ(a,b], 0(a,b], or id(a,b], respectively.
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Lemma 4.15 Let (a, b] be a basic interval. Then the basic tomonoid (Λ(a,b];≤, ◦, 0(a,b], id(a,b]) fulfils
(T1), (T2), (T4), (T5), and (T6).

Proof. (T1) and (T4) are evident. (T2) and (T6) hold by Lemma 4.14(ii). (T5) holds by Lemma
4.14(i). 2

5 Algebras of idempotent functions and
algebras of continuous functions

In this section, we will characterize six specific tomonoids of left-continuous functions. The results
will be used in the sequel to describe the basic tomonoids associated to the basic intervals of a regular
l.-c. t-norm. Apart from an insertion concerning continuous t-norms, the results of this section do
not explicitly refer to the theory of t-norms.

We first deal with the case of tomonoids which contain exclusively idempotent functions.

Definition 5.1 Let F be a set of left-continuous functions from [0, 1] to [0, 1], defined as follows.

(i) Let F contain the functions

ft : [0, 1]→ [0, 1], x 7→

{
0 for x ≤ t,
x for x > t,

(13)

where t ∈ [0, 1]. Then (F ;≤, ◦, 0, id) is called the left-idempotency monoid.

(ii) Let F contain the functions

ft : [0, 1]→ [0, 1], x 7→

{
x for x ≤ t,
a for x > t,

(14)

where t ∈ [0, 1]. Then (F ;≤, ◦, 0, id) is called the right-idempotency monoid.

The following Theorem is not essential in the sequel, but we like to include it for the sake of com-
pleteness.

Theorem 5.2 Let F be a set of functions from [0, 1] to [0, 1] such that (T1), (T2), (T4), (T5), and
the following conditions are fulfilled:

(I1) Every f ∈ F is idempotent.

(I2) For every f ∈ F , Q(f) is connected and contains either 0 or 1.

(I3) For every non-empty open interval (c, d) ⊆ [0, 1], there is an f ∈ F such that ø $ {f(x) : x ∈
(c, d)} ∩ (c, d) $ (c, d).

Then (F ;≤, ◦, id) is either the left- or to the right-idempotency monoid.

Proof. By (I2) and Lemma 4.5, which we may apply due to (T1), (T4), (T5), and (I1), every f ∈ F
is either of the form (13) or (14). By (T5), 0, id ∈ F , and there is a proper idempotent in F ;
furthermore, by (T5), every two elements of F are comparable. It follows that either all f ∈ F are of
the form (13), or all f ∈ F are of the form (14); so F = {ft : t ∈ S}, where {0, 1} ⊂ S ⊆ [0, 1] and ft
is defined by (13) or (14), respectively.

By (S5), (S;≤) is a dense and complete totally ordered set. Moreover, by (I3), there is no non-empty
open interval (c, d) ⊆ [0, 1] such that (c, d)∩S = ø. It follows that S = [0, 1], and the proof is finished.

2

We insert a note on the parametrization of the algebras considered in Theorem 5.2.
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Lemma 5.3 Let u < v, and let F = {gs : [0, 1] → [0, 1] : s ∈ [u, v]} be such that (T1), (T2),
(T4), (T5) and (I1)–(I3) are fulfilled and such that gs ≤ gt iff s ≤ t for any s, t ∈ [u, v]. Then
there is an order automorphism ϕ : [0, 1] → [0, 1] such that, w.r.t. the notation of Definition 5.1,
ϕ−1 ◦ g(1−t)u+tv ◦ ϕ = ft for all t ∈ [0, 1].

Proof. By Theorem 5.2, F = {ft : t ∈ [0, 1]}, where ft is defined by (13) or (14). So for some order
automorphism ϕ : [0, 1]→ [0, 1], we have g(1−t)u+tv = fϕ(t). We easily check that ϕ◦ft ◦ϕ−1 = fϕ(t),
t ∈ [0, 1], and the assertion follows. 2

We now turn to the more difficult case that we are given tomonoids containing only continuous
functions.

We begin considering the case that the translation tomonoid of a l.-c. t-norm consists of continuous
functions.

Lemma 5.4 Let e : [0, 1] → [0, 1] be continuous, increasing, and below the identity. Then e is
idempotent if and only if there is an a ∈ [0, 1] such that, for x ∈ [0, 1],

e(x) =

{
x for x ≤ a,
a for x ≥ a.

(15)

Proof by Lemma 4.5. 2

Theorem 5.5 Let Λ be the translation tomonoid of the l.-c. t-norm �. Then � is continuous if and
only if Λ consists of continuous functions only.

Moreover, let Λ not contain any proper idempotent. Then � is isomorphic either to the  Lukasiewicz
t-norm or to the product t-norm.

Proof. The first part is immediate. For the second, note that, by Theorem 2.6, Λ contains a proper
idempotent if and only if � has an idempotent different from 0 and 1. A continuous t-norm whose
only idempotents are 0 and 1, is isomorphic either to the  Lukasiewicz t-norm or to the product t-
norm. This well-known fact can be found in [MoSh]; otherwise see e.g. [KMP]. 2

For the functional algebras which now follow, we have in mind any closed subinterval [a, b] of the real
unit interval as their domain and range. For simplicity, however, we will use in this section the whole
interval [0, 1]. Isomorphisms between sets of functions on real intervals are defined in the obvious
way:

Definition 5.6 Let a1, b1, a2, b2 ∈ R be such that a1 < b1 and a2 < b2. Let F consist of functions
from [a1, b1] to [a1, b1], and let G consist of functions from [a2, b2] to [a2, b2]. Then F and G are called
isomorphic if there is an order-preserving bijection ϕ : [a1, b1]→ [a2, b2] such that G = {ϕ ◦ f ◦ ϕ−1 :
f ∈ F}.
In case that we can choose ϕ linear, we say that G is scaled from F .

The following are the structures which we will discuss.

Definition 5.7 Let F be a set of continuous functions from [0, 1] to [0, 1], defined as follows.

(i) Let F contain the functions ft : [0, 1]→ [0, 1], x 7→ t · x, where t ∈ [0, 1] and · is the multipli-
cation of reals. Then (F ;≤, ◦, 0, id) is called the product monoid.

(ii) Let F contain the functions ft : [0, 1] → [0, 1], x 7→ (t + x − 1) ∨ 0, where t ∈ [0, 1]. Then
(F ;≤, ◦, 0, id) is called the  Lukasiewicz monoid.
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(iii) Let F contain the functions ft : [0, 1] → [0, 1], x 7→ (t+x−1)∨0
t , where t ∈ (0, 1], and f0 = 0.

Then (F ;≤, ◦, 0, id) is called the reversed product monoid.

(iv) Let F contain the functions ft : [0, 1] → [0, 1], x 7→ x
1
t , where t ∈ (0, 1], and f0 = 0. Then

(F ;≤, ◦, 0, id) is called the power monoid.

We remark that the  Lukasiewicz monoid has also been called the nil interval. Note that it arises from
the product monoid as the Rees quotient w.r.t. the ideal [0, 1

2 ].

In the next lemma, for some bijection f from a set to itself, we define fk for each k ∈ Z, by putting
f0 = f ; fk = f ◦ . . . ◦ f︸ ︷︷ ︸

k times

for k ≥ 1; and fk = f−1 ◦ . . . ◦ f−1︸ ︷︷ ︸
−k times

for k ≤ −1.

Lemma 5.8 Let gk : [0, 1]→ [0, 1], 0 ≤ k < ω, be strictly increasing continuous functions such that,
for each k, (i) gk(0) = 0, gk(x) < x for x ∈ (0, 1), and f(1) = 1, (ii) g2

k+1 = gk, and (iii) the functions
gk converge uniformly to id. Then there is an order automorphism ϕ : [0, 1] → [0, 1] such that, for

each k, gk(ϕ(x)) = ϕ(x2( 1
2 )k

), x ∈ [0, 1].

Proof. We will identify gk, k < ω, and ϕ with their restrictions to the open unit interval; the problem
then reads as follows and is obviously equivalent to the original one: We are given for each k an order
automorphism gk : (0, 1) → (0, 1) such that gk(x) < x for all x ∈ (0, 1); we have gk = g2

k+1; and we

have to determine an order automorphism ϕ : (0, 1) → (0, 1) such that gk(ϕ(x)) = ϕ(x2( 1
2 )k

) holds
for x ∈ (0, 1). We proceed as explained in [PoMa].

We first set y = lnx ∈ (−∞, 0) and ψ : (−∞, 0) → (0, 1), y 7→ ϕ(ey). Then ϕ(x) = ψ(y), and the
problem is to solve gk(ψ(y)) = ψ(2( 1

2 )ky) for y ∈ (−∞, 0), where ψ must be an order isomorphism.
We next set z = ln(−y) ∈ R and χ : R → (0, 1), z 7→ ψ(−ez). Then ψ(y) = χ(z), and the problem
is to find an order antiisomorphism χ : R→ (0, 1) such that

gk(χ(z)) = χ(z + ln 2
2k

), z ∈ R, (16)

for each k ≥ 0. We set χ(0) = 1
2 , and for any k ≥ 0 and n ∈ Z, let χ( n

2k
ln 2) = gnk ( 1

2 ); we readily
check that this defines χ unambiguously on the set R = { n

2k
ln 2 : k ≥ 0, n ∈ Z}. For z ∈ R, (16) is

then fulfilled. Moreover, because gk(x) < x for each k and each x ∈ (0, 1), (16) implies that χ, seen
as a function on R, is strictly decreasing.

We next show that χ can be continuously extended to the whole real line. Let r ∈ R, and let (nk)k
be the sequence of natural numbers such that r ∈ [nk

2k
ln 2, nk+1

2k
ln 2) for every k. We have to prove

that the length of the interval [χ(nk+1
2k

ln 2), χ(nk
2k

ln 2)] converges to 0 for k → ∞. But this is the
case because χ(nk+1

2k
ln 2) = gk(χ(nk

2k
ln 2)) and (gk)k converges uniformly to the identity. Note that

the function χ : R→ [0, 1] is decreasing and fulfils (16), because χ and gk are continuous.

It remains to show is that χ is surjective. Recall that g0(x) < x for all x ∈ (0, 1), let u =
∧
n g

n
0 ( 1

2 ),
and assume u > 0. Then, by the continuity of g0, we have g0(u) = u, a contradiction; so u = 0.
Similarly, we conclude

∨
n g
−n
0 ( 1

2 ) = 1. So the image of χ covers the whole interval (0, 1). 2

We next insert an auxiliary lemma, to be used also at later times, concerning the local generation of
algebras of, not necessarily continuous, functions.

Definition 5.9 Let G be a set of functions from [0, 1] to [0, 1] such that g ≤ id for each g ∈ F . For
an f ∈ G, the set

{g ∈ F : g ≥ fk for some k ≥ 1}
is called the filter generated by f in G.

In what follows, we define for a left-continuous function f : [0, 1]→ [0, 1] the support of f by

supp f = {x ∈ [0, 1] : f(x) > 0};

so if f is increasing and left-continuous, we have supp f = (d, 1] for some d ∈ [0, 1]. By a property to
hold for f on its support, we mean that the property holds for f restricted to supp f .
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Lemma 5.10 Let G be a set of increasing left-continuous functions from [0, 1] to [0, 1] such that for
every f ∈ G the following holds: (α) f = id or else f+(x) < x for every x ∈ (0, 1), (β) f ≤ g or
g ≤ f for all g ∈ G, (γ) f ◦ g = g ◦ f ∈ G for all g ∈ G, (δ) f has only finitely many discontinuity
points. Then the following holds:

(i) Let f ∈ G be such that f < id. If some g ∈ G is not contained in the filter generated by f , then
g = 0. In particular, G \ {0} is contained in the filter generated by f .

(ii) If there are hi < id, i < ω, in G such that the sequence (hi)i converges pointwise to id, then
every f ∈ G is on its support strictly increasing.

Proof. (i) Let [a, b] ⊆ (0, 1). By (α) and (δ), there is an ε > 0 such that f(x) < x− ε for all x ∈ [a, b].
It follows, for x ∈ [a, b], that if y ≤ fk(x) for all k, then y ≤ a. Since [a, b] was arbitrarily chosen
within (0, 1), we conclude

∧
k f

k(x) = 0 for all x ∈ (0, 1).

Let g be not in the filter generated by f . By (β), g ≤ fk for all k; that is, g(x) = 0 for x ∈ (0, 1). By
monotonicity and left-continuity, we have g = 0.

(ii) Let f ∈ G, let 0 < a < b < 1, and assume that f(a) > 0 and f[a,b] is constant z = f(a). Note
that z ∈ (0, 1). Let h ∈ G be such that h(x) < x for all x ∈ (0, 1) and a < h(b) < b. It follows
(f ◦ h)(b) = z and (h ◦ f)(b) < z, in contradiction to (γ). 2

Theorem 5.11 Let F be a set of functions from [0, 1] to [0, 1] such that (T1), (T2), (T5), (T6), and
the following conditions are fulfilled:

(C1) Every f ∈ F is continuous.

(C2) f = id, or else f(x) < x for all x ∈ (0, 1).

Then (F ;≤, ◦, id) is isomorphic either to the product,  Lukasiewicz, reversed product, or power monoid.

Proof. Let f ∈ F be such that 0 < f < id. If f(1) < 1, then g(1) < 1 for all g ≤ f ; and if f(1) = 1,
then fk(1) = 1 for all k ≥ 1. Since by Lemma 5.10(i) the filter generated by f contains the whole F
expect possibly 0, we conclude that either g(1) = 1 for all g ∈ F \ {0} or g = id is the only element
of F \ {0} with this property.

Similarly, if f(x) = 0 for some x ∈ (0, 1], then g(x) = 0 for all g ≤ f ; and if f(x) > 0 for all x ∈ (0, 1],
then fk(x) > 0 for all k ≥ 1 and x ∈ (0, 1]. So again by Lemma 5.10(i), g(x) = 0 implies x = 0 either
for all g ∈ F \ {0}, or for id as the only element of F \ {0}.
Accordingly, we will distinguish four cases; still, let 0 < f < id: (i) f(x) > 0 for x ∈ (0, 1], and
f(1) < 1, (ii) f(x) = 0 for some x ∈ (0, 1], and f(1) < 1, (iii) f(x) = 0 for some x ∈ (0, 1], and
f(1) = 1, (iv) f(x) > 0 for x ∈ (0, 1], and f(1) = 1.

Note next that by (T5), id is the pointwise supremum of all h ∈ F such that h < id. Since F contains
only continuous functions and [0, 1] is compact, id is even the uniform limit of a sequence of functions
< id in F .

Consequently, by Lemma 5.10(ii), every f ∈ F is on its support strictly increasing. In particular,
there are no proper idempotents in F .

It furthermore follows that if f(v) = g(v) > 0 for some v ∈ (0, 1), then f equals g. Indeed, assume
0 < f(v′) < g(v′) for some further v′ ∈ (0, 1); then h ◦ g and f are not comparable for an h < id
sufficiently close to id. So f(x) = g(x) for x ∈ supp f ∩ supp g, and by continuity and monotonicity,
it follows f = g. In the cases (i) and (ii), the argument obviously works for the case v = 1 as well.

We next show that for any v ∈ (0, 1), or v ∈ (0, 1] in the cases (i) and (ii), we have F (v) = {f(v) :
f ∈ F} = [0, v]. Clearly, 0 is the smallest element and 1 is the largest element in F (v). We claim that
F (v) is closed under infima and suprema, calculated in [0, 1]. F (v) is closed under suprema, because
by (T5), all suprema exist in F and are calculated pointwise. Furthermore, let gι ∈ F , ι ∈ I, and
assume that a =

∧
ι gι(v) ∈ (0, 1). For any ε > 0, we may choose h < id sufficiently close to id such

that a − ε < h(a) < a; then a − ε < h(gι(v)) < a for some ι by the continuity of h. So since F (v)
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is closed under suprema, a ∈ F (v), whence F (v) is closed under infima as well. A similar argument
shows that F (v) is densely ordered. It follows that F (v) = [0, v].

A corollary of these results is that the infimum of any subset of F is calculated pointwise.

Case (i). We may identify every f ∈ F with f(1); this means that F fulfills (T3). So F is a
translation tomonoid of a l.-c. t-norm �. By Theorem 5.5, � is continuous, and since there are no
proper idempotents in F , � is actually isomorphic to the  Lukasiewicz or product t-norm. However,
for any f ∈ F , f(x) = 0 only if x = 0, so � is isomorphic to the product t-norm. It follows by
Lemma 2.10 that F is isomorphic to the algebra {f: [0, 1]→ [0, 1], x 7→ x ·a : a ∈ [0, 1]}, the product
monoid.

Case (ii). We may argue similarly to case (i). Namely, F fulfills (T3) and is the translation tomonoid
of a continuous t-norm without proper idempotents. For f ∈ F such that 0 < f < id, we have,
because f(x) = 0 for some x > 0 and also f(1) < 1, fk = 0 for some k. So this t-norm is nilpotent
and hence is isomorphic to the  Lukasiewicz t-norm. F is isomorphic to the  Lukasiewicz monoid.

Case (iii). Let f ∈ F be such that 0 < f < id. Then f is by assumption zero on an interval [0, z],
where 0 < z < 1. Furthermore, f is strictly increasing on [z, 1], and f(1) = 1.

Let F ′ contain 0 as well as the continuous functions f ′ : [0, 1] → [0, 1], where f ∈ F \ {0} and
f ′(x) = 1− f−1(1 − x) for x ∈ [0, 1). Then every f ′ ∈ F is increasing; so F ′ fulfils (T1). Moreover,
let f, g ∈ F \ {0} and x ∈ (0, 1]; then f−1(x), g−1(x) exist and are in (0, 1], whence f−1(g−1(x)) =
(g ◦ f)−1(x) for x ∈ (0, 1], which implies f ′ ◦ g′ = (g ◦ f)′. It follows that (T2) and (T6) holds for F ′.

Note next that, for f, g ∈ F \ {0}, we have f ≤ g iff f ′ ≤ g′. Moreover, 0, id ∈ F ′, and we conclude
that the order of F ′ coincides with the order of F , which proves the first part of (T5). For the
second part of (T5), let f ∈ F \ {0}, x ∈ [0, 1), and 0 < ε < f ′(x); then there is a g ∈ F such that
1 − x ≤ g(y + ε) < f(y + ε), where y = f−1(1 − x). Then f ′(x) − ε ≤ g′(x) < f ′(x), and it follows
that suprema are calculated in F ′ pointwise. Finally, F ′ fulfils (C1), and it is easily checked that F ′

fulfils also (C2).

So F ′ is a set of functions fulfilling all assumptions of this theorem. F ′ belongs to case (i), hence F ′

is isomorphic to the product monoid. Consequently, F itself is isomorphic to the reversed product
monoid.

Case (iv). Fix some v ∈ (0, 1). We may identify any f ∈ F with f(v), and F (v) = [0, v].

We claim that for any f ∈ F , there is a g such that g2 = f . Let g =
∧
{h : h2 ≥ f}. Because

infima calculate pointwise, g(v) =
∧
{h(v) : h2 ≥ f}. Since F consists of continuous and pairwise

commuting functions, we get g(g(v)) =
∧
{h(k(v) : h2, k2 ≥ f}. Since any two functions in F are

comparable, we further conclude g(g(v)) =
∧
{h2(v) : h2 ≥ f} ≥ f(v). Assume g(g(v)) > f(v); then

we may choose h < id is sufficiently close to id such that (g ◦ h)2(v) > f(v) as well, which means
(g ◦ h)2 > f , although g ◦ h < g. It follows g(g(v)) = f(v), so g2 = f .

F consists of strictly increasing continuous functions f such that f(0) = 0 and f(1) = 1 and further-
more, if f < id, f(x) < x for all x ∈ (0, 1). Fix an arbitrary g0 < id. For k ≥ 1, let gk be such that
g2k

k = g0. Then g0 < g1 < . . . < id. Moreover, (gk)k converges uniformly to id. Indeed, let g =
∨
k gk;

then g0 ≤ gk for every k, and g < id would imply g0 = 0 by Lemma 5.10(i); so (gk)k converges to id
pointwise and consequently uniformly.

By Lemma 5.8, there is an order automorphism ϕ : [0, 1]→ [0, 1] such that F̃ = {ϕ−1 ◦ f ◦ϕ : f ∈ F}
contains g̃k : [0, 1] → [0, 1], x 7→ x2( 1

2 )k

for each 0 ≤ k < ω. It follows that the functions x 7→ xr,
where r = 2

m
2n for m,n ∈ N, are dense in F̃ . So we conclude that F̃ consist of the functions x 7→ xr,

where r ∈ {s ∈ R : s ≥ 1}; that is, F̃ is the power monoid. 2

We conclude this section with a note on a possible freedom in the choice of the order automorphism
whose existence is claimed in Theorem 5.11.

Definition 5.12 Let F = {ft ∈ t ∈ [0, 1]} be the product,  Lukasiewicz, reversed product, or power
monoid, where ft, t ∈ [0, 1], is given by Definition 5.7(i), (ii), (iii), or (iv), respectively. Then we call
f 1

2
the middle element of F .
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Lemma 5.13 Let F be a set of functions from [0, 1] to [0, 1] such that conditions (T1), (T2), (T5),
(T6), (C1), and (C2) are fulfilled and moreover fk > 0 holds for any f > 0 in F and any k ≥ 1. Let
h ∈ F be such that 0 < h < id. Then there is an order automorphism ϕ : [0, 1] → [0, 1], such that
F̃ = {ϕ−1 ◦ f ◦ ϕ : f ∈ F} is the product, reversed product, or power monoid and ϕ−1 ◦ h ◦ ϕ is the
middle element of F̃ .

Proof. In view of Theorem 5.11, we may w.l.o.g. assume that F is the product, reversed product, or
power monoid.

Assume first that F is the product monoid, and in accordance with the notation of Definition 5.7(i), let
b ∈ (0, 1) be such that h = fb. We have to show that there is an order automorphism ψ : [0, 1]→ [0, 1]
such that G = {ψ−1 ◦ f ◦ ψ : f ∈ F} coincides with F and ψ−1 ◦ h ◦ ψ = f 1

2
.

Let c = − ln b
ln 2 ; then c > 0. Let ψ : [0, 1] → [0, 1], x 7→ xc; this is an order automorphism of [0, 1],

and we have G = F . Finally, ψ−1(h(ψ(x))) = b
1
c x = 1

2x for x ∈ [0, 1].

So the assertion is proved if F is the product monoid, and the case that F is the reversed product
monoid follows as well.

Finally, let F be the power monoid. In this case, let us reconsider the proof of Theorem 5.11. There,
we have to choose an arbitrary function g0 ∈ F such that 0 < g0 < id; this may be g0 = h. It
was shown that, for the automorphism ψ : [0, 1]→ [0, 1] converting the given algebra into the power
monoid, ψ−1 ◦ g0 ◦ ψ = f 1

2
. This completes the proof. 2

6 The basic tomonoids

In this section, we show that each basic tomonoid associated to a basic interval of a regular l.-c. t-norm
is isomorphic to one of the six tomonoids introduced in Section 5.

We assume � to be a regular l.-c. t-norm, and we fix a frame (a0, ..., ak) for �.

The case of an idempotency interval is easy.

Theorem 6.1 Let (a, b] be a left- or right-idempotency interval. Then (Λ(a,b];≤, ◦, 0(a,b], id(a,b]) is a
scaled left- or right-idempotency monoid, respectively.

Proof. Let (a, b] be a left-idempotency interval; the other case works analogously. Let (u, v] be the
parameter set of (a, b]. By Lemma 4.7(i), every λt ∈ Λ such that t ∈ (u, v] is idempotent. From
(Idp-l) and Lemma 4.5 it follows that Λ(a,b] consists, up to scaling, exactly of the functions (13) in
Definition 5.1(i). 2

We now consider the case of continuity intervals. Some preparations are needed.

Lemma 6.2 Let ε > 0, and let h : [0, 1]→ [0, 1] be a left-continuous function such that (α) h+(x) < x
for all x ∈ (0, 1), (β) h is on its support strictly increasing, and (γ) for all x ∈ [0, 1], x− h(x) < ε.
If, for some k ≥ 1, kε < 1− kε and h is discontinuous at some point in (kε, 1− kε), then hk has at
least k points of discontinuity.

Proof. Assume k ≥ 2, and let h be discontinuous at x1 ∈ (kε, 1 − kε). By assumption, 0 < h(x1) <
h+(x1) < x1. Let x2 = max {x : h(x) ≤ x1}; then x1 < x2. From h(x2) ≤ x1, we conclude
x2 < x1 +ε < 1− (k−1)ε < 1. Note further that h(x2) ≤ x1 ≤ h+(x2). Consider now h2 = h◦h. We
have h2(x2) > x2 − 2ε > (k − 2)ε ≥ 0. Furthermore, h2(x2) ≤ h(x1); (h2)+(x2) ≥ h+(x1) > h(x1);
and, because h+(x2) < x2, also (h2)+(x2) < x1.

So, h2 is discontinuous at x2 ∈ (kε, 1 − (k − 1)ε), and we have 0 < h2(x2) < (h2)+(x2) < x1.
If k ≥ 3, we continue in the same way. Namely, we define x3 = max {x : h2(x) ≤ x1}; then
x2 < x3 < 1− (k − 2)ε < 1. We have h2(x3) ≤ x1 ≤ (h2)+(x3). Concerning h3, we see the following.
We have h3(x2) > 0, and h3(x3) ≤ h(x1); (h3)+(x3) ≥ h+(x1) > h(x1); and, because h+(x3) < x3,
also (h3)+(x3) < x1.
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So, h3 is discontinuous at x3 ∈ (kε, 1− (k−2)ε), and we have 0 < h3(x3) < (h3)+(x3) < x1. Defining
similarly x4, . . . , xk ∈ (kε, 1), we see, for i = 1, . . . , k, that hi is discontinuous at xi.

Because hk(x1) > 0, x1, . . . , xk ∈ supp hk. Moreover, h, . . . , hk are strictly increasing on [kε, 1]. It
follows that hk is discontinuous at x1, . . . , xk. 2

Lemma 6.3 Let G be a set of increasing left-continuous functions from [0, 1] to [0, 1] such that for
every f ∈ G the following holds: (α) f = id or else f+(x) < x for every x ∈ (0, 1), (β) f ≤ g or
g ≤ f for all g ∈ G, (γ) f ◦ g = g ◦ f ∈ G for all g ∈ G, (δ) f has only finitely many discontinuity
points. Assume furthermore that the following condition holds: if [a, b] ⊆ (0, 1) and ε > 0, then there
is an h ∈ G such that h is continuous on [a, b] and x− ε < h(x) < x for x ∈ [a, b]. Then every f ∈ G
is continuous.

Proof. Let g ∈ G be such that 0 < g < id. Let [a, b] ⊆ (0, 1) be such that g(b) > a, and let ε > 0. By
assumption, there is an h ∈ G such that g ≤ h < id, h|[a,b] is continuous, and x − ε < h(x) < x for
x ∈ [a, b].

Let now G(a,b] = {f(a,b] : f ∈ G}, where f(a,b] : [a, b] → [a, b], x 7→ x ∨ a, cf. (12). W.r.t. the
domain [a, b] instead of [0, 1], we see that G(a,b] has all the properties (α)–(δ). So by Lemma 5.10(i),
applied to G(a,b], there is a natural number k ≥ 1 such that hk+1

(a,b] ≤ g(a,b] ≤ hk(a,b]. We have

hk(a,b](x)− g(a,b](x) ≤ hk(a,b](x)− hk+1
(a,b](x) < ε for x ∈ [a, b].

So g(a,b] is the uniform limit of continuous functions and hence continuous as well. It follows that
also g itself is continuous. 2

Lemma 6.4 Let (a, b] be a continuity interval. Then for any f ∈ Λ, we have:

(i) f(a,b] is continuous.

(ii) Either f(a,b] = id(a,b], or else f(a,b](x) < x for all x ∈ (a, b).

Proof. For any f ∈ Λ such that f(a,b] < id(a,b], we have by Lemma 4.8(i) that f+
(a,b](x) < x for all

x ∈ (a, b). This proves part (ii).

For part (i), note first that by Lemma 4.15, (Λ(a,b];≤, ◦, 0(a,b], id(a,b]) fulfills (T2), (T5), and (T6). So
the conditions (α)–(δ) of Lemma 5.10 are all fulfilled. Furthermore, making use of (T5), we may apply
Lemma 2.7 to id(a,b] to conclude that there is for every ε > 0 an h ∈ Λ such that x−ε < h(a,b](x) < x
for x ∈ (a, b). Finally, by Lemma 5.10(ii), every f(a,b] ∈ Λ(a,b] is on its support strictly increasing.

Let now a′, b′ be such that a < a′ < b′ < b. By Lemma 6.2 and the fact that the number of
discontinuity points of the functions in Λ is globally bounded, there is an ε > 0 such that, for all
g(a,b] ∈ Λ(a,b], if x− g(a,b](x) < ε for all x ∈ [a, b], then g(a,b] is continuous on [a′, b′].

So it follows from Lemma 6.3 that Λ(a,b] consists of continuous functions. 2

We arrive at the key result of this section.

Theorem 6.5 Let (a, b] be a continuity interval. Then (Λ(a,b];≤, ◦, 0(a,b], id(a,b]) is isomorphic to the
product or  Lukasiewicz or reversed product or power monoid.

Proof. This follows by Lemmas 4.15 and 6.4 from Theorem 5.11. 2

The parametrization of a basic tomonoid leaves some freedom, which to restrict is the purpose of the
next definition.

Definition 6.6 Let (a, b] be a continuity interval with parameter set (u, v]. We say that Λ(a,b] is
normally parametrized if λu+v

2
projects to the middle element of Λ(a,b].
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Moreover, let (a, b] be an idempotency interval with parameter set (u, v]. We say that Λ(a,b] is
normally parametrized if, for any p ∈ [0, 1], the length of the interval q((1 − p)u + p v) ∩ [a, b] is
p (b− a).

The following definition suggests itself.

Definition 6.7 We say that the regular l.-c. t-norm � is in normal form if, for some k ≥ 1, (i)
(0, 1

k , . . . ,
k−1
k , 1) is the frame for �, (ii) each basic tomonoid Λ( i−1

k , ik ], i = 1, ..., k, is a scaled product
or  Lukasiewicz or reversed product or power or left-idempotency or right-idempotency monoid, and
(iii) each basic tomonoid which is a scaled product or reversed product or power monoid or a scaled
left- or right-idempotency monoid, is normally parametrized.

We associate to � in this case the following characteristic data: (CD1) the number k; (CD2) to
each i = 1, . . . , k, the isomorphism type of Λ( i−1

k , ik ], which is one of product,  Lukasiewicz, reversed
product, power, left-idempotency, or right-idempotency; (CD3) to each i = 1, . . . , k the parameter
set associated to ( i−1

k , ik ], which equals ( i−1
k , ik ] or else (u, jk ] for some j > i and u ∈ ( i−1

k , jk ).

Theorem 6.8 Every regular l.-c. t-norm is isomorphic to a regular l.-c. t-norm in normal form.

Proof. Clearly, we may find an isomorphism such that the basic intervals obtain all the same length;
then condition (i) in Definition 6.7 is satisfied.

By Lemma 4.10, every basic interval is either a continuity or an idempotency interval. So condition
(ii) is satisfiable by Theorems 6.1 and 6.5.

Finally, condition (iii) can be fulfilled by Lemmas 5.3 and 5.13. 2

In the sequel, we will not in general assume that our given t-norm � is in normal form; however, we
will refer to its characteristic data, applicable to the isomorphic t-norm in normal form. Furthermore,
we will say, for instance, that a basic tomonoid Λ(a,b] is of type  Lukasiewicz to express that the algebra
(Λ(a,b];≤, ◦, 0(a,b], id(a,b]) is isomorphic to the  Lukasiewicz monoid.

We may wonder if we can sharpen condition (iii) for the characteristic data. In particular, if (a, b]
and (c, d] are basic intervals with the common opening point d, then we know that the parameter set
associated to (c, d] is (c, d], and that the parameter set of (a, b] is of the form (c′, d] for some c′ < d;
but can we say anything about c′ relative to c? Unfortunately, we cannot; apart from c = c′, both
c′ > c and c′ < c is possible. Examples �6 and �8 in Section 8 will confirm this inconvenience.

Our question is now to which degree the characteristic data of a regular l.-c. t-norm determines the
t-norm up to isomorphism. In the remainder of the present section, we show how to reconstruct from
the characteristic data those pieces of the translations which either coincide with the identity function
or are specified by their projection into the basic tomonoids. The problem how to reconstruct the
remaining pieces of the translations, will be discussed in the subsequent section.

The first concern is to derive from the characteristic data the function q.

Lemma 6.9 Let the characteristic data of the regular l.-c. t-norm � be given, and assume that � is
in normal form. Then the function q is uniquely determined.

Proof. We are given a frame for �; we know about each basic tomonoid if it is a continuity or left-
idempotency or right-idempotency monoid; we know in each case the associated parameter set; and
we know that the parametrization of each idempotency interval is normal. Clearly, this information
determines q. 2

The characteristic data being given, we want to find out next how to associate to a projection of a
translation f into a basic tomonoid the value f(1). In particular, we need to tell when projections
into different basic tomonoids belong to the same translation.

Lemma 6.10 Let (a, b] be a primary basic interval. Then Λ(a,b] is of type product or  Lukasiewicz or
right-idempotency. Moreover, any f ∈ Λ crossing Λ(a,b] is constant on [b, 1]; in particular, f(1) =
f(b) = f(a,b](b).
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Proof. By Lemma 4.10, the parameter set of (a, b] is (a, b], and for every t ∈ (a, b], λt is constant t
on [b, 1]. We have λt(b) = t < b for t ∈ (a, b]; so Λ(a,b] cannot be of type reversed product or power
or left-idempotency. 2

Lemma 6.11 Let (a, b] be a primary basic interval, and let f, g ∈ Λ cross Λ(a,b]. Then f(a,b] = g(a,b]
implies f = g.

Proof. By Lemma 6.10, f(a,b] = g(a,b] implies f(1) = g(1), so f = g. 2

Unfortunately, we cannot generalize Lemma 6.11 to the case of an arbitrary basic interval; see the
t-norm �8 in Section 8. However, the following weaker assertion holds.

Lemma 6.12 Let (a, b] and (c, d] be distinct continuity intervals with the same opening point. Let
f, g ∈ Λ cross both Λ(a,b] and Λ(c,d]. Then f(a,b] = g(a,b] if and only if f(c,d] = g(c,d].

Proof. Assume that f(a,b] = g(a,b], but f(c,d] < g(c,d]. Choose h ∈ Λ such that h(c,d] < id(c,d] is large
enough such that f(c,d] < (h◦g)(c,d]. Since (a, b] and (c, d] have the same opening point, h(a,b] < id(a,b]

holds as well, and consequently (h ◦ g)(a,b] = (h ◦ f)(a,b] < f(a,b]. The assertion follows. 2

We are now going to show how to reconstruct from the characteristic data the functions t 7→ λt(a,b],
where (a, b] is a basic interval. We have to make a restriction; the case that a parameter set exceeds
the basic interval with which it shares the upper bound, shall be excluded.

Lemma 6.13 Let the characteristic data of the regular l.-c. t-norm � be given, and assume that �
is in normal form. Assume that the parameter set of any basic interval is a subset of a basic interval.
Then the functions t 7→ λt(a,b], where (a, b] are the basic intervals, are uniquely determined.

Proof. Let (a, b] be a basic interval. For any projection f(a,b] of a translation f ∈ Λ crossing Λ(a,b], we
shall show that f is by f(a,b] uniquely determined and we shall determine f(1). Clearly, the assertion
will be proved then.

Let (a, b] be an idempotency interval, and let f cross Λ(a,b]. Then f(a,b] is clearly the projection of a
unique translation, and we may derive f(1) from the function q; recall that q is uniquely determined
by Lemma 6.9.

Let (a, b] be a primary continuity interval, and let f cross Λ(a,b]. Then f(a,b] is clearly the projection
of a unique translation by Lemma 6.11, and we have f(1) = f(a,b)(b) by Lemma 6.10.

Let (a, b] be a secondary continuity interval. Let (c′, d] be its parameter set, contained in the primary
basic interval (c, d]. Note that any f ∈ Λ crossing Λ(a,b] also crosses Λ(c,d]; so by Lemma 6.12, if
f, g ∈ Λ cross Λ(a,b), then f(a,b] = g(a,b] iff f(c,d] = g(c,d] iff f = g. In particular, any projection of a
translation crossing Λ(a,b] belongs to a unique translation.

Let now h(a,b] be the middle element of Λ(a,b]. We are going to determine h(c,d] or, equivalently,
h(1) = h(c,d](d). Then, we will be done; indeed, for any k ≥ 2, there is exactly one f ∈ Λ such that
f(a,b]

k = h(a,b] and f(c,d]
k = h(c,d], so that f(1) = f(c,d](d) will be determined as well.

If Λ(a,b] is not of type  Lukasiewicz, Λ(a,b] is, by assumption, normally parametrized. It follows
h(1) = c′+d

2 .

Let Λ(a,b] be of type  Lukasiewicz. By Lemma 6.10, Λ(c,d] is of type product or  Lukasiewicz. If c = c′,
Λ(c,d] cannot be of type product, so it must be of type  Lukasiewicz. Furthermore, in this case, f ∈ Λ
crosses Λ(a,b) iff f crosses Λ(c,d), and it follows that h(1) = c+d

2 . If c < c′, f crosses Λ(a,b) iff
f(c,d](d) ∈ (c′, d), and it follows that h(c,d] is the unique element of Λ(c,d] such that h(c,d]

2 = λc′ (c,d].
2
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7 Building the t-norm from the basic tomonoids

The basic tomonoids and their parameter sets are specified by what we call the characteristic data of
a l.-c. t-norm. In this section, we will continue exploring the question to what extent the knowledge of
the characteristic data is sufficient to determine the whole translation tomonoid and thus the t-norm,
up to isomorphism.

We again assume throughout the section that � is a regular l.-c. t-norm, and we fix a frame (a0, ..., ak)
for �. The characteristic data of � given, we have already established how to determine the function
q and projections of the translations f into the basic tomonoids in dependence from f(1). Now, we
are going to examine what can be said about the remaining part of a translation f ∈ Λ.

Lemma 7.1 Let (b, c] be a continuity interval with the opening point v, and let f cross Λ(b,c]. Let
a < b and d > c.

(i) Assume that λv is constant c on [c, d]. Then f(b,c] is constant on [c, d].

(ii) Assume that λv is constant a on [a, b]. Then, for all x ∈ (b, c] such that f(b,c](x) = b, f(x) ≤ a.

Proof. (i) We have λv(x) = x for x ∈ (b, c] and λv(x) = c for x ∈ [c, d]. Let x ∈ [c, d]. Since
f(c) ∈ (b, c] and f ≤ λv, we have f(x) ∈ (b, c], and it follows λv(f(x)) = f(x). On the other hand,
f(λv(x)) = f(c). The assertion is proved.

(ii) We have λv(x) = a for x ∈ [a, b] and λv(x) = x for x ∈ (b, c]. Let x ∈ (b, c] be such that
f(b,c](x) = b, that is, f(x) ≤ b. Assume f(x) > a. Then f(x) = f(λv(x)) = λv(f(x)) = a. So
f(x) ≤ a. 2

Lemma 7.2 Let (a, b] and (c, d] be continuity intervals such that b < c, and let v be their common
opening point. Let Λ(a,b] be of type product or  Lukasiewicz, let Λ(c,d] be of type  Lukasiewicz or reversed
product, and let λv be constant b on [b, c]. Then, for any f ∈ Λ crossing both Λ(a,b] and Λ(c,d], there
is an e ∈ (c, d] such that the following holds: (i) f is constant f(b) on [b, c]; (ii) f is on [c, e] uniquely
determined by the basic tomonoids Λ(a,b] and Λ(c,d] and the projections f(a,b] and f(c,d]; (iii) f(e) = b
and f+(e) = c.

Moreover, let f ∈ Λ be such that f(d) > a. Then f(d) ∈ (a, b] ∪ (c, d].

Proof. Let f cross Λ(a,b] and Λ(c,d]. By Lemma 7.1(i), f is constant on [b, c]; so (i) is clear.

By Lemma 7.1(ii), f(x) > c or f(x) ≤ b for x ∈ (c, d]. Let e be the unique element in (c, d] be such
that f+(e) = c and f(x) > c if x > e. We have f(e) ∈ [f(b), b]; we claim that f(e) = b. Indeed, let
f(e) < b. Then we may choose a g ∈ Λ such that f(a,b] < g(a,b] < id(a,b] and g(f(e)) < f(c). But by
Lemma 6.12, it follows f(c,d] < g(c,d] < id(c,d], whence g(e) > c and consequently f(g(e)) ≥ f(c). So
(iii) follows.

To show (ii), assume that we are given f(a,b], f(c,d], and the algebras Λ(a,b] and Λ(c,d]. This means
in particular that we know that f(a,b] and f(c,d] belong to the same translation f ; by Lemma 6.12,
we may consequently identify all pairs g(a,b] and g(c,d], where g is any translation crossing Λ(a,b] and
Λ(c,d]. Let x ∈ (c, e). Choose g(c,d] > f(c,d] such that g(e) = g(c,d](e) = x; then f(x) = f(g(e)) =
g(f(e)) = g(b) = g(a,b](b).

Assume next that, for some f ∈ Λ, f(d) ∈ (b, c]. By left-continuity, there is also a d′ ∈ (c, d) such
that f(d′) ∈ (b, c]. But then, for an h < λv such that h(c,d] is sufficiently close to id(c,d], we have
f(h(d′)) > b and h(f(d′) ≤ b. So also the second part is shown. 2

We are ready to show that any translation crossing a primary basic tomonoid, is completely deter-
mined by the information derivable from the characteristic data on base of Lemmas 6.9 and 6.13.

Lemma 7.3 Let f ∈ Λ cross Λ(c,d], where (c, d] is a primary basic interval. Then f is uniquely
determined by the projection f(c,d], the function q and the mappings t 7→ λt(a,b], where (a, b] are the
basic intervals.
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Proof. By Lemma 6.11, f(c,d] is the projection of a unique translation f , and f(1) = f(c,d](d).

If (c, d] is an idempotency interval, f is idempotent and thus the whole function f is determined from
Q(f) = q(f(1)) by 4.5.

Let us assume that (c, d] is a continuity interval. Comparing q(d) with q−(d), we may determine all
continuity intervals whose opening point is d as well; namely, up to the boundary points, these are
the connected components of q(d) \ q−(d).

Let now g ∈ Λ be such that f(c,d] ≤ g(c,d] < id(c,d] and f(c,d] = g(c,d]
k for some k ≥ 1 and g crosses all

the basic tomonoids with opening point d. Again, we have g(1), and so the projections of g into the
basic tomonoids belongs to the given information. We are going to determine from this information
the whole function g; then we have determined f as well, because f(c,d] = gk(c,d] by Lemma 4.14 and
hence f = gk by Lemma 6.11.

Let (a, b] be any of the continuity intervals with opening point d. Let l ≤ a be the largest element
such that either l ∈ q−(d) or, for some k < l, (k, l] is a continuity interval with the opening point d
as well. Given g(a,b], we shall specify g on the interval (l, b].

Note that g(x) ≥ l for x > l. If l = a, then l ∈ q−(d), and g|(l,b] is clearly uniquely determined. Let
l < a and l ∈ q−(d). Then λd is constant l on (l, a], and g(l,b] is specified by Lemma 7.1(ii). If l < a
and l 6∈ q−(d), then there is a continuity interval (k, l] with opening point d, and we conclude that
again λd is constant l on (l, a]. In this case, g(l,a] is determined by Lemmas 7.1 or 7.2.

Similarly, let u be the smallest element in q−(d) such that u ≥ b, and assume that u > b and (b, u]
does not contain any further continuity interval with the opening point d. We want to specify g(b,u].
We have that λd is constant b on (b, u]; so g(b,u] is determined by Lemma 7.1(i).

Finally, if x ∈ q−(d), we clearly have g(x) = x. This finishes the proof that g can be reconstructed
from the information assumed. 2

We get the following about translations crossing a primary basic tomonoid.

Theorem 7.4 Let the characteristic data of the regular l.-c. t-norm � be given, and assume that �
is in normal form. Assume that the parameter set of any basic interval is a subset of a basic interval.
Then for any t contained in a primary basic interval, λt is uniquely determined.

Proof. By Lemma 6.9, q is uniquely determined, and by Lemma 6.13, functions t 7→ λt(a,b], where (a, b]
are the basic intervals, are uniquely determined. Given t ∈ (c, d], where (c, d] is a basic interval with
opening point d, we get f(c,d] from the characteristic data. So may reconstruct the whole translation
λt by Lemma 7.3. 2

In general, however, the characteristic data does not determine the whole translation tomonoid. In
particular, those translations which do not cross any primary basic tomonoid, can be undetermined.
We now turn to cases that the characteristic data is sufficient to specify the t-norm completely.

Definition 7.5 We say that the regular l.-c. t-norm � is locally determined if every regular t-norm
with the same characteristic data is isomorphic to �.

The following criterion, sufficient for a t-norm to be locally determined, is very easy to check and
furthermore applicable for any of those examples from Section 8 which are taken from the literature.

Theorem 7.6 Assume that for each primary basic interval (c, d] such that c > 0, λc restricted to
[0, c] is idempotent. Then � is locally determined.

Proof. We assume to be given the characteristic data and that � is in normal form. Note that the
parameter set of a basic interval cannot exceed the basic interval with which it shares the upper
bound; so Lemma 6.13 applies and we can derive q as well as the mappings t 7→ λt(a,b] for all basic
intervals (a, b].

Let d be any opening point, and assume that we have already determined all translations λs for s > d.
Let d′ be the next smaller opening point, or 0 if there is none; we will show that the translations λs,
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where d′ < s ≤ d, are determined as well. Because 1 is always an opening point, the assertion will
then follow by induction.

By Lemma 4.10, there is a primary basic interval (c, d]. The idempotent translation λd is determined
by Q(λd)) = q(d), and the λt, t ∈ (c, d), are determined according to Lemma 7.3.

Assume that c > d′, that is, c > 0 and c is not an opening point. By assumption, λc|[0,c] is idempotent.
In particular, λc|[0,c] is determined by q(c) according to Lemma 4.5. Let b ≤ c be such that λc is
constant b on [b, c]. Then b < c. Indeed, if b = c, it follows that λc is constant c on [c, 1] and hence
that c is an opening point.

From λc(λc(1)) = λc(c) = b = λb(1), we have λ2
c = λb. It follows λb|[0,c] = λ2

c |[0,c] = λc|[0,c]. So for
t ∈ (b, c], the translations λt depend as follows from λc|[0,c] and the translations λs, s > c. We have
λt(x) = λc(x) for x ∈ [0, c], and λt(x) = λx(t) for x ∈ (c, 1].

Since λ2
b(1) = λb(b) = λc(b) = b = λb(1), the translation λb is idempotent, and it follows that λb is

the largest idempotent below λc. So either λb = 0, or b is an opening point, that is, b = d′. 2

We conclude the section with a further theorem containing conditions which guarantee that the t-
norm is locally determined. These conditions refer to the characteristic data directly, and the theorem
is based on the previous Theorem 7.6.

Theorem 7.7 For the regular l.-c. t-norm �, assume that the following conditions hold:

(LD1) Let (a, b] be a basic interval with the opening point v. If there is a basic interval (b, c] with the
opening point > v, then Λ(a,b] is of type product or  Lukasiewicz or right-idempotency.

(LD2) Let (b, c] be a basic interval with the opening point v. If there is a basic interval (a, b] with the
opening point > v, then Λ(c,d] is of type reversed product or  Lukasiewicz or left-idempotency.

(LD3) Let (b, c] be a basic interval with the opening point v. and let (a, b] and (c, d] be basic intervals
with opening points > v. Then v = c.

(LD4) Let (a, b] and (b, c] be basic intervals with the common opening point v. Then v = c.

(LD5) Let (a, b] and (c, d], where b < c, be basic intervals with the common opening point v. Then
there is a basic interval contained in (b, c] with the opening point < v.

Then � is locally determined.

Proof. Let (c, d] be a primary basic interval such that c > 0. We shall prove that λc|[0,c] is idempotent;
the assertion then follows by Theorem 7.6.

The basic interval located immediately left from (c, d] may have an opening point < d, = d, or > d.
Accordingly, we have to consider the following cases.

Case (i). There is a b < c such that (b, c] is a basic interval with opening point < d. Then
λc|(b,c] = id|(b,c].
Case (ii). There is a b < c such that (b, c] is a basic interval whose opening point is d as well. If then
b = 0, we have λc|[0,c] = 0|[0,c]. Let b > 0. If then there is a basic interval (a, b] with opening point
< d, we have that λc|(a,b] = id|(a,b] and λc|(b,c] is constant b. Else, as a consequence of (LD4), there
an a < b such that λd is constant a on (a, b]. In this case, by (LD2), (b, c] is of type reversed product
or  Lukasiewicz or left-idempotency. If a = 0, we have λc|[0,c] = 0|[0,c]. Otherwise, by (LD5), there is
a basic interval (z, a] with opening point < d, and we have λc|(z,a] = id|(z,a] and λc|[a,c] is constant a.

Case (iii). The idempotent translation λd is constant b on (b, c] for some b ≤ c. By (LD2), (c, d] is
of type reversed product or  Lukasiewicz or left-idempotency. If b = 0, λc|[0,c] = 0|[0,c]. Otherwise, let
a < b be such that (a, b] is a basic interval. By (LD5), (a, b] has an opening point < d, and by (LD2),
(c, d] is of type  Lukasiewicz. It follows that λc|(a,b] = id|(a,b] and λc|(b,d] is constant b.

We consider next an arbitrary further basic interval (a, b] with opening point d.

Case (i). For some b′ > b, (b, b′] is a basic interval with opening point d. Then, by (LD4), (b, b′] =
(c, d], which is Case (ii) above.

27



Note that there cannot be a basic interval with opening point d located on the left side of (a, b]; this
would contradict (LD4).

Case (ii). The idempotent translation λd is constant z on (z, a] for some z < a. By (LD3) and (LD5),
z = 0 or there is a basic interval (y, z] with opening point < d, and furthermore there is a basic interval
(b, c] with opening points < d. By (LD1), (a, b] is of type reversed product or  Lukasiewicz or left-
idempotency, and it follows that λc is the identity on (y, z], respectively, and (b, c] and is constant z
on (z, a].

Case (iii). The idempotent translation λd is constant b on (b, c] for some c > b. Then we argue
similarly to Case (ii).

In view of Lemma 4.5, we conclude that λc, restricted to [0, c], is idempotent. 2

We will give in a subsequent section examples of regular l.c. t-norms which, by fulfilling the conditions
(LD1)–(LD5), are locally determined. All t-norms explicitly defined in [Jen4] are included.

The description of a general regular l.c. t-norm requires more information than what is contained
in its characteristic data. We will not further discuss this problem here. However, we may say
that even in the general case, the basic tomonoids determine the rest of the translation tomonoid
to a high extent. Namely, for a pair of two basic intervals (a, b] and (c, d], we may consider the set
H

(c,d]
(a,b] : (a, b]→ (c, d], x 7→ (f(x) ∨ c) ∧ d, in analogy to Definition 4.12. In dependence of the basic

tomonoids Λ(a,b] and Λ(c,d], there is a set H̄ of functions from (a, b] to (c, d], totally ordered w.r.t. the
pointwise ordering, such that H is always a subset of H̄; cf. the proof of Lemma 7.2.

8 Examples of regular l.-c. t-norms

We shall give several examples of regular l.-c. t-norms, together with their characteristic data.

First to mention, the  Lukasiewicz, the product, and the Gödel t-norm are clearly regular. Each of
these t-norms has one basic interval, namely (0, 1], with parameter set (0, 1]; and the basic tomonoid
belonging to it, is the full translation tomonoid.

The following definitions are formally incomplete; they are to be completed by using the commuta-
tivity.

The rotated product t-norm [Jen2] is given according to

a�1 b =


a+b−1
2b−1 if a ≤ 1

2 , b > 1
2 , and a+ b > 1,

2ab− a− b+ 1 if a, b > 1
2 ,

0 if a+ b ≤ 1

for a, b ∈ [0, 1]. There are the two basic intervals (0, 1
2 ] and ( 1

2 , 1]; Λ(0, 12 ] is of type reversed product
monoid, and Λ( 1

2 ,1]
is of type product monoid; the common parameter set is ( 1

2 , 1].

The nilpotent minimum t-norm [Fod] is defined by

a�2 b =

{
a ∧ b if a+ b > 1,
0 else

for a, b ∈ [0, 1]. There are again two basic intervals, (0, 1
2 ] and ( 1

2 , 1]; Λ(0, 12 ] is of type left-idempotency,
and Λ( 1

2 ,1]
is of type right-idempotency; the common parameter set is ( 1

2 , 1].

We proceed with the t-norms having three basic intervals. The t-norm J [Jen1] is given by

a�3 b =


a ∧ b if a+ b > 1, and a ≤ 1

3 or a > 2
3 ,

a+ b− 2
3 if a+ b > 1 and 1

3 < a, b ≤ 2
3 ,

0 if a+ b ≤ 1

for a, b ∈ [0, 1]. We have the basic intervals (0, 1
3 ], ( 1

3 ,
2
3 ]; and ( 2

3 , 1]; Λ(0, 13 ] is of type left-idempotency
monoid, Λ( 1

3 ,
2
3 ] is of type  Lukasiewicz monoid, and Λ( 2

3 ,1]
is of type right-idempotency monoid; the
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common parameter set of the idempotency intervals is ( 2
3 , 1], and the middle one is parametrized by

( 1
3 ,

2
3 ].

The rotation-annihilation of two  Lukasiewicz t-norms [Jen3] is defined according to

a�4 b =



a+ b− 1 if a, b > 2
3 and a+ b > 5

3 ,

or a ≤ 1
3 , b >

2
3 and a+ b > 1,

2
3 if a, b > 2

3 and a+ b ≤ 5
3 ,

a+ b− 2
3 if 1

3 < a, b ≤ 2
3 and a+ b > 1,

a if 1
3 < a ≤ 2

3 and b > 2
3 ,

0 if a+ b ≤ 1.

for a, b ∈ [0, 1]. We have the basic intervals (0, 1
3 ], ( 1

3 ,
2
3 ]; and ( 2

3 , 1]; all three basic tomonoids are of
type  Lukasiewicz; the common parameter set of the marginal intervals is ( 2

3 , 1], and for the middle
one it is ( 1

3 ,
2
3 ].

Let us now consider the following t-norm; let

a�5 b =


2ab− a− b+ 1 if a, b > 1

2 ,
1
2 (2a)

1
2b−1 if a ≤ 1

2 and b > 1
2 ,

0 if a, b ≤ 1
2 .

Then there are two basic intervals (0, 1
2 ] and ( 1

2 , 1]; Λ(0, 12 ] is of type power monoid, Λ( 1
2 ,1]

is of type
product monoid; the common parameter set is ( 1

2 , 1].

The examples so far show that all six different types of basic tomonoids may actually arise.

Next, we we consider a t-norm similar to �4; however, when imagining the translations in decreasing
order, we observe that the “speed” with which the lower  Lukasiewicz-type basic tomonoid “grows” is
doubled.

a�6 b =



a+ 2b− 2 if a ≤ 1
3 , b > 5

6 , and a+ 2b > 2
0 if a ≤ 1

3 , b > 5
6 , and a+ 2b ≤ 2

0 if a ≤ 1
3 and b ≤ 5

6

a if 1
3 < a ≤ 2

3 and b > 2
3 ,

a+ b− 2
3 if 1

3 < a, b ≤ 2
3 and a+ b > 1,

0 if 1
3 < a, b ≤ 2

3 and a+ b ≤ 1,
a+ b− 1 if a, b > 2

3 and a+ b > 5
3 ,

2
3 if a, b > 2

3 and a+ b ≤ 5
3

for a, b ∈ [0, 1]. We have the same characteristic data like for �4; however, the parameter set of the
lower  Lukasiewicz interval is ( 5

6 , 1] rather than ( 2
3 , 1].

The t-norm �6 shows that, for a regular l.c. t-norm, if d is the opening point of the basic intervals
(a, b] and (c, d], then the parameter set of (a, b] may be properly contained in (c, d], which is the
parameter set of (c, d].

Finally, we give two examples of regular l.-c. t-norms which are not covered by Theorem 7.7. The
following variation of Hájek’s t-norm [Haj2] does not fulfil the condition (LD4) of Theorem 7.7. Let

a�7 b =



a(3b− 2) if a ≤ 1
3 and b > 2

3 ,

3ab− 2a− b+ 1 if 1
3 < a ≤ 2

3 and b > 2
3 ,

3ab− 2a− 2b+ 2 if a, b > 2
3 ,

0 if a ≤ 1
3 and b ≤ 2

3 ,

3ab− a− b+ 1
3 if 1

3 < a, b ≤ 2
3

for a, b ∈ [0, 1]. We have here three basic intervals, each of which is of type product and has the
parameter set ( 2

3 , 1].
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Our last t-norm exemplifies the situation described in Lemma 7.2. It does not fulfil condition (LD5).
Let

a�8 b =



2ab if a, b ≤ 1
4 ,

a
2 if a ≤ 1

4 and 1
4 < b ≤ 1

2 ,

24b−3a if a ≤ 1
4 and 1

2 < b ≤ 3
4 ,

a if a ≤ 1
4 and b > 3

4 ,
1
8 if 1

4 < a, b ≤ 1
2 ,

24b−5 if 1
4 < a ≤ 1

2 and 1
2 < b ≤ 3

4 ,

4ab− 3a− b+ 1 if 1
4 < a ≤ 1

2 and b > 3
4 ,

24(a+b)−7 if 1
2 < a, b ≤ 3

4 and a+ b ≤ 5
4 ,

a+ b− 3
4 if 1

2 < a, b ≤ 3
4 and a+ b > 5

4 ,

a if 1
2 < a ≤ 3

4 and b > 3
4 ,

4ab− 3a− 3b+ 3 if a, b > 3
4

for a, b ∈ [0, 1]. Here, we have the four basic intervals (0, 1
4 ], ( 1

4 ,
1
2 ], ( 1

2 ,
3
4 ], ( 3

4 , 1]. The common pa-
rameter set of the intervals ( 1

4 ,
1
2 ] and ( 3

4 , 1] is ( 3
4 , 1]; both Λ( 1

4 ,
1
2 ] and Λ( 3

4 ,1]
are of type product.

Furthermore, the parameter set of ( 1
2 ,

3
4 ] is ( 1

2 ,
3
4 ], and Λ( 1

2 ,
3
4 ] is of type  Lukasiewicz. Finally, Λ(0, 14 ]

is of type product; and the parameter set is (0, 3
4 ]. Note the remarkable fact that λt crosses Λ(0, 14 ] iff

0 < t < 3
4 ; but λt|(0, 14 ] = λ 1

4
|(0, 14 ] for any t ∈ [ 14 ,

1
2 ].

So the t-norm �8 reveals inconvenient facts about regular l.c. t-norms. Namely, if d is the opening
point of the basic intervals (a, b] and (c, d], where b ≤ c, then the parameter set of (a, b] may prop-
erly contain (c, d], the parameter set of (c, d]. Furthermore, for a continuity interval (a, b] with the
parameter set (u, v], the mapping (u, v]→ Λ(a,b], t 7→ λt(a,b] may be not injective.

9 Examples of non-regular l.-c. t-norms,
and the arithmetic mean of t-norms

Let us finally reconsider the case that a l.-c. t-norm is not regular, but has few continuity points.

For some p ∈ (0, 1
3 ], let

a�(p) b =


a ∧ b if a > 2

3 or b > 2
3 ,

p if 1
3 < a, b ≤ 2

3 ,

0 if a, b ≤ 2
3 , and a ≤ 1

3 or b ≤ 1
3

for a, b ∈ [0, 1]. Then for any p, �(p) is a l.-c. t-norm, and �( 1
3 ) is the t-norm mentioned in Section

3. We have q(t) ⊇ [0, 2
3 ] for each t > 2

3 , but q(t) = {0} for t ≤ 2
3 ; in particular, �(p) is not regular. It

is moreover evident that the discontinuity points of any translation based on �(p) are among { 1
3 ,

2
3}.

We can derive a statement concerning a problem proposed by Alsina, Frank, and Schweizer [AFS,
Problem 5]:

Problem. Are there two distinct t-norms whose pointwise calculated arithmetic mean is a t-norm
again?

Certain versions of this problem have been studied in [Jen5] and in [MeMe].

Now, w.t.r. the above example, given r, s ∈ (0, 1
3 ], we have

a�( r+s2 ) b =
1
2

(a�(r) b + a�(s) b)

for a, b ∈ [0, 1]. So �( r+s2 ) is the arithmetic mean of �(r) and �(s). We have shown: The arithmetic
mean of two distinct l.-c. t-norms can be a l.-c. t-norm again.
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10 Conclusion

We defined a special kind of left-continuous t-norms, called regular l.-c. t-norms. We showed that the
t-norm algebras based on a t-norm in this class, generate the variety of MTL-algebras.

We studied the totally ordered monoids ([0, 1];≤,�, 0, 1) based on a regular l.-c. t-norm. To this end,
we analyzed their translation semigroup, which, geometrically, contains the t-norm’s vertical cuts. We
have shown that we may partition the real unit interval into a finite number of half-open subintervals
such that the translations restricted appropriately to one of these subintervals, form a tomonoid which
belongs to one out of six different isomorphism types. We associated to each regular l.-c. t-norm its
characteristic data, which contains the mentioned isomorphism types of all constituents together with
the order in which the constituents are traversed when proceeding from larger to smaller cuts. The
characteristic data determines the t-norm to a high extent, and under an easily checked condition,
which is met in case of the well-known t-norms, even completely.

Our work may be continued along various different lines. The most natural issue is to find a kind
of converse for Theorem 6.8. The characteristic data of a regular l.-c. t-norm cannot be arbitrary,
but must obey certain rules; the question is how these rules could look like. Next, the part of the
translation tomonoid which is not determined by the characteristic data is not arbitrary; but to find
the exact ways allowed for the construction of a t-norm is not an easy problem. Another project is to
check how known constructions, like rotation and annihilation, translate into rules within the present
framework.

Furthermore, it is likely to be possible that our approach can be generalized to cover more l.-c. t-
norms. Consider the examples of t-norms which do not have few discontinuity points, given in Chapter
3. We conjecture that it is not too difficult to generalize our method to include also Hájek’s t-norm.
Hliněná’s t-norm seems to be a difficult case though – in accordance with Hliněná’s own decision to
call her article “On a peculiar t-norm”. Note however that Hliněná’s t-norm is po-group representable
[Vet1] and hence might be covered in the framework of a more algebraically oriented approach.

In general, however, some care might be in order when weakening the notion of regularity; a guideline
could be that the l.-c. t-norms similar to our strange example from Section 9 must remain excluded.
Note that in case of this example, you may change the translation tomonoid in a certain area practi-
cally arbitrarily, and the result is still the translation tomonoid of a l.-c. t-norm; this is the situation
to be avoided.

Finally, the most ambitious project would be to develop the corresponding theory on purely algebraic
ground: a theory of “regular MTL-algebras”. Given the difficulties which had to be overcome when
the theory of continuous t-norm algebras was generalized to a structure theory for BL-algebras, this
might be considered the most difficult problem.

The list could easily be enlarged. All in all, the described formalism offers a kind of playground for
the construction of l.-c. t-norms; it is up to the creativity of anybody interested, to find new and
interesting functions suitable to interpret the conjunction in fuzzy logics.
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[Haj2] P. Hájek, Observations on the monoidal t-norm logic, Fuzzy Sets Syst. 132 (2003), 107 -
112.

[HoLa] K. H. Hofmann, J. D. Lawson, Linearly ordered semigroups: Historical origins and A. H.
Clifford’s influence, in: K. H. Hofmann et al. (eds.), “Semigroup theory and its applications”
Cambridge University Press, Cambridge 1996; 15 - 39.
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