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Abstract

Partial Boolean algebras (PBA's) were introduced by KocdmahSpecker
as an algebraic model reflecting the mutual relationshipsranguantum-
physical yes-no tests. The fact that not all pairs of testscampatible was
taken into special account.

In this paper, we review PBA's from two sides. First, we gatiee the
concept, taking into account also those yes-no tests whiebased on un-
sharp measurements. Namely, we introduce partial MV-abgelband we
define a corresponding logic.

Second, we turn to the representation theory of PBA's. Inagyato the
case of orthomodular lattices, we give conditions for a P8Ad isomorphic
to the PBA of closed subspaces of a complex Hilbert spaceebyewe
do not restrict to purely algebraic statements; we rathes greference to
conditions involving automorphisms of a PBA.

We conclude outlining a critical view on the logico-algebrpproach to
the foundational problem of quantum physics.

Keywords:Partial Boolean algebras, partial MV-algebras, quantigitio
Hilbert space

1 Introduction

With this note, we intend to contribute to a research linauadowhich it has be-
come calm during the last years. During many years, it waaithef an ambitious
program to justify the basic model of quantum physics on lesefew basic and
easily comprehensible principles. The Hilbert space, twbitherwise seems to be
chosen ad hoc, was to be reconstructed in an algebraic ol@yieal framework.
Understandably, the research focused on the set of twedaheasurements as-
sociated with some quantum-physical arrangement. A Hikmace model of the



experiment being given, the yes-no tests are alternativielgielled by the closed
subspaces, or more generally by the effects, that is, bydbigiye operators below
the identity.

The closed subspaces form an orthomodular lattice (OMLJ this fact led to an
extensive research about this, admittedly fascinating] &f algebra, about which,
by the way, numerous important problems are still open. Heweas apparent
from the work of [6], the weak point about the OML-based apptois the fact
that to apply lattice-theoretical operations in the algaheans to combine possibly
incompatible experiments. Already in 1965, Kochen and Bgemade an alter-
native proposal; they endowed the set of closed subspaaesiifiiert space with
the structure of a partial Boolean algebra. The idea is tmalattice-theoretical
operations only in case that the two subspaces commute.ovienghey defined a
logic in which exactly those propositions are derivablecktire valid in all partial
Boolean algebras.

Compared to the approach based on OML's, the price to payrigicly high; to
deal with partial algebras is in general quite difficult. §might have been the rea-
son why the Kochen-Specker approach did by far not achievedame amount of
attention as later the OML-based one. However, the argusvaeatconvincing, and
the unpleasant aspects of the partiality of operationg@ifitct a basic principle in
guantum physics.

We review in this paper partial Boolean algebras, and weneixtiee theory slightly
into two directions. First, rather than studying the set losed subspaces of a
Hilbert space, we may, according to the more general appraansider the set of
effects. An effect is a self-adjoint operatbrof a Hilbert space such that< £ <

I, wherel is the identity operatorf models a generalized yes-no measurement.
The set of effects might be consider the “fuzzified” courgerpf the set of closed
subspaces.

The set of effects was given an algebraic structure acagtdian approach of [5],
who introduced effect algebras. In this case, it becameaidable to work with

partial algebras; effect algebras are based on an additidchvis not defined for
all pairs of elements. The standard effect algebra is thefddilbert space effects
endowed with a partial addition defined as the usual sum ofatges whenever
the result is an effect again. Dalla Chiara and Giuntiniddtrced in [3] the propo-
sitional logic UPaQL, which is based on effect algebras; elggmwith respect to
these algebras, the calculus was shown to be sound and ¢cemple

Now, the critics due to Kochen and Specker's work concertiggset of Hilbert
space subspaces, apply for the generalized approach asNaetiely, two effects
may be connected - namely, their sum may be formed - evenstthéfects rep-



resent incompatible experiments. Indeed, any two effddisey commute or not,
may each be multiplied b§ to become summable.

We propose here to treat the set of effects in a way analogaie tway proposed
in [6]. We introduce operations in analogy to MV-algebragt tiefined only in
the case that two effects commute. We are then led to themofia partial MV-
algebra. We may furthermore formulate a logic for these lakge and show a
completeness theorem.

The second part of our note on partial Boolean algebras casitkee old question

how to get the Hilbert space structure from natural postslatThe aim to iden-

tify the standard Hilbert space, that is, tRgdimensional complex Hilbert space,
with an appropriate logic, has failed. However, the aim tarabterize the standard
Hilbert space by pure algebraic means was achieved, asidetfre excusable re-
striction that an infinitary condition must be allowed,; tlomditions are formulated

for OML’s. Certain of these conditions are quite cumberspnesvever, there is an

alternative way, not formulated in an algebraic language tt be considered at
least as natural as the lattice-theoretical conditions:ettistence of certain auto-
morphisms. This was, in particular, pointed out in [9, 8].

We give a representation theorem along these lines forgb@tiolean algebras.
To this end, we work with a condition which has been calledditaity in [1],
meaning to assume that our partial algebra is partiallyreaieThis is not a crit-
ical point, however, since it is not the partial order, b thttice structure which
is sensitive to interpretational questions. In particuhee do not assume the exis-
tence of infima and suprema; this is rather a consequence abtiditions on the
existence of automorphisms.

We conclude with a general evaluation of the quantum logmatjuantum struc-
tural, approach to the foundations of quantum theory.

2 Partial Boolean algebras

Let H be a complex Hilbert space; |€t(7) be the set of closed subspaces of
H. We can endow”'(H) with an algebraic structure as follows. The relation

is the compatibility relation orC'(H); two subspacesi, B € C(H) are called
compatible if there are mutually orthogonal elemetgs By, C € C(H) such that

A =[ApUC]andB = [By U CJ; by [ X], we denote the smallest closed subspace
containingX C H. Moreover, for two compatible subspacésB € C(H), define

A N, B = An B and leaved N, B undefined otherwise. Finally, put- =

{a € H: a Lovforalv e A}. Then, the structuréC(H); ©,N,,+, {0}, H) is



the prototypical example of the following notion, introgakin [6].

We note that here and in the sequel, our definitions might igatst modified
compared to the original ones, but never in an essential way.

Definition 2.1 The structuré L; &, A, —, 0, 1) is called gpartial Boolean algebra
or PBAfor short, if the following conditions are fulfilled:

(PB1) < is a symmetric and reflexive binary relation. Elementndb such
thata < b are calledcompatible

(PB2) A is a partial binary operations, and forb € L, a A b is defined if and
only if a & b. Moreover,— is a total unary operation.

(PB3) LetB be afinite subset af such that: ¢ b for anya, b € B. Then any
term formed from elements dB and the constant8, 1 by means of
the operationg\ and— is defined. Let3 be the set containing all these
elements; them O b for all a,b € B, and(B; A, —,0, 1), is a Boolean
algebra.

In the sequel, when we say that an equation containing papaations holds, we
mean that the partial operations are defined and the eqhalit.

Note that we use only the infimum, and not the supremum, as aroperation of
a PBA. We will rather treat expressions/ b as defined by-(—a A —b). Note that
then,a Vv b is defined exactly it A b is.

(PB3) could certainly be formulated more scarcely; sineedéfining equations of
Boolean algebras involve maximally three elements, (PB8)dcbe replaced by
the requirement that any three mutually compatible elemauiifil the equations

valid for Boolean algebras and that Boolean combinatiomsgwe compatibil-

ity. We preferred the more detailed version, which moreatliyeexpresses the
intention: any finite subset of mutually compatible elerseggnerates a Boolean
algebra.

For a PBAL, it is in general hardly possible to derive any global propein
particular, for two arbitrary elementg b € L, a A b anda Vv b are not defined
in general, sd. need not be a lattice. Even worse,need not even be partially
orderable in some natural way. Only in the second half ofghjzer, we will use a
modification of the notion of a PBA according to [1], such thatartial order will
be guaranteed.

Clearly,(C(H); ¢, Mo, +, {0}, H) is a PBA.



We may now define a logic for PBAs, to be calle&B. We follow [6] as closely
as possible. We first define the languagé.BB.

Definition 2.2 An expression built up from a seb, 1, . . . of propositional vari-
ablesand theconstant9) and1 by means of the binary operatignand the unary
operation— is called aproper propositionof LPB. We denote the set of all proper
propositions byF,,. Moreover, an expression of the foun> 3, wherea, 8 € F,

is called acompatibility propositionof LPB. We denote the set of compatibility
propositions byF.. We defineF = F, U F. as the set opropositionsof LPB.

We will use the usual abbreviations in propositiond. BB. Namely, ifa, 6 € F,,
aV g stands for(—a A =(); a—fis—aV G; anda < gis (a— ) A (f— «).
Furthermore, forv, . .., ax, wherek > 0, the expressior® (aq, . .., oy ) replaces
the seto; G o, 1 <@ < j < k, of compatibility propositions. In particular, if
k = 0, this is the empty sequence;kif= 1, we drop the brackets and write a1,
meaninga; ¢ ag; O (ag,a9) isa; G ag, a1 O ag, as O ag; and so on.

We now define which formulas are valid in all PBA's. Validityin case of a partial
algebra not a straightforward notion; the definition goefolsws.

Definition 2.3 Let (L; ¢, A, —,0,1) be a PBA. Then a partial mapping 7, —
L is called arevaluationfor LPB if, for any v € F,, the following conditions are
fulfilled:

(1) If v is atomic,v(y) is defined. Moreover(0) = 0 andv(1) = 1.

(2) If v is of the forma A 3, thenu(~) is defined if and only ifv(«) is defined
andv() is defined and(«) < v(5) holds. In this case;(y) = v(a) Av(S).

(3) If v is of the form—«, thenuv(~) is defined if and only ifv(«) is defined. In
this casep(y) = —wv(a).

Leta € F,. An evaluationv being given, is said to besatisfiedby v if v(«) is
defined and equalk « is calledvalid in LPB if « is satisfied by any evaluatian
such that(«) is defined; in this case, we write «.

Moreover, leto, 5 € F,. An evaluationv for LPB being givena < 3 is said to be
satisfied by if v(a)) andv(3) are defined and(«) < v(3) holds.

Note the role of propositions of the forr} «: It is satisfied by an evaluationiff
v(«) is defined. Clearly « is valid for anya.
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We next define proofs of the logid®B. By a Boolean tautology, we mean a proper
proposition provable in classical propositional logic; assume a proof system to
derive the Boolean tautologies to be given.

Definition 2.4 For any proper propositions, aq, ..., 3, the following are the
rules ofLPB:

adp adf ey alp O (o, 3,7)
(Rl)ﬂOa’ (R2) a0y (Rs)aO—ﬁ’ (R4) ————

ad BNy’
O(ag, ..., a) .
(R5) ———————=, wherek > 0 andy is any Boolean tautology

olag,...,ag)
a a—f
R6) —
(R6) 3
A finite sequencé ey, . .., i) of propositions is called an-admissible proofn

LPB if, foranyi = 1,..., k, eithery; is of the form & 8 andg is a subformula of
a, or @; is of the form3 &+ and 8 A « is a subformula ofy, or ¢; is derived by
means of one of the rules (R1)-(R6) from propositions ameng. ., v; 1.

A proper proposition is calledprovablein LPB if there is ann-admissible proof
whose last element is; in this case, we writé .

The main result of [6] is the following. We will reproduce in@gh way the proof
from [6], just detailed enough to make additional explasraiin case of the more
general logic discussed below unnecessary.

Theorem 2.5 The logicLPB is sound and complete: Any proper propositiotis
provable if and only if it is valid.

Proof: Assumel- «, and letv : F, — L be an evaluation such thata) is
defined. We have to show thata) = 1. By assumptionyp is defined for all
subformulas oty, and for any pair of subformulgs and~ of a connected b\,
we havev(3) ¢ v(y). It follows that all compatibility propositions in a proof e
are satisfied by. Moreover, every rule obviously preserves satisfiabiligyb The
claim follows.

Assume that/ a. We have to construct a PBA and an evaluation : F, — L
such that(«) is defined, but not equal tb Call anyy € F, a-provable if there
is an a-admissible proof whose last elementgs Note that, by assumptiorny
is not a-provable. Let(2 be the set of all proper propositiogssuch that$ ¢ is



a-provable. Therf) contains all subformulas ef. Furthermore, we easily check
that0, 1 € €2, and thatx € 2 implies—a € (.

Forp,v € Q,lety ~ ¢ if ¢ < 9 is a-provable. Thenv is an equivalence
relation on(2. Indeed, from< ¢, we derivep «— ¢ by (R5). Furthermorep ~ 1
implies < (¢,v) by (R2). So fromy ~ 1, we may derive) ~ ¢ by (R5) and
(R6). Similarly,ip ~ v andy ~ £ imply < (p,,£), whencep ~ ¢ follows.

~ is compatible with-. Indeed, letp, ¢ € Q; from < (¢, ¥) we derive< (¢, —p, 1, 1)),
and consequently ~ 1) implies—p ~ —). Similarly, ~ is compatible withA:

for ¢, 4, & € Q such thatp ¢ andy ~ £, we havep G £ andp Ay ~ p A€ To

see this, note tha® (¢, ¥, £) in this case, whence Ay < ¢ A £ is derivable by

(R5) and (R6). Finally~ is compatible with<. Indeed, ifp & andy ~ &, we
havey < € by (R2).

Let ([Q]; ¢, A, —,[0],[1]) be the partial algebra induced by. Clearly, [@] is a
partial Boolean algebrav : F, — [Q], ¢ — [¢] is an evaluation such that
v(a) = [o] is defined, but not equal {a@]. We concludé# «. O

What makes Kochen and Specker's completeness proof sorhewhsual is the
fact that the PBA constructed to show that a non-provabl@gsition « is not
valid, depends ow. In fact, there seems to be no way to construct a reasonable
analog of the Lindenbaum-Tarski algebra, just like in theecaf common total
logics, without any special compatibility assumptions.

3 Partial MV-algebras

Again, let’H be a complex Hilbert space; in this section, we shall be aorck
with the set of effects of:

EH) = {E € Bsa(H): 0< E <1},

whereBsy(H) is the set of bounded self-adjoint operators6f0 is the zero oper-
ator and! is the identity operator. According to the standard apgrpé¢H) is en-
dowed with a partial binary operation as follows: For tweet6F andF', £+ F
is defined as the usual sum of operators if the result is actedfgain, otherwise
E + F remains undefined. We then get the standard effect aldélta); +, 0, I),
a partial algebra intensively discussed in the literatsee; e.g. [4].

Here, we proceed differently. First of all, we wish to undensl effects as fuzzy
sets. Namely, lefv € £(H); then there is a compact, second countable Haus-
dorff spaceX endowed with a Radon integral, and there is an isomorpliism
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L?(X) — H such that, for am € £, we haveE = UM,U~!, where
M,: L*(X) — L*(X), v e,

that is, M, is the pointwise multiplication operator. (See e.g. [11F)nce the
spectrum ofF is in [0, 1], e is actually (up to a set of measure zero) a fuzzy set on
X: e maps fromX to [0, 1].

Clearly, for arbitrary two effects, a joint representatimfrthis kind is impossible.
However, what we have in mind is to connect pairs of effecty amcase they
are compatible, that is, if they commute. Létbe a set of effects such that any
two of them commute; then we have a representation as bédaraely, there is a
compact, second countable Hausdorff spacendowed with a Radon integral, an
isomorphismU : L?(X) — H, and for eachE € A there is are(E) € £ such
that E = UM, U~

This representation being given, we may introduce an aégebtructure on the set
of fuzzy sets{e(E) : E € A}. To this end, assume that is a maximal set of
pairwise commuting effects. We choose a standard conpmétom fuzzy logic,
the Lukasiewicz t-norm, and the standard negation:

©:[0,1]> = [0,1], (s,t) — (s+t—1)VO0, (1)
—-:[0,1] = [0,1], t—1—¢. (2)

These operations apply pointwise to fuzzy sets; we will iilgesame notation in
this case. So for a pait, ' € A, we may consider their representatioh
and Mgy in L?(X), and we may associate to them the Operamypyoe(r); the
corresponding operator i will be denoted byE ® F'. Similarly, we may associate
to M, the operatod\/_.gy; the corresponding operator i will be denoted by
—FE. Note thatE' ©® F' and—FE are effects again. Furthermore, the definitiorcof
and- on the set4 does not depend on the representatibof H.

Similarly like in the case of the closed subspaces, we erfid) with a compat-
ibility relation; we define
ECF if EandF commute.

ForanyE, F € (£(H), we defineE © F' as above ifE & F, and we letE © F
undefined otherwise. Similarly, for ary € (£(H), we define-E as above. The
resulting partial algebr&s (H); <, ®,—,0,1) shall be called the standard partial
MV-algebra.

We recall next the notion of an MV-algebra. A structiie A, V,®,—,0,1) is an
MV-algebra if (L; A, V,0,1) is a bounded lattice,L; A, vV, ®, 1) is an/-monoid,
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— is an involutive order-reversing unary operation, andb = a ® —(a ® —b) for
anya,b € L. For a detailed exposition on MV-algebras, see e.g. [2].

In MV-algebras, the lattice-theoretic operationsandV/ are both term-definable
from the remaining operations. This is clear in case of tfimimm, and the supre-
mum is definable from\ and—. From now on, we will not considex andV as
own operations; an MV-algebra will be a structure of the f@imn®, —, 0, 1).

The standard examples of MV-algebras are sets of fuzzylsetsome non-empty
setX be given, and. consist of fuzzy sets of, that is, functions.: X — [0, 1].
Assume furthermore thak is closed under the operatiors and — and thatL
contains the constant zero fuzzy 8eand the constant one fuzzy Setlt is easily
checked thatZ; ®, -, 0, 1) is an MV-algebra. By applying the mentioned formulas
for the discarded operatiomsandV, it may also be seen that the infimum is/in
simply the pointwise minimum, and the supremum is the pdsgwnaximum.

Just like Boolean algebras generalize to partial Boolegelaihs, MV-algebras
generalize to partial MV-algebras.

Definition 3.1 The structurd L; ¢, ®, -, 0, 1) is called gpartial MV-algebraif the
following conditions are fulfilled:

(PM1) < is a symmetric and reflexive binary relation. Elementndb such
thata b are calledcompatible

(PM2) ©is a partial binary operations, and ferb € L, a ® b is defined if and
only if « © b. Moreover,— is a total unary operation.

(PM3) LetM be a finite subset of such thata &b for anya,b € M. Then
any term formed from elements 8f and the constants, 1 by means
of the operations> and- is defined. LetM be the set containing all
these elements; then® b for all a,b € M, and(M;®,—,0,1), is an
MV-algebra.

It is obvious from the definition that exactly in case that tektion < is total, a
partial MV-algebra is an MV-algebra.

Again, we may note that (PM3) could be replaced by a requineimgolving only
three mutually compatible elements.

It should be clear from the above discussion t{t&tH); ¢, ®,—,0, 1) is a partial
MV-algebra.

As in the case of partial Boolean algebras, there is in génerseasonable way to
endow a partial MV-algebra with a partial order. Namely, wayntentatively put
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a < bif a andb are compatible and in the MV-algebra generated:landb, we
havea < b. However,< is not necessarily transitive. Considg(H); for effects
E,F,G,we may havek < F andE < F, furthermoreF' < G andF < G, so also
E < @G, but we cannot conclude that< G.

We now define a logic for partial MV-algebras in complete agglto the logic
LPB; we will call it LPM. We avoid repetitions where possible.

Definition 3.2 The setF,, of proper propositionsand the setF. of compatibility
propositionsof LPM are defined as in Definition 2.2, but using the binary connec-
tive © instead ofA. We letF = F, U F, be the set opropositionsof LPM .

The abbreviations needed are the following. kOB € F,, a — [ stands for
—(a® —0),anda « fis (a— ) ® (86— «). Foray, ..., ax, wherek > 0, we
define< (ay,. .., o) as above. Additional abbreviations are 3 for a© (a— ()
anda Vv g for (a«— () — .

We now define validity w.r.t. partial MV-algebras.

Definition 3.3 Let (L; ¢, ®,—,0,1) be a partial MV-algebra. Then a partial map-
pingv: F, — Lis called arevaluationfor LPM fif, for any v € F,, the following
conditions are fulfilled:

(1) If v is atomic,v(y) is defined. Moreover(0) = 0 andv(1) = 1.

(2) If vis of the forma ® 3, thenv(y) is defined if and only ifv(«) is defined
andv() is defined and(«) ¢ v(8) holds. In this casej(y) = v(a)©v(S).

(3) If v is of the form—c, thenv() is defined if and only ifv(«) is defined. In
this casep(y) = —v(a).

Satisfaction by some evaluation and validity for proposisi is defined in analogy
to Definition 2.3 above.

We next define proofs in the logld®M . We note first that the propositions which
are valid in all MV-algebras are exactly the tautologies akasiewicz logic, or
tukasiewicz tautologies for short. We assume that a prosfesy for this logic
has been defined. We refer to [2] for a Hilbert-style prooteys and to [10] for a
r-hypersequent-based analytic proof system.
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Definition 3.4 For any proper propositions, a1, . . . , 3, the following are the ax-
ioms and rules oEPM:

adp
B’

adp
Oé<>—|ﬂ’

O (a, 3,7)
(R4) PR Iorh

(R1) (R2) m, (R3)
ady

<&

(R5) O (al, e ,Oék)

, wherek > 0 andy is a Lukasiewicz tautology
olag,...,ak)
a a—f

B

A finite sequencéyp, . .., ¢y ) of propositions is am-admissible prooff, for any

i =1,...,k, eithery; is of the form & 8 and 3 is a subformula ofy, or ¢; is of
the form 3 <y and g © « is a subformula ofy, or ; is derived by means of one
of the rules (R1)—(R6) from propositions amopg, . . ., ©;—1.

(R6)

A proper propositiony is calledprovablein LPM if there is ann-admissible proof
whose last element is. We writel- « in this case.

Theorem 3.5 Leta be a proper proposition. Theam is provable if and only ity is
valid.

Proof: The proof works like in case of Theorem 2.5. 0

It remains to demonstrate that this logic is new; it is adyuabt straightforward
to see that the set of tautologies of a partial logic definetthénway we did, dif-
fers from the set of tautologies of the corresponding tatgid. Considering, for
instance, the law of distributivity ap overv,

a®(BVy) < (a0p)V(eoy),

does not help to clarify the picture; it is valid not only it lV-algebras, but also
in all partial MV-algebras. The reason is the rather rettigcnotion of validity;
evaluations deciding about the validity of a propositioa anly those which have
the proposition in question in their domain. In the presexstece, 5, andy are
requested to be interpreted pairwise compatibly.

The example given in [6] for the case of PBA's does not worlehtre proposition

(@ =)= (v=90) = (a=d) = (B <)

is not a tautology of Lukasiewicz logic. However, anotheareple referring to
what is called a “partial algebra” in [6, Section 4], doesphafter the necessary
modifications. Consider the following graph:
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Vi Vs

V3
Vi Vs
Ve
V7 Vs
Vi
Vo V1o
Va Vi

(Note thatl;, and V5, are depicted twice.) Lef' be the set of functions whose
domain consists of three distinct points V;, Vi, 4, j, k € {1, ..., 11}, such that,
V;, andV}, are pairwise connected, and whose range is the real univahte, 1].
Let — be the Lukasiewicz negation, and fetbe the Lukasiewicz conjunction. For
f € F,let=f € F have the same domain likg and put(—f)(4) = =(f(4))
for A € domf. Forf,g € F, let f &g if dom f = domyg; in this case, we let
f ® g have the same domain likkandg, and put(f ® g)(A) = f(A) ® g(A) for

A € domf.

Define now the equivalence relatien on F' as follows. Letf,g € F have the
domains{A, B,C} and{A’, B’,C'}, respectively. Leff ~ g if either f = g, or

the domains off andg have exactly one point, say = A’, in common,f(A) =
g(A"),andf(B) = f(C) = g(B’) = ¢g(C"), or the domains of andg are disjoint
and f(A) = f(B) = f(C) = g(A) = g(B') = g(C"). LetF = {f: f € F}

be the set of equivalence clasgésf the functionsf € F'. Furthermore, le¥, ©,
and— be the operations oR induced by the equally named relation and operations
on F. Finally, let0 and1 the equivalence class of some constaand constant
function, respectively.

Note that finitely many element§;, ..., fi of F fulfil pairwise the <-relation
exactly if there aref{ ~ fi,...,f, = fr with coinciding domains. It is then
0,

straightforward to check thaf"; ¢, ®, -, 0, 1) is a partial MV-algebra.

Let us next consider the proposition
(@O B)O(1©0) < (@0d) o (B07). ®)

Clearly, (3) is valid in all MV-algebras, that is, a tautojogf Lukasiewicz logic.
However, (3) is not valid in all partial MV-algebras, that isis not a tautology
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of LPM. Consider an evaluation with range ', wherev(a) = a, v(8) = b,
v(y) = ¢ v(8) = d, and where, b, ¢, d € F are defined as follows (we identify
the functions with their graphs):

a = {(V1,0.7),(V5,1), (Va, 1)} =~ {(V1,0.7), (Vio, 1), (V1. 1)},
b = {(V1,1),(V3,0.7), (Va, 1)} = {(V2,1),(V3,0.7), (V5,1)},
c = {(V2,0.7),(V3,1), (V5, 1)} =~ {(V2,0.7), (Vo,1), (Vi1, 1)},
d = {(V2,1),(Vo,1),(V11,0.7)} ~ {(V1,1), (Vao,1), (V11,0.7)}.

Then(a®b)®(ead) contains{(Vy, 0.7), (Vz,0.4), (Vy,0.7)}, hence alsd(V;, 0.7), (Vz,0.4), (V3,0.7)}.
On the other handa®d)® (b ¢) contains{(Vs,0.7), (V,0.4), (Vig,0.7)}, hence
also{(V4,0.7), (V7,0.7), (V5,0.4)}.

4 Representation of partial Boolean algebras

We now turn to the representation problem for partial Bool@lgebras. We are go-

ing to characterize the standard PBA, namely, the parti@lab(C (H); ¢, N, +, {0}, H),
whereH is the complex Hilbert space of countably infinite dimensioH) is the

set of closed subspacesHf < is the compatibility relation between subspaces,
N, denotes the intersection restricted to pairs of compasblespaces, ant is

the complementation function.

We begin recalling the lattice-theoretical characterimabf the system of closed
subspaces of a Hilbert space. As in the previous sectionsyilvéreat Vv, the
supremum, always as a defined operation, defined by the tespedimum and
complementation operations.

Definition 4.1 Let K be a division ring endowed with the antiautomorphism
K — K;let’H be alinear space ovéf; and let(-,-): H x H — K asemilinear
form such that, for,b € E, (a,b)* = (b,a), and(a,a) = 0 impliesa = 0. Then
(H, (-,-)) is called ahermitean space

In a hermitean spacH, let C(H) be the system of subspacéssuch that4++ =
A, where, for asubspade, B+ = {z € H: (z,y) = 0forally € H}. (H,(-,-))
is called arorthomodular spacé H = A + A+ for all A € C(H).

Orthomodular spaces are lattice-theoretically charaetérin the following way.
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Definition 4.2 An ortholattice(L; A, —,0,1) is called aHilbert lattice if (i) L is
orthomodular, i.e. for ang, b such thate < b there is a unique L a such that
aVe = b; (i) Lisan AC-lattice, i.eL is atomistic and fulfils the covering property;
(iii) L isirreducible; (iv)L is complete.

Theorem 4.3 For any Hilbert lattice(L; A, —, 0, 1) of length> 4, there is a uniquely
determined orthomodular spag¢esuch that L; A, —, 0, 1) is isomorphic ta C(H); N, +, {0}, H).

By the celebrated theorem of [12], an orthomodular spaceéagtng an infinite
sequence of pairwise orthogonal vectors of the same nanizegth, is a Hilbert
space oveR, C, or H. We use this result in the form presented in [8].

We need the following auxiliary notion. For some automosphir of a Hilbert
lattice, we call an element € L fixed byy if p(z) = x for all x < a. Now, for
some Hilbert lattic L; A, -, 0, 1), we consider the following conditions:

(HL1) There is a sequenesg, ey, . . . of pairwise orthogonal atoms.

(HL2) For any two orthogonal atomsand f, there is an automorphism of
L such thatp(e) = fandp(z) =z forallz L e, f.

(HL3) For anyn > 2 and for any automorphism of L such that there is an
element of length> 2 fixed by, there is an automorphisghsuch that
(@) Y™ = p and () for any atome, 1 (e) = e wheneverp(e) = e.

Lemma 4.4 Let’H be an infinite-dimensional complex Hilbert space. T(@(#H); N, +, {0}, H),
the ortholattice of closed subspaces, is a Hilbert lattidgdnwthe propertiedHL1),
(HL2), and(HL3).

Proof: Itis well-known thatC'(H) is a Hilbert lattice, and it is evident that condi-
tions (HL1) and (HL2) are fulfilled.

To see that (HL3) holds, let be an automorphism @'(+) such thatp(B) = B
forall B < A, whereA € C(H) is at least two-dimensional. By Wigner’s theorem,
¢ is induced by a semiunitary operatlyr,. Sincey is the identity on a subspace
of dimension> 2, we may choosé&/,, unitary [8, Lemma 1].

We may furthermore assume thidt= L?(X) for some compact Hausdorff space
X endowed with a Radon integral, and that, for some £°°(X) with values

in [0,27), U(v) = e®Ou(-), v € H. Then, for any non-zero € H, v and
U(v) span the same one-dimensional subspace iff there\is d0, 27) such that

v = e AU(v) iff, for some\ € [0,2n), v(z) = @) ~Ny(z) for almost allz
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iff, for some\ € [0, 27), eitherv(z) = 0 or u(z) = A for almost allz. So given
n > 2, we may putv(v) = ¢ u(-), v € H; thenV" = U, and[U(v)] = [1]
implies [V (v)] = [v]. O

Theorem 4.5 Let (L; A,—,0,1) be a Hilbert lattice with the propertie§HL1),
(HL2), and(HL3). ThenL is isomorphic to the ortholattice of closed subspaces of
an infinite-dimensional complex Hilbert space.

Proof: (sketched; for further details, see [8]). L&, (-, -)) be the orthomodular
space such thaC'(H); N, +, {0}, H) is isomorphic to(L; A, —,0,1). By (HL1),
there is an infinite sequende;);~., of pairwise orthogonal vectors. By (HL2),
there is an automorphism of C'(H) mapping[v1] to [v2] and mapping the ele-
ments belowfv;, v;]* to itself. Theny is induced by a semiunitary operatb,

of H, which, according to the same argumentation as above, dactibe chosen
unitary. In particulary; andU,(v1) € [vo] are of the same length, and repeat-
ing the argument, we conclude tifdtpossesses an orthonormal basis. By Solér’s
theorem,H is a Hilbert space oveR, C, or H.

LetnowA € C(H) such thatd and A are both at least two-dimensional. l&be
the set of those automorphismf C'(H) such thatp(B) = B for all B € C(H)
contained in4 or AL. LetCx be the centre ok andEx = {k € Ck: kk* =1}.
Then eacly € G isinduced by a unitary operator of the folify for somek € Fi,
whereUy(u 4+ v) = ku 4+ v if u € Aandv € AL, By (HL3), for eachy € G,
there isy) € G such that)? = ¢. Ifnow K = Ror K = H, thenEx = {—1,1},
so (HL3) cannot be fulfilled. Consequently, = C, in which caseE'x = SO(2).
O

We note that the condition (HL3) for Hilbert lattices, whiogfers to automor-
phismsyp such that an element of dimension2 is fixed by, might be replace-
able by the requirement that, the appropriate topology esét of automorphisms
being given,y belongs to the identity component. However, here we will toot
work with topological notions.

We are now going to reformulate the above representatioaréhe for partial
Boolean algebras. As the first step, the notion of a PBA wilkhghtly modi-
fied; the following notion of a tPBA is due to [1]. However, weauaxioms which
differ from [1] and which moreover do not extend those in Digfin 2.1; we rather
prefer to provide an independent picture, which is as apfatapas possible in the
present context.

Definition 4.6 The structurgL; <,<,0,1) is called atransitive partial Boolean
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algebra or tPBAfor short, if the following conditions hold:

(tPB1) (P;<,<,0,1) is a bounded poset.

(tPB2) < is a symmetric and reflexive binary relation. Elemanendb such
thata < b are calledcompatible

(tPB3) () Leta,b € P such thata < b. Thena < b, and for exactly one
elementd compatible witha we havea A d = 0 anda VvV d = b.
d is then compatible with all those elements which are corbfmati
with a andb.

(6) Any setA of pairwise compatible elements possesses an infimum
/\ A and a supremuriy A. A\ A and\/ A are compatible with all
those elements which are compatible with every A.

(v) For any pairwise compatible elementsh,c € P, we havea A
(bve)=(aNb)V(aAec).

N

LetH be the complex Hilbert space of countably infinite dimensiban(C (H); <,
,{0},H) is a tPBA, called thestandard tPBA

As should be expected, tPBA's may be understood as speciis P& shown in
the next two lemmas.

Lemma 4.7 Let (L; <,<,0,1) be a tPBA. For any,,b € L, in accordance with
(tPB3)(3), puta A'b = a Abif a O b, and leave\’ undefined otherwise. Moreover,
for anya € L, in accordance wit{tPB3)(), let —a be the unique complement
of a compatible witha. Then(L; <, A, —,0,1) is a PBA fulfilling the following
conditions:

(PB4) If, for somea,b,c € L, a =a N bandb = b\ ¢, thena =a N c.

(PB5) Let B be a maximal subset df consisting of pairwise compatible el-
ements. Thef,1 € B, and (B;/\’,—,0,1) is a complete Boolean
algebra.

Moreover, letA C B, and letB’ be a further maximal set of pairwise
compatible elements such thatC B’. Then the infimum ofl in B
and the infimum ofd in B’ coincide.

Proof: (PB1) holds by (tPB2). (PB2) as well as (PB4) hold by consionc
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Let A be a non-empty set of pairwise compatible elements. (tRB&){plies that
we may join0 and1 to A, and still all elements are pairwise compatible. Again
by (tPB3)¢), when joining, for anye € A, the element-a to A, the resulting
set still consists of pairwise compatible elements. Siryildby (tPB3)(5), the
infimum and supremum of an arbitrary subset/hkxists and can be joined to
A with the same effect. Denote by the closure ofA U {0,1} under— as well
as arbitrary infima and suprema. Thea; <) is a complete latticep,1 € A,
and every element possessesa as the unique complement i Finally, by
(tPB3)(y), A is distributive, hence a Boolean algebra. (PB3) and the st of
(PB5) follow. Furthermore, infima irl are infima w.r.t<; so also the second part
of (PBAD5) follows. 0

Lemma 4.8 Let(L; <, A/, —,0,1) be a PBA fulfilling conditiongPB4)and (PB5).
Fora,be L,leta <bifa=aA b Then(L;<,<,0,1) is atPBA.

Proof: By (PB4),< is transitive, and (tPB1) follows. Note next that, by constr
tion, a < b impliesa < b. Moreover, fora,b € L such thata G b, a A’ b is the
infimum w.r.t. <; indeed,a A’ b < a,b, and ifx < a,b, thenz,a,b,a N b are
pairwise compatible, and it follows < a A’ b. So ifa < b, thena A’b = a A b and,
similarly,a V/'b = a Vv b.

(tPB2) holds by (PB1). To prove (tPB3)), leta < b. Thena<b; soa andb
generate a Boolean subalgebra, and we conclude that, gdttia —a A b, d is
compatible witha, furthermorea V' d = b, whencea V d = b, anda N\ d = 0,
whencea A d = 0. d is the unigue element with these three properties; indeed,
if d<a, avd =bandaAd = 0, thena,b,d are pairwise compatible, so
aV'd =banda AN'd = 0and consequently’ = —a A’ b = d. Finally,z < a,b
impliesx < d by (PB3). The proof of (tPB3)) is complete.

Let now A be a set of pairwise compatible elements, and eta for all a € A.
Let B be a maximal set of pairwise compatible elements which cusitaU {c}.
By (PB5), (B; A\, —,0,1) is a complete Boolean algebra; lebe the infimum of
Ain B. Certainly,c < b. We claim thath = A A, where the infimum refers to the
partial order< of L. Clearly,b < a forall a € A. Letz € L such thatr < a for
alla € A. ExtendA U {z} to a maximal seB’ of pairwise compatible elements.
Thenz < ¥, wherel’ is the infimum ofA taken inB’. But by (PB5),b’ = b and
hencex < b. So the part of (tPB3){) concerning infima is proved, and by the
self-duality of Boolean algebras, the other half followsnasl.

(tPB3)(y) holds by (PB3). O

We next restrict tPBA's with respect to cardinality. We wiklat any Boolean sub-
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algebra does not contain more than countably many indepéetiments; and it
shall possibly contain, on the other hand, any finite numibendependent ele-
ments.

A further requirement is that there is no element differeotf0 and1 which may
be joined to any given Boolean subalgebra.

Definition 4.9 Let (L; <,<,0,1) be a tPBA. We callL of countably infinite size
if:

() L, as a poset, is atomistic.
(ii) Any set of atoms every pair of which has infimum zero, is cbimta

(iii) There is a countably infinite set of atoms every pair of whiah imfimum
zero.

Furthermore, we calL irreducible if for anya, there is ab incompatible witha.

The crucial condition on tPBA's comes next: We postulatedkistence of suffi-
ciently many automorphisms. We define an element to be fixednbgutomor-
phism in analogy to the case of Hilbert lattices.

Definition 4.10 Let(L; <,<,0,1) be atPBA. Put: L bif aObandaAb = 0We
call L flexible if:

(i) Foranya € L and any atone € L not belowa, there is an automorphism
such thai(a) p(e) L a and(f) ¢(x) = x whenever: L a,eorx L a,p(e).

(i) Foranyn > 2 and any automorphismp such that some element of length
> 2is fixed by, there is an automorphism such that(«) 4" = ¢ and(5)
¥ (e) = e wheneverp(e) = e for any atome.

We next check that the standard tPBA has the properties ¢disteai.

Lemma 4.11 Let H be a complex Hilbert space of countably infinite dimension.
Then(C(H); <, <, {0}, H) is a tPBA which is of countably infinite size, flexible,
and irreducible.

Proof: We have already noticed that() is a tPBA. Clearly,C'(’H) is of count-
ably infinite size and irreducible. Moreover, Btbe a unitary operator dff, and
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let o7 be the map induced by on C(H). Then evidently,;; is an automorphism
of the tPBAC(H). This fact given, part (i) of the definition of flexibility isasily
checked, and part (ii) follows from Lemma 4.4. O

Lemma 4.12 Let(L; <, <,0,1) be aflexible tPBA of countably infinite size. Then,
L is lattice-ordered. Furthermore, faf € L, let —a be the unique element such
that ~a > a, a A —ma = 0, anda V —-a = 1. Then,(L;A,—,0,1) is a complete
orthomodular AC-lattice.

Moreover, ifL is irreducible as a tPBA, then so isas an ortholattice.

Proof: Note first that the definition of: is possible due to (tPB3){. As is fur-
thermore easily seem; is a complementation function. Note also thatl b iff
a < —b.

We show next that for some € L and an atone € L, the supremuna V e exists
in L. By flexibility, there is an automorphisip such thatp(e) L a andy(z) = x
if z L aandeitherr L eorxz L p(e). Thena V ¢(e) exists, and we claim
that this is the supremum afande. Clearly,a < a V ¢(e). Furthermore, from
=(a Vv e(e)) L a,p(e), we conclude that < o~ 1(a V p(e)) = aV p(e). Let
a,e < c. Then—c L a,e, sop(e) < ¢(c) = canda V ¢(e) < c.

To see thatl is a complete lattice, it is, by the atomicity &f sufficient to prove
that an arbitrary set,, . € I, of atoms possesses a supremum. Le&f [ such
that \/,. ; e, exists. For anyx € I\.J, then by the preceding paragraph, also
\/LEJU{H} e, exists. Furthermore, any chain ih consists of pairwise compati-
ble elements and thus possesses a supremum. By Zorn's Lemrsypremum

V e €. exists.

So(L;A,—,0,1) is shown to be a complete ortholattice. By (tPBJ)(it is clear
that(L; A, —,0, 1) is actually an orthomodular lattice. Furthermore, from sbhe-
ond paragraph, it is easily seen thaffulfils the covering property. Sa. is an
AC-lattice.

Finally, let L, as an ortholattice, be reducible. Then there istam L such that
0 <a < 1landforanyy € L, we haveb = (bAa)V (bA—a). FrombAa < a,
bA—a < —a, bAa < =(bA-a), we have that,,b A a,b A —a are pairwise
compatible; in particular is compatible withb. SoL is not irreducible as a tPBA.
The proof is complete. O

Lemma 4.13 Let (L; <,<,0,1) be a flexible tPBA of countably infinite size, and

let © be an automorphism of.. Theny is also an automorphism aof as an
ortholattice.
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Proof: ¢ preserves the partial order as well Bs O

Theorem 4.14 Let (L; <,<,0,1) be a tPBA which is of countably infinite size,
flexible, and irreducible. Theh is isomorphic to the standard tPBA.

Proof: We may define- as in Lemma 4.12; them, being the infimum operation,
(L; A, —,0,1) is a Hilbert lattice.

We have to verify the conditions (HL1)—(HL3) for Hilbert tates. (HL1) holds
becausel is countably infinite size. In view of Lemma 4.13, we may idignt
automorphisms of. with automorphisms of. viewed as an ortholattice. Let f
be orthogonal atoms; by irreducibility, there is a thirdratg distinct frome, f
such thatg < e Vv f. By flexibility, there are automorphisms;, ¢2 such that
p1(9) = [, pa(g) = e, andpy (z) = pa(x) = zif = L eV f. Sotakingp; o p;
we see that (HL2) holds. (HL3) clearly follows from flexilbylias well.

By Theorem 4.5(L; A, —,0,1) is isomorphic to(C(H);N,~+, {0}, H) for some
No-dimensional complex Hilbert spaéé. We claim that the compatibility relation
is in both cases the same. Indeed, in the tABA « < b, thena andb generate a
Boolean subalgebra, so evidently= a( vV c andb = by V ¢ for mutally orthogonal
elementsig, by, c. Conversely, ifa andb possess this representation, thgnbg, ¢
are pairwise compatible, so alag> b. The proof of the theorem is complete.O

5 Conclusion

We have studied two different aspects of the theory of daB@lean algebras
(PBA’s). In the first part, we re-considered a logic based BA'®, introduced in
[6] and calledLPB in this paper. The calculusPB reflects the possible logical
considerations with respect to testable yes-no staterabotg a quantum-physical
system, and the strict rule is followed that logical int&atiens are applicable only
for compatible statements. To include unsharp statement®k, we have defined
the logicLPM ; LPM may be regarded as a fuzzy versiorL&B and is based on
partial MV-algebras. The second aspect which we studiederoed the represen-
tation of PBA's. Namely, we characterized the standard RB@& partial algebra of
closed subspaces of &g-dimensional complex Hilbert space.

Both parts of this note follow the logico-algebraic apptoas the foundation of
guantum physics. The idea of this approach is to justify theidomodel used in
guantum physics —the complex Hilbert space. However, wddnike to underline
that, whereas the work as presented in this paper might t&dmyed interesting
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from a mathematical point of view, we guess that its valuetlier foundational
debate on quantum physics is limited.

Let us explain our viewpoint, first with regard to logics. We aonvinced that the
means provided by some appropriate logical calculus arsuifitient to cope with
the fundamental interpretational difficulties connectedjtiantum physics. The
most important limitation is reflected in the choice of thegant paper’s subject:
logical interrelations can hold among propositions whielm de considered the
same time, but it does not make sense to treat incompatibpopitions by logical
methods. All we can do in the framework of logics is to exhibit this pure
fact: not all propositions may be considered the same tinmveNer, the crucial
requirement in physics is to model the change from one ohtenal framework
to another one, that is, the change from one set of jointhalds propositions to
another such set. In this respect, logics are most likelyohbelp.

Second, there are related problems with respect to therodsea quantum struc-
tures. This line is possibly more fruitful, simply becaukerte are more possibil-
ities available to specify a structure. However, a probleral@gous to the one
already mentioned, exists in this case as well: the reigtni¢b a language of al-
gebra. We followed this line here as well, although we inetlidonditions which
else seem to be avoided: those concerning automorphisms.

To make a real progress in quantum structures with respeietoriginal aims of
the field, we rather think that it is the characterizationh&f &utomorphisms which
is of fundamental importance. What we propose for the fuisite work towards
a justification of this viewpoint. Quite a lot of work has bedane to understand
those entities of Hilbert space which model yes-no testse gufew work was done
for the question how to characterize its automorphism grdupcharacterize the
unitary group - again by algebraic means - seems to be eXiyeafifftcult, and this
is probably also the case for any kind of linear group; cf. Effy At least to the
author, only very few results are known, and those which amk are probably
not (yet) well usable for the aim of better understandingghantum-mechanical
formalism.

References

[1] Czelakowski, J., 1974. Logics based on partial Booleaalgebras. |,
Stud. Log33, 371-396.

[2] Cignoli, R., D’'Ottaviano, I.M.L. and Mundici, D., 200@&lgebraic Foun-
dations of Many-valued Reasonirgordrecht: Kluwer Academic Publ.

21



[3] Dalla Chiara, M. L. and Giuntini, R., 1995. The logics aflmalgebras,
Studia Logicab5, 3-22.

[4] Dvurecenskij, A. and Pulmannova, S., 2000ew trends in quantum
structures Dordrecht: Kluwer Academic Publ., and Bratislava; Ister S
ence.

[5] Foulis, D. J. and Bennett, M. K., 1994. Effect algebrad ansharp quan-
tum logics,Foundations of Physic®4, 1325-1346.

[6] Kochen, S. and Specker, E. P., 1965. Logical structurising in quan-
tum theory, in: Addison, J., Henkin, L. and Tarski A., ed$ieory of
Models Amsterdam: North-Holland, 177-189.

[7] Lubotzky, A., 1988. A group theoretic characterizatioflinear groups,
J. Algebrall3, 207-214.

[8] Mayet, R., 1998. Some characterizations of the undeglgivision ring
of a Hilbert lattice by automorphismsqt. J. Theor. Phys37, 109-114.

[9] Mayet, R. and Pulmannova, S., 1994. Nearly orthosymimettholat-
tices and Hilbert spacebpund. Physic24, 1425-1437.

[10] Metcalfe, G., Olivetti, N. and Gabbay, D., 2002. Anaytequent calculi
for Abelian and tukasiewicz logics, in: Egly, 8t al, eds.Automated
reasoning with analytic tableaux and related methoBsoceeding of
the 11th conference TABLEAUX (Copenhagen 2002). Berlintii®yer-
Verlag, 191-205.

[11] Pedersen, G. K., 198%nalysis nowNew York, Springer-Verlag.

[12] Soler, M. P., 1995. Characterization of Hilbert spabg orthomodular
spacesCommun. Algebr@3, 219-243.

Thomas Vetterleistudied mathematics in Heidelberg and wrote his PhD thesis u
der the supervision of Prof. A. Dvurecenskij in Bratislamahe field of quantum
structures. He later developped an interest in the algelbisgects of fuzzy logics
and wrote several papers about the connections betweetuquatructures and al-
gebras arising in fuzzy logic. At present, he is employethatMedical University
of Vienna and works on the logical foundations of medicalezkpystems.

22



