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Abstract

Logics designed to deal with vague statements typically allow algebraic
semantics such that propositions are interpreted by elements of residuated
lattices. The structure of these algebras is in general still unknown, and
in the cases that a detailed description is available, to understand its
significance for logics can be difficult. So the question seems interesting
under which circumstances residuated lattices arise from simpler algebras
in some natural way. A possible construction is described in this paper.

Namely, we consider pairs consisting of a Browerian algebra (i.e. a dual
Heyting algebra) and an equivalence relation. The latter is assumed to be
in a certain sense compatible with the partial order, with the formation
of differences, and with the formation of suprema of pseudoorthogonal
elements; we then call it an s-equivalence relation. We consider opera-
tions which, under a suitable additional assumption, naturally arise on
the quotient set. The result is that the quotient set bears the structure
of a residuated lattice. Further postulates lead to dual BL-algebras. In
the case that we begin with Boolean algebras instead, we arrive at dual
MV-algebras.

Keywords: Browerian algebra, Heyting algebra, Boolean algebra, s-equiva-
lence relation, divisible residuated lattice, BL-algebra, MV-algebra
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1 Introduction

In recent years, fuzzy logics and their algebraic aspects have been a field of
intensive research. Among the currently available monographs we may mention
[COM], [Haj], and [Got]. A characteristic property of commonly known logics
dealing with vagueness is that they possess an alternative algebraic semantics; in
the typical case, a variety containing bounded, integral commutative residuated
lattices can be used.

Actually, residuated lattices are well suitable to interpret vague propositions.
Namely, we expect that a set of propositions is lattice-ordered and endowed with
a monotonous monoidal operation; the order reflects the strength of proposi-
tions, and the monoidal operation plays the role of a conjunction. Furthermore,
in order to base a logic on ℓ-monoids, a further condition should hold: for any
two propositions α and β, there is a third one, namely α → β, which is the
weakest proposition γ such that α together with γ implies β; and this is exactly
what the residuation property expresses.

It would be of great interest to know what the structure of an arbitrary resid-
uated lattice is like. For the known facts, consult for instance [JiTs] and the
references given there. At the time being, only certain subclasses are well un-
derstood, like the BL-algebras [AgMo]. In these case, however, it is still not
evident how the discovered structural properties are related to the assumption
that we have to do with a model of vague propositions.

These considerations motivate us to study the question if residuated lattices can
be represented by means of other, better known structures. Several approaches
to this question can be found in the literature already; most importantly, we
may mention the representations by means of algebras of relations. For instance,
see [BuWo] and the references given there for the representation of residuated
posets. Furthermore, representations of quantales are developed in [Val]. Fi-
nally, Jipsen defined residuated lattices of binary relations and showed that this
class contains, up to isomorphism, the BL-algebras [Jip].

Our own construction is based alternatively on Boolean algebras or Browerian
algebras, by which in this paper we mean the duals of Heyting algebras. These
algebras are assumed to be endowed with a so-called s-equivalence relation,
and the quotient set is endowed with monoidal operations which arise from the
pointwise connection of two equivalence classes. Starting with Boolean algebras,
we arrive at MV-algebras. Otherwise, we are led to residuated lattices, and
further conditions ensure that divisibility and prelinearity hold, that is, that we
get BL-algebras.

The present paper continues certain previous work. We could say that, com-
pared to what we proposed earlier, the present approach rises the level of ab-
straction. The paper [Vet2] was based on Boolean algebras endowed with a
“symmetry group” modelling ambiguity. In the present case we refer to an
equivalence relation which is possibly, but not by assumption, induced by such
a group. In the older work [Vet1], we assumed a Boolean algebra to be endowed
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with a measure. Interestingly, in the present framework, the existence of a mea-
sure is implied as well. But again, we work here directly with an equivalence
relation, whose properties are not necessarily derivable from the structure of the
measure. Note in addition that the inclusion of Browerian algebras is new in
the present work.

The paper is organized as follows. After preliminary remarks (Section 2), we
are first concerned with Boolean algebras. On a Boolean algebra, we define
what we call an s-equivalence relation (Section 3). We then wonder which kind
of operations we may naturally define on the quotient set; more specifically, we
wonder which equivalence class is naturally associated to the set arising from
pointwise connecting two equivalence classes by a binary Boolean operation.
Under an appropriate assumption called residuability, the quotient set is lattice-
ordered and has actually the structure of a residuated lattice. In fact, what we
get is a dual MV-algebra, and every totally ordered dual MV-algebra can be the
result of the construction (Section 4). We finally treat the question of sufficient
conditions for residuability (Section 5).

In the second half of the paper, we present our results concerning Browerian
algebras, which take over the role of Boolean algebras. This theory is more in-
volved. We are led to residuated lattices, and under two additional assumptions
to dual BL-algebras (Sections 6, 7, 8).

2 Residuated lattices and fuzzy logic

We are going to develop in this paper a particular way to construct bounded,
integral, and commutative residuated lattices. Among the represented algebras,
there are all the totally ordered BL-algebras, the latter being the counterpart
of Hájek’s Basic Logic. In particular, there are all totally ordered MV-algebras,
the latter being the counterpart of  Lukasiewicz logic.

As a motivational background, we recall in this section where these algebras
originate and what we know about their structure. Apart from that, however,
the implications of our results for many-valued logics will not be elaborated
here. We restrict to the algebraic aspects and might treat the interpretational
issue in a further paper.

Both mentioned types of algebras are associated with specific fuzzy logics: the
 Lukasiewicz Logic  LL [COM, Haj] and the Basic Fuzzy Logic BL [Haj]. Their
common language is {⊙,→, 0}, where ⊙ and → are binary connectives and 0
is a constant. Their canonical semantics is based on t-norms, that is, binary
operations on the real unit interval [0, 1] making ([0, 1];∧,∨,⊙, 1) an ℓ-monoid
w.r.t. the natural order of the reals.

More specifically, let (F ;⊙,→, 0) be the algebra of propositions of  LL and BL.
Then  LL is the logic proving those propositions to which all structure-preserving
mappings from (F ;⊙,→, 0) to ([0, 1];⊙L,→L, 0) assign 1, where ⊙L : [0, 1]2 →
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[0, 1], (a, b) 7→ (a + b− 1)∨ 0 and →L: [0, 1]2 → [0, 1], (a, b) 7→ (1− a + b)∧ 1.
Moreover, BL is the logic proving those propositions to which all structure-
preserving mappings from (F ;⊙,→, 0) to ([0, 1]; ⊙̄, →̄, 0) assign 1, where ⊙̄ is
any continuous t-norm and →̄ the residuum corresponding to ⊙̄. Hilbert-style
proof systems for these logics can be found e.g. in [COM] and [Haj].

The equivalent algebraic semantics for  LL is based on MV-algebras, the variety
generated by the  Lukasiewicz algebra ([0, 1];∧,∨,⊙L,→L, 0, 1). The algebraic
semantics for BL is based on the BL-algebras, the variety generated by all
continuous t-norm algebras ([0, 1];∧,∨, ⊙̄, →̄, 0, 1).

At this point, we have to stress that we are going to work with the dual algebras.
The main reason to reverse the order is that the argumentation of this paper is
in this way considerably easier to comprehend. So what we will construct are
actually the algebras in the variety generated by the  Lukasiewicz conorm-algebra
or by the continuous t-conorm algebras, respectively.

The order in propositional logics is a matter of agreement, and we do not think
that the reversed order is necessarily counterintuitive. Recall that, following the
usual viewpoint, propositions are associated with the set of possible situations
in which they hold true; accordingly, the weaker propositions are considered
the larger ones. However, we may just as well adapt the opposite viewpoint,
namely that asserting a proposition excludes certain possibilities. Since the
weaker propositions exclude less possibilities than stronger propositions, it is
not unreasonable to consider the former as the smaller ones.

So our main notion are bounded, integral, and commutative dual residuated
lattices. However, we will omit the attributes bounded, integral, and commuta-
tive.

Definition 2.1 An algebra (L;∧,∨,⊕,⊖, 0, 1) is called a dual residuated lattice

if (L;∧,∨, 0, 1) is a bounded lattice, (L;⊕, 0) is a commutative monoid, and
a ≤ b ⊕ c iff a ⊖ b ≤ c for all a, b, c ∈ L. Moreover, L is called divisible if
a ∨ b = (a ⊖ b) ⊕ b; L is called prelinear if (a ⊖ b) ∧ (b ⊖ a) = 0; L is called
involutive if 1 ⊖ (1 ⊖ a) = a.

A divisible, prelinear dual residuated lattice is called a dual BL-algebra. An
involutive dual BL-algebra is called a dual MV-algebra.

Concerning the structure of the two algebras mentioned last, the first basic fact
is that every dual MV- or BL-algebra is the subdirect product of totally ordered
algebras of the respective type. Second, the totally ordered algebras are in both
cases conveniently described by means of Abelian groups.

Theorem 2.2 Let (G;≤, +, 0) be a totally ordered Abelian group, and let u ≥ 0.
Let L = {g ∈ G: 0 ≤ g ≤ u}. For g, h ∈ L, let

g ⊕ h = (g + h) ∧ u, g ⊖ h = (g − h) ∨ 0.

Then (L;∧,∨,⊕,⊖, 0, u) is a totally ordered dual MV-algebra. Up to isomor-

phism, every totally ordered dual MV-algebra arises in this way.
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We note that we can describe dual MV-algebras in the same way even in the
general case, by admitting lattice-ordered groups instead of totally ordered ones
[Mun, DvPu].

For a proof of the following theorem, see e.g. [AgMo].

Theorem 2.3 Let (I;≤) be a totally ordered set. For every ι ∈ I, let (Gι;≤,

+ι, 0ι) be a totally ordered Abelian group, and define the algebra (Lι;⊕ι,⊖ι, 0ι)
as follows: Either let Lι = {g ∈ Gι : 0 ≤ g ≤ uι} for some uι ≥ 0 and define,

for g, h ∈ Lι, g ⊕ι h = (g +ι h)∧ uι and g ⊖ι h = (g −ι h)∨ 0ι. Or let Lι = G+
ι

and define, for g, h ∈ Lι, g ⊕ι h = g +ι h and g ⊖ι h = (g −ι h) ∨ 0ι.

Let then L = ˙⋃(Lι r {0ι}) ∪̇ {0}, where 0 is a new element. Extend the total

order from the Lι to a total order on L as follows: if g ∈ Lι and h ∈ Lκ for

distinct indices ι and κ, then g ≤ h if ι < κ; and 0 is the bottom element of L.

Define, for g, h ∈ L

g ⊕ h =

{

g ⊕ι h if g, h ∈ Lι,

g ∨ h else;
g ⊖ h =











0 if g ≤ h

g ⊖ι h if g > h and g, h ∈ Lι,

g else.

Assume now that I has the top element λ and that Lλ has the top element uλ.

Then (L;∧,∨,⊕,⊖, 0, uλ) is a totally ordered dual BL-algebra. Up to isomor-

phism, all totally ordered dual BL-algebras arise in this way.

3 s-Equivalence relations on Boolean algebras

We describe in this and the subsequent section a framework suitable for the
representation of dual MV-algebras. We will be concerned with a pair consisting
of a Boolean algebra and what we will call an s-equivalence relation.

A Boolean algebra is a structure (L;∧,∨,¬, 0, 1), where (L;∧,∨, 0, 1) is a bound-
ed distributive lattice and ¬ is a complementation function. We say that two
elements a, b of a Boolean algebra are orthogonal if a∧b = 0, and in this case we
write a ⊥ b. Furthermore, we denote the difference of a and b by ar b = a∧¬b.

Definition 3.1 Let (L;∧,∨,¬, 0, 1) be a Boolean algebra. Let ∼ be an equiv-
alence relation ∼ on L, and write a ≺

∼
b if a′ ≤ b′ for some a′ ∼ a and b′ ∼ b. ∼

is called a s-equivalence relation on L if the following conditions hold:

(B1) If a ≺
∼

b, then there is a a′ ∼ a such that a′ ≤ b.

(B2) Let a ∼ a′, b ∼ b′ and a ≤ b, a′ ≤ b′. Then b r a ∼ b′ r a′.

(B3) Let a ∼ a′, b ∼ b′ and a ⊥ b, a′ ⊥ b′. Then a ∨ b ∼ a′ ∨ b′.
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On the informal level, the relation ∼ should be thought of identifying elements
of equal size w.r.t. some measure; the typical example will be given below. In
particular, when considering a Boolean algebra as a system of (sharp) proposi-
tions, an s-equivalence relation may serve to identify two propositions of equal
expressive strength – the letter ‘s’ refers to the word ‘strength’. Concerning the
interpretation of fuzzy logics along these lines, see [Vet1].

Given an s-equivalence relation ∼ on an algebra L, we will in the sequel denote
the ∼-equivalence class of some element a by [a], and [L] = {[a] : a ∈ L} will
be the quotient set w.r.t. ∼. – Let us see first how the partial order ≤ on L is
related to the relation ≺

∼
.

Lemma 3.2 Let ∼ be an s-equivalence relation on a Boolean algebra L. Let

a, b, c ∈ L. Then a ≺
∼

b ≺
∼

c and a ≤ c imply that there is a b′ ∼ b such that

a ≤ b′ ≤ c.

Proof. Let a ≺
∼

b ≺
∼

c. Then, by (B1), there are a′ ∼ a and b′ ∼ b such that
a′ ≤ b′ ≤ c. Let d = ar b′. By (B2), ara′ = (a∨a′)ra′ ∼ (a∨a′)ra = a′ ra;
so d ≺

∼
a′ r a and d′ ≤ a′ r a for some d′ ∼ d. Let b′′ = (b′ r d′) ∨ d. Then

a ≤ b′′ ≤ c and, by (B3), b′′ ∼ b′ ∼ b. �

It follows that an s-equivalence relation of a Boolean algebra L is a congruence
of L seen as bounded poset. The induced order will be denoted by ≤ as well.

Lemma 3.3 Let ∼ be an s-equivalence relation on a Boolean algebra L. Then,

by setting

[a] ≤ [b] if a ≺
∼

b for a, b ∈ L

([L];≤, [0], [1]) is a bounded poset, and ι : L → [L], a 7→ [a] is a surjective

homomorphism of bounded posets.

Proof. By definition, a ≤ b implies a ≺
∼

b for a, b ∈ L. So reflexivity of ≺
∼

is
immediate, and for the transitivity see the first line of the proof of Lemma 3.2.
Furthermore, a ≺

∼
b ≺

∼
a implies by Lemma 3.2 that a ≤ b′ ≤ a for some b′ ∼ b,

whence a ∼ b. It follows that [L] is a bounded poset. The last statement is
obvious. �

Furthermore, (B2) implies that ∼ is compatible with the complementation; we
have a ∼ b iff ¬a ∼ ¬b. However, an s-equivalence relation is in general not
compatible with the lattice operations. We should rather have the picture in
mind that ∼ identifies elements of equal extension.

Example 3.4 Let (L;∧,∨,¬, 0, 1) be a Boolean algebra. Moreover, let µ: L →
[0, 1] be a measure on L in the real unit interval [0, 1]; this means (i) µ(a∨ b) =
µ(a) + µ(b) for a, b ∈ L such that a ⊥ b, and (ii) µ(1) = 1. Call the measure µ

homogeneous if for any a, b ∈ L such that µ(a) ≤ µ(b), there is an a′ ≤ b such
that µ(a′) = µ(a).
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Now, for a, b ∈ L, define a ∼ b if µ(a) = µ(b). It is evident that ∼ is an s-
equivalence relation on L if µ is homogeneous. Note that ∼ has the additional
property that no a is equivalent to any element strictly below a. The equivalence
classes are in a one-to-one correspondence with the range of µ; in particular,
the induced order is total.

We devote the remainder of this section to the question to what extent this
example applies in the general case. For the further procedure in this paper,
however, we will not make use of this information; we just like to suggest an
appropriate intuitive picture associated with the formalism. The reader not
interested in these considerations may continue with Section 4.

Definition 3.5 Let L be a Boolean algebra, and let (G;∧,∨, +, 0, u) – denoted
by (G, u) for short – be a unital Abelian ℓ-group, that is, a lattice-ordered
Abelian group endowed with a strong unit u ∈ G+. Then a map µ : L → G is
called a G-valued measure on L if (i) µ(a ∨ b) = µ(a) + µ(b) for a, b ∈ L such
that a ⊥ b, and (ii) µ(1) = u.

We will associate a group-valued measure to a Boolean algebra endowed with
an s-equivalence relation. To this end, we need some preparatory material.
The notion of an effect algebra is due to Foulis and Bennett [FoBe]. For more
information on these algebras and also a shorter axiom system, we refer to the
monograph [DvPu].

Definition 3.6 An effect algebra is a structure (E; +, 0, 1), where + is a partial
binary operation and 0, 1 are constants such that the following holds:

(E1) (a + b) + c is defined iff a + (b + c) is defined, and in this case (a + b) + c =
a + (b + c);

(E2) a + b is defined iff b + a is defined, and in this case a + b = b + a.

(E3) If a + c and b + c are defined and coincide, then a = b.

(E4) a + 0 is defined for every a and equals a;

(E5) If 1 + a is defined, then a = 0;

(E6) For every a there is a b such that a + b = 1.

In addition, we define a ≤ b if a + c = b for some c. Furthermore, we denote the
complement of a specified by (E6), which is unique by (E3), by ¬a.

The relation ≤ makes an effect algebra a bounded poset, 0 being the bottom
and 1 being the top element.

Effect algebras are modelled upon intervals in partially ordered groups.

7



Definition 3.7 Let (G, u) be a unital Abelian ℓ-group. Let

G[0, u] = {a ∈ G: 0 ≤ a ≤ u}

be the unit interval of (G, u). Define on G[0, u] the partial addition + as follows:
For a, b ∈ G[0, u], let a+b be defined if a+b ≤ u, and let a+b in this case coincide
with the group sum; otherwise, let a + b be undefined. Then (G[0, u]; +, 0, u) is
called an interval effect algebra.

It is straightforward that an interval effect algebra is an effect algebra. Con-
versely, how to characterize the interval effect algebra among the effect algebras
algebraically is still an open problem. We have the following sufficient condition
[Rav]; the notation is chosen in accordance with [DvVe1].

Definition 3.8 Let (E; +, 0, 1) be an effect algebra. We say that E fulfills the
strong Riesz decomposition property, or (RDP2) for short, if for any a, b, c, d ∈ E

such that a + b = c + d there are e1, . . . , e4 such that

e1 e2 → c

e3 e4 → d

↓ ↓
a b.

(1)

By the scheme (1) to hold, we mean that each row and column adds up to what
the respective arrow points to.

The following theorem, and even a slightly stronger version of it, is due to
K. Ravindran [Rav]. A proof can also be found in [DvVe2].

Theorem 3.9 Every effect algebra fulfilling (RDP2) is an interval effect alge-

bra.

Theorem 3.10 Let ∼ be an s-equivalence relation on the Boolean algebra L.

Then there is a unital Abelian ℓ-group (G, u) and a G-valued measure µ : L →
G[0, u] on L such that, for all a, b ∈ L, µ(a) = µ(b) iff a ∼ b.

Proof. On [L], we may because of the axiom (B3) define a partial addition as
follows. For a, b ∈ L, let [a] + [b] = [a′ ∨ b′] in case a′ ⊥ b′ for some a′ ∼ a and
b′ ∼ b; else let the sum be undefined. We claim that then ([L]; +, [0], [1]) is an
effect algebra fulfilling (RDP2).

It is not difficult to see that if ([a] + [b]) + [c] is defined, there are pairwise
disjoint elements a′ ∼ a, b′ ∼ b, and c′ ∼ c; the associativity of + follows. The
commutativity of + is obvious; the cancellativity holds by (B2); and by (B3),
we have [a] + [0] = [a]. If moreover [1] + [a] is defined, then b ⊥ a′ for some
b ∼ 1 and a′ ∼ a, so a′ ≤ ¬b ∼ 0, that is, a ≺

∼
0 and so [a] = [0]. Finally,

[a] + [¬a] = [1] holds obviously. We have proved that [L] is an effect algebra.
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Let now a, b, c, d ∈ L such that [a] + [b] = [c] + [d]. Then we may assume
w.l.o.g. that a ⊥ b and c ⊥ d. It follows c′ ≤ a∨b for c′ ∼ c and d′ = (a∨b)rc′ ∼
d. We then have a ∨ b = c′ ∨ d′, so we may write [a] = [a ∧ c′] + [a ∧ d′] and
express similarly also [b], [c], and [d]. (RDP2) follows.

By Theorem 3.9, ([L]; +, [0], [1]) is an interval effect algebra. Putting µ(a) = [a]
for any a ∈ L, the assertions follow. �

As a corollary, we have that there exists an R-valued measure on L, that is,
a measure on L in the usual sense, which is constant on the ∼-equivalence
classes. Indeed, an Abelian ℓ-group G is representable, and it follows that
every unital Abelian ℓ-group has at least one state. This means that there is a
homomorphism s from the unital ℓ-group G to (R;∧,∨, 0, 1), and µ0 = s◦µ gives
a measure. However, µ0 will in general not map distinct equivalence classes to
distinct reals. – We note that the existence of a real-valued measure can also
be derived by means of Tarski’s Theorem [Tar, Satz 1.58].

4 The algebra associated to an

s-equivalence relation on a Boolean algebra

We are concerned with a Boolean algebra L endowed with an s-equivalence
relation ∼, and we are going to explore the internal structure of the set [L]
of ∼-equivalence classes. We will compile a set of operations definable on [L]
under one further suitable assumption. The idea how to choose operations for
[L] is simple: We will connect pairs of equivalence classes elementwise by some
Boolean operation.

Definition 4.1 Let ∼ be an s-equivalence relation on a Boolean algebra (L;∧,∨,

¬, 0, 1). Consider the bounded poset ([L];≤, [0], [1]). If, for every a, b ∈ L, the
set {[a′ ∨ b′] : a′ ∼ a, b′ ∼ b} contains a smallest element, we say that [L] is
residuable.

In other words, we require that for every pair of elements a, b of the Boolean
algebra there are ā ∼ a and b̄ ∼ b such that ā ∨ b̄ ≺

∼
a′ ∨ b′ for any a′ ∼ a and

b′ ∼ b. Note that the elements ā and b̄ are in general not uniquely determined
by a and b, but only the equivalence class of the supremum ā ∨ b̄.

Lemma 4.2 Let ∼ be an s-equivalence relation on a Boolean algebra L. Let

a, a′, b, b′ ∈ L be such that a ∼ a′, b ∼ b′. Then a ∧ b ≺
∼

a′ ∧ b′ if and only if

a ∨ b ≻
∼

a′ ∨ b′. In particular, a ∧ b ∼ a′ ∧ b′ if and only if a ∨ b ∼ a′ ∨ b′.

Moreover, a ≺
∼

b if and only if ¬b ≺
∼

¬a.

Proof. We first prove that a∧b ∼ a′∧b′ iff a∨b ∼ a′∨b′. Let a∧b ∼ a′∧b′. Then
ar b = ar (a∧ b) ∼ a′ r (a′ ∧ b′) = a′ r b′ by (B2), and similarly bra ∼ b′ ra′.
So we conclude a ∨ b = (a r b) ∨ (a ∧ b) ∨ (b r a) ∼ a′ ∨ b′ by (B3).

9



Conversely, let a ∨ b ∼ a′ ∨ b′. Then a r b ∼ a′ r b′ by (B2), and a ∧ b =
a r (a r b) ∼ a′ r (a′ r b′) = a′ ∧ b′.

Now, to prove the first equivalence claimed, assume a ∧ b ≺
∼

a′ ∧ b′. Because
a′ ∧ b′ ≺

∼
a ∨ b, there is by Lemma 3.2 a c ∼ a′ ∧ b′ such that a ∧ b ≤ c ≤ a ∨ b.

Furthermore, let b′′ ∼ b be such that c ≤ b′′ ≤ c ∨ b, and a′′ ∼ a be such that
c ≤ a′′ ≤ c ∨ a. Then a′′ ∨ b′′ ≤ a ∨ b, and a′′ ∧ b′′ = c. From the first part, we
have a′′ ∨ b′′ ∼ a′ ∨ b′. So a ∨ b ≻

∼
a′ ∨ b′.

Conversely, let a ∨ b ≻
∼

a′ ∨ b′. Then there is a d ∼ a′ ∨ b′ such that a ∧ b ≤
d ≤ a ∨ b. Moreover, there are a′′ ∼ a and b′′ ∼ b such that a ∧ d ≤ a′′ ≤ d and
b ∧ d ≤ b′′ ≤ d. Then a′′ ∨ b′′ = d and a′′ ∧ b′′ ≥ a ∧ b. It follows from the first
part that a′′ ∧ b′′ ∼ a′ ∧ b′. So a ∧ b ≺

∼
a′ ∧ b′.

The last statement is clear from (B2). �

We next turn to the existence of infima and suprema in the poset [L]. As usual
[a]∧ [b] and [a]∨ [b] denote the greatest lower bound and smallest upper bound
of [a] and [b], respectively, in case they exist.

Lemma 4.3 Let ∼ be an s-equivalence relation on a Boolean algebra L. Let

a, b ∈ L. Then (i) [a ∨ b] = min {[a′ ∨ b′] : a′ ∼ a, b′ ∼ b} if and only if (ii)
[a ∨ b] = [a] ∨ [b] if and only if (iii) [a ∧ b] = max {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} if

and only if (iv) [a ∧ b] = [a] ∧ [b].

In particular, if [L] is residuable, then [L] is lattice-ordered.

Proof. Assume (i). We have [a ∨ b] ≥ [a], [b], and from [x] ≥ [a], [b], it follows
x ≥ a′, b′ for some a′ ∼ a and b′ ∼ b, whence by assumption x ≥ a′ ∨ b′ ≻

∼
a∨ b,

that is, [x] ≥ [a ∨ b]. (ii) follows.

Conversely, assume (ii). For a′ ∼ a and b′ ∼ b, we have a′ ∨ b′ ≻
∼

a, b, that is,
[a′ ∨ b′] ≥ [a], [b]. By assumption, this means [a′∨ b′] ≥ [a∨ b], and (i) is proved.

The equivalence of (iii) and (iv) holds by duality. Finally, (i) and (iii) are
equivalent by Lemma 4.2. �

Note that if [L] is residuable, then {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b} contains a smallest
and {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} contains a greatest element, and both these
elements are represented by the same pair a′ ∼ a and b′ ∼ b.

We see next that a further pair a′′ ∼ a and b′′ ∼ b represents both the maximum
of the former set and the minimum of the latter set.

Lemma 4.4 Let ∼ be an s-equivalence relation on a Boolean algebra L. Let

a, b ∈ L. Then the following statements are equivalent:

(i) [a ∧ b] = min {[a′ ∧ b′]: a′ ∼ a, b′ ∼ b},

(ii) [a ∨ b] = max {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b}.
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Moreover, if [L] is residuable, then for any a, b ∈ L, the set {[a′ ∧ b′] : a′ ∼
a, b′ ∼ b} has a minimum.

Proof. The first part holds by Lemma 4.2.

Let [L] be residuable. Then the set {[a′ ∧ ¬b′] : a′ ∼ a, b′ ∼ b} = {[a′ ∧ c] :
a′ ∼ a, c ∼ ¬b} has a greatest element; so there are ā ∼ a and b̄ ∼ b such that
ā∧¬b̄ ≻

∼
a′ ∧¬b′ for all a′ ∼ a and b′ ∼ b. It follows ā∧ b̄ = ār (ā∧¬b̄) ≺

∼
a′ r

(a′ ∧ ¬b′) = a′ ∧ b′ for all a′ ∼ a and b′ ∼ b. �

We next turn to pointwise connection of two equivalence classes by the difference
operation.

Lemma 4.5 Let ∼ be an s-equivalence relation on a Boolean algebra L. Let

a, b ∈ L. If [a ∨ b] = [a] ∨ [b], then [a r b] = min {[a′ r b′]: a′ ∼ a, b′ ∼ b}.

Proof. Assume [a∨ b] = [a]∨ [b], and let a′ ∼ a and b′ ∼ b. Then a′ ∧ b′ ≺
∼

a∧ b

by Lemma 4.3. So by (B1) and (B2), arb = ar (a∧b) ≺
∼

a′ r (a′∧b′) = a′ rb′.
�

Definition 4.6 Let ∼ be an s-equivalence relation on a Boolean algebra L such
that [L] is residuable. Then we define for a, b ∈ L

[a] ⊕ [b] = max {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b},

[a] ⊖ [b] = min {[a′ r b′]: a′ ∼ a, b′ ∼ b},

and we let 0 = 0 and 1 = 1. We call the structure ([L];∧,∨,⊕,⊖, 0, 1) the
ambiguity algebra associated to the pair (L,∼).

Example 4.7 Let L be the Boolean algebra generated by the closed subinter-
vals of the real unit interval by means of intersection, union, and complementa-
tion. For a, b ∈ L, define a ∼ b if the Borel measures of a and b coincide. Then
[L] can be identified with [0, 1], ordered in the natural way. Moreover, ⊕ is the
 Lukasiewicz t-conorm, ⊖ is the truncated difference. So the ([L];∧,∨,⊕,⊖, 0, 1)
is the  Lukasiewicz t-conorm algebra.

The proof of the following lemma contains the central argument on which this
paper is based.

Lemma 4.8 Let ∼ be an s-equivalence relation on a Boolean algebra L such that

[L] is residuable. Then the ambiguity algebra ([L];∧,∨,⊕,⊖, 0, 1) associated to

(L,∼) is a dual residuated lattice.

Proof. ([L];∧,∨, 0, 1) is a bounded lattice by Lemma 4.3.
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Note next that d ∼ a ∨ b implies d = a′ ∨ b′ for some a′ ∼ a and b′ ∼ b. So, for
any a, b, c ∈ L, we have ([a]⊕[b])⊕[c] = max {a′∨b′∨c′ : a′ ∼ a, b′ ∼ b, c′ ∼ c},
from which the associativity of ⊕ is evident. It is clear that ⊕ is commutative;
and because a ∨ b ∼ a for b ∼ 0, we have [a] ⊕ 0 = [a]. So ([L];⊕, 0) is a
commutative monoid.

Furthermore, [a] ≤ [b] ⊕ [c] holds if and only if a′ ≤ b′ ∨ c′ for some a′ ∼ a,
b′ ∼ b, c′ ∼ c. And [a] ⊖ [b] ≤ [c] if and only if a′ r b′ ≤ c′ for some a′ ∼ a,
b′ ∼ b, c′ ∼ c. Since ∨ and r form an adjoint pair in the Boolean algebra L,
we conclude that ⊕ and ⊖ form an adjoint pair in [L]. �

We continue to prove that the algebra just proved to be a dual residuated lattice
is actually a dual MV-algebra.

Lemma 4.9 Let ∼ be an s-equivalence relation on a Boolean algebra L such

that [L] is residuable. Let a ∈ L. Then 1 ⊖ [a] = [¬a].

Proof. For any b ∼ 1 and a′ ∼ a, we have a′ ∨ b ∼ 1, so b r a′ = (a′ ∨ b) r a′ ∼
1 r a = ¬a by (B2). The assertion is now evident from the definition of ⊖. �

Lemma 4.10 Let ∼ be an s-equivalence relation on a Boolean algebra L such

that [L] is residuable. Let a, b ∈ L. Then ([a] ⊖ [b]) ⊕ [b]) = [a] ∨ [b].

Proof. We may assume that [a∨ b] = [a]∨ [b]. By Lemma 4.5, [a]⊖ [b] = [a r b].
Furthermore, a r b ⊥ b; so by Lemma 4.2, (a r b) ∨ b ≻

∼
c′ ∨ b′ for all c′ ∼ a r b

and b′ ∼ b. So [ar b]⊕ [b] = [(ar b)∨ b] = [a∨ b], and the assertion follows. �

We are ready to state the main theorem of this section.

Theorem 4.11 Let ∼ be an s-equivalence relation on a Boolean algebra L such

that [L] is residuable. Then the ambiguity algebra ([L];∧,∨,⊕,⊖, 0, 1) associated

to (L,∼) is a dual MV-algebra.

Proof. That [L] is a dual MV-algebra follows from Lemmas 4.8, 4.9, and 4.10.
�

Let us finally see how large the class of representable MV-algebras is at least.

Example 4.12 We generalize and refine Example 4.7. Let (G;≤, +, 0, u) be
a unital totally ordered Abelian group. Let L consist of the finite unions of
half-open intervals [g, h), where g, h ∈ G such that 0 ≤ g < h ≤ u. Then
(L;∩,∪, ∁, ∅, [0, u)) is obviously a Boolean algebra, where ∩ is the intersection, ∪
is the union, and ∁A = [0, u)\A. Given A ∈ L, let A = ∪̇i[gi, hi) be represented
by disjoint non-empty intervals, and let µ(A) = Σi(hi − gi). Obviously, this
defines a G-valued measure µ : L → G[0, u]. It is furthermore not difficult to
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check that the ambiguity algebra [L] associated to (L,∼) is isomorphic to the
dual MV-algebra arising from the unit interval G[0, u] in the way described in
Theorem 2.2.

Theorem 4.13 Let (M ;∧,∨,⊕,⊖, 0, 1) be an MV-algebra which is the direct

product of totally ordered MV-algebras. Then there is an s-equivalence relation

on a Boolean algebra such that [L] is residuable and such that the ambiguity

algebra associated to (L,∼) is isomorphic to M .

Proof. By Example 4.12, the statement holds for all totally ordered MV-algebra.
It is furthermore clear how this example is to be generalized to represent any
direct product of totally ordered MV-algebras. �

So in particular, all totally ordered MV-algebras are representable in the way
shown by Theorem 4.11. Moreover, any MV-algebra is a subalgebra of an MV-
algebra representable this way.

5 Conditions implying

residuability for Boolean algebras

The condition that the quotient w.r.t. a horizontal equivalence on a Boolean
algebra is residuable, is of a rather abstract nature. We wonder if there are easy
conditions implying this property. We will show here that when assuming the
Boolean algebra to be separable and complete and furthermore the relation ≺

∼

to be order-continuous, we only need to require the lower directedness of the
sets of joins of the elements of two equivalence classes.

We will call any poset separable if it contains a countable dense subset.

Definition 5.1 Let L be a complete separable Boolean algebra, and let ∼ be an
s-equivalence relation on L. We say that ∼ is normal if the following conditions
are fulfilled:

(B4) Let a0 ≥ a1 ≥ . . . and b ≺
∼

ai for every i. Then b ≺
∼

∧

i ai.

(B5) For any a, b ∈ L, the set {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b} is lower directed.

Lemma 5.2 Let ∼ be a normal s-equivalence relation on a complete separable

Boolean algebra L.

(i) Let a0 ≤ a1 ≤ . . . and b ≻
∼

ai for every i. Then b ≻
∼

∨

i ai.

(ii) Let a0 ≤ a1 ≤ . . .. Then b =
∨

i ai implies [b] =
∨

i [ai].

(iii) [L] is separable.
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Proof. (i) By (B4), we have ¬b ≺
∼

∧

i ¬ai. So b ≻
∼

∨

i ai as asserted.

(ii) This is easily derived from part (i).

(iii) Let {ei : i < ω} be a dense subset of L. Given a ∈ L, we have a =
∨

j eij

for certain i1, . . . < ω. Then a =
∨

j (ei1 ∨ . . . ∨ eij
), so by part (ii), [a] =

∨

j [ei1 ∨ . . . ∨ eij
] in [L]. It follows that the equivalence classes of suprema of

finitely many of the ei are dense in [L]. �

Theorem 5.3 Let ∼ be a normal s-equivalence relation on a complete separable

Boolean algebra L. Then [L] is residuable.

Proof. Let a, b ∈ L. We will show that there are ā ∼ a and b̄ ∼ b such that
ā ∧ b̄ ≻

∼
a′ ∧ b′ for all a′ ∼ a and b′ ∼ b; residuability then follows by Lemma

4.3.

Because [L] is separable by Lemma 5.2(iii), the set K = {[a′∧b′]: a′ ∼ a, b′ ∼ b}
contains a countable subset K0 = {[ai ∧ bi]: i < ω} such that the sets of upper
bounds of K and of K0 coincide.

By (B5), there are a′ ∼ a and b′ ∼ b such that a′ ∨ b′ ≺
∼

a0 ∨ b0, a1 ∨ b1. In
view of Lemma 3.2, let c ∼ a′ ∨ b′ such that a0 ≤ c ≤ a0 ∨ b0; let b′1 ∼ b be such
that b0 ∧ c ≤ b′1 ≤ c. Then a0 ∨ b′1 ≤ a0 ∨ b0 and a0 ∧ b′1 ≥ a0 ∧ b0. Moreover,
because c = a0 ∨ (b0 ∧ c) ≤ a0 ∨ b′1 ≤ c, we have a0 ∨ b′1 ∼ a′ ∨ b′ and, by Lemma
4.2, a0 ∧ b′1 ∼ a′ ∧ b′ ≻

∼
a1 ∧ b1. So we may replace [a1 ∧ b1] by [a0 ∧ b′1] in K0

without changing the set of upper bounds of K0.

Continuing in the same way, we get a chain a0 ∨ b0 ≥ a0 ∨ b′1 ≥ a0 ∨ b′2 ≥ . . .

and a0 ∧ b0 ≤ a0 ∧ b′1 ≤ . . .. Letting d =
∧

i(a0 ∨ b′i), we have d r a ≺
∼

b ≺
∼

d; so

d = a0∨ b̄ for some b̄ ∼ b. Then a0∨ b̄ ≤ a0∨b′i and consequently a0∧ b̄ ≥ a0∧b′i
for every i. The assertion follows. �

6 s-Equivalence relations on

Browerian algebras

In this and the next subsection, we will generalize the framework developed so
far; rather than relying on Boolean algebras, we will use distributive lattices
with the additional property that the difference of any pair of elements exists.
The procedure requires more care than in the previous case; our notions need
to be adapted and the proofs become more involved. However, as a result, we
are able to offer a possibility to represent a class of residuated lattices which
is large enough at least to include the (totally ordered) BL-algebras, which are
associated to Hájek’s Basic Fuzzy Logic BL.

A Browerian algebra is a bounded lattice (L;∧,∨, 0, 1) such that

a r b = min {x: b ∨ x ≥ a},
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that is, the difference of a and b, exists for every pair a, b ∈ L. This means
that ∨ and r are an adjoint pair. More information on these algebras can be
easier found when considering the dual notion, which are Heyting algebras; see
for instance [RaSi].

For elements a, b of a Browerian algebra, we will say that a is pseudoorthogonal

to b and write a ⊥| b if a r b = a. Furthermore, we will say that a and b are
orthogonal and write a ⊥ b if a ⊥| b and b ⊥| a. Note that ⊥| is in general not
symmetric, whereas by construction ⊥ is.

Lemma 6.1 Let (L;∧,∨, 0, 1) be a Browerian algebra. Let a, b, c ∈ L. Then:

(i) a ⊥| b implies a ⊥| c for c ≤ b.

In general, a r b ⊥| b.

(ii) We have

a ∨ b = (b r a) ∨ a = (a r b) ∨ (b r a) ∨ (a ∧ b),

a r b = a r (a ∧ b) = (a ∨ b) r b,

(a r b) r c = a r (b ∨ c).

Moreover, if the supremum
∨

ι aι exists in L, then (
∨

ι aι)rb =
∨

ι (aιrb).

We next present the adapted version of Definition 3.1 for the case of Browerian
algebras.

Definition 6.2 Let (L;∧,∨, 0, 1) be a Browerian algebra. Let ∼ be an equiva-
lence relation ∼ on L, and write a ≺

∼
b if a′ ≤ b′ for some a′ ∼ a and b′ ∼ b. ∼

is called a s-equivalence relation on L if the following conditions hold:

(H1) If a ≺
∼

b ≺
∼

c and a ≤ c, then there is a b′ ∼ b such that a ≤ b′ ≤ c.

(H2) Let a ∼ a′, b ∼ b′. Then a ∧ b ∼ a′ ∧ b′ if and only if b r a ∼ b′ r a′.

(H3) Let a ∼ a′, b ∼ b′. Then a ⊥| b, a′ ⊥| b′ implies a ∨ b ∼ a′ ∨ b′.

The intended interpretation of a Browerian algebra endowed with an s-equiva-
lence relation is similar as before. A Browerian algebra is isomorphic to a subset
algebra, and so we may consider it as a system of sharp propositions, and we may
think of an s-equivalence relation as identifying propositions of equal expressive
strength.

We have by (H1) that ≺
∼

induces a partial order, also denoted by ≤, on the set
[L] of equivalence classes of an s-equivalence relation, and ι: L → [L], a 7→ [a]
is a surjective homomorphism of bounded posets.

We note that if ∼ is an s-equivalence relation on a Boolean algebra L according
to Definition 3.1, then the relation ∼ on L, viewed as a Browerian algebra,
fulfills (H1)–(H3), that is, is an s-equivalence relation in the sense of Definition
6.2 as well.
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Lemma 6.3 Let ∼ be an s-equivalence relation on the Browerian algebra L.

Let a, b, c ∈ L.

(i) Let c ∼ a ∨ b. Then there are a′ ∼ a and b′ ∼ b such that c = a′ ∨ b′.

(ii) Let a′ ∼ a and b′ ∼ b such that a ∨ b ∼ a′ ∨ b′. Then a ⊥| b if and only if

a′ ⊥| b′. In particular, a ⊥ b if and only if a′ ⊥ b′.

Proof. (i) By (H1) and (H2), we choose a′ ∼ a and b′ ∼ b such that a′ ≤ c and
c r a′ ≤ b′ ≤ c. Then c = a′ ∨ b′.

(ii) Assume a ⊥| b. Then a′ ∼ a = arb = (a∨b)rb ∼ (a′∨b′)rb′ = a′rb′ ≤ a′

by (H2); so a′ r b′ = a′ by Lemma 7.9, that is, a′ ⊥| b′. �

We suggested above to imagine ∼ as a relation identifying elements of equal
size. To a certain extent, this picture can be applied to the present context as
well. The following example is the typical one.

Example 6.4 Let (I;≤) be a totally ordered set. For every ι ∈ I, let (Lι;∧,∨,

0, 1) be a Boolean algebra. Define the ordinal sum of these algebras as follows
(caution: this definition is not exactly the same as e.g. in [Fuc]). Let L consist
of those (aι)ι∈I ∈

∏

ι∈I Lι such that, for κ ∈ I, aκ > 0 implies aι = 1 for all
ι < κ. Endow L with the pointwise order. Then L is obviously a lattice with
smallest the element (0)ι and the largest element (1)ι. It is straightforward that
L is actually a Browerian algebra.

Assume now in addition that, for every ι, µι : Lι → [0, 1] is a homogeneous
measure on Lι. Define (aι)ι ∼ (bι)ι if µι(aι) = µι(bι) for all ι. We may check
that ∼ is an s-equivalence relation on L. The induced order is total.

In the rest of this section, we develop an analogue of Theorem 3.10. Again, this
material will afterwards not be used.

Definition 6.5 Let L be a Browerian algebra, and let (G;∧,∨, +, 0) be an
Abelian ℓ-group. Then a map µ : L → G is called a G-valued measure on L if
a ⊥ b implies µ(a ∨ b) = µ(a) + µ(b).

Note that we do not work with unital ℓ-groups here.

Lemma 6.6 Let L be a Browerian algebra, and let a, b, c, d ∈ L be such that

a ⊥ b, c ⊥ d, and a ∨ b = c ∨ d. Then there exist pairwise orthogonal elements

e1, . . . , e4 ∈ L such that a = e1 ∨ e2, b = e3 ∨ e4, c = e1 ∨ e3, d = e2 ∨ e4.

Proof. Let e1 = c r b, e2 = c r a, e3 = d r b, e4 = d r a.

Then e1 = c r b = ((c ∨ d) r d) r b = (c ∨ d) r (b ∨ d) = (a ∨ b) r (b ∨ d) =
((a ∨ b) r b) r d = a r d. Similarly, e2 = b r d, e3 = a r c, e4 = b r c.
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It follows e1 r e2 = (c r b) r (b r d) = c r b = e1; similarly e2 r e1 = e2; so
e1 ⊥ e2. Analogously, we see that ei ⊥ ej for every distinct pair i, j.

Finally, we have e1 ∨ e2 = (c r b)∨ (b r d) ≥ c r d = c ≥ e1 ∨ e2, because c ⊥| d;
so e1 ∨ e2 = c. Analogously, we derive the claimed equations for a, b, d. �

We next introduce the appropriate algebraic tool needed in the sequel; the
notion of an effect algebra is, unfortunately, too special. We use the following
straightforward generalization [HePu].

Definition 6.7 A generalized effect algebra, or GE-algebra for short, is a struc-
ture (E; +, 0), where + is a partial binary operation and 0 is a constant such
that the axioms (E1)–(E4) of effect algebras are fulfilled and furthermore the
following one:

(GE) If a + b is defined and equals 0, then a = b = 0.

In addition, we define a ≤ b if a + c = b for some c.

Again, ≤ defines a partial order on a GE-algebra, 0 being the bottom element.
Note that effect algebras may be considered GE-algebras possessing a top ele-
ment.

GE-algebras are modelled upon subsets of positive cones of partially ordered
groups.

Definition 6.8 Let G be an Abelian ℓ-group. Let E ⊆ G+ be such that (i)
0 ∈ E and (ii) if a, b ∈ E and a ≤ b, then b−a ∈ E. Let + be the partial addition
on E which is the restriction of the group addition to those pairs of elements
whose sum is in E. Then (E; +, 0) is called a group-representable GE-algebra.

Clearly, a group-representable GE-algebra is a GE-algebra. For the converse
direction, we have the following theorem, which is a straightforward generaliza-
tion of Theorem 3.9. For a proof, see e.g. [DvPu], or see the similar theorem in
[DvVe3], whose proof needs to be only slightly modified. The property (RDP2)
is defined in exact analogy to the case of effect algebras.

Theorem 6.9 Every GE-algebra fulfilling (RDP2) is a group-representable GE-

algebra.

We may formulate the announced result.

Theorem 6.10 Let ∼ be an s-equivalence relation on the Browerian algebra L.

Then there is an Abelian ℓ-group G and a G-valued measure µ : L → G on L

such that, for all a, b ∈ L, µ(a) = µ(b) iff a ∼ b.
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Proof. Consider the partial algebra ([L]; +, 0, 1), where we put [a]+[b] = [a′∨b′]
if a′ ⊥ b′ for some a′ ∼ a and b′ ∼ b, and let else [a] + [b] undefined. By (H3),
this definition is unambiguous.

Assume that ([a] + [b]) + [c] is defined; this means that d ⊥ c′ for a c′ ∼ c and a
d ∼ a′ ∨ b′ such that a′ ⊥ b′ for a pair a′ ∼ a and b′ ∼ b. By Lemma 6.3, there
is an orthogonal pair a′′ ∼ a and b′′ ∼ b such that d = a′′ ∨ b′′. It is not difficult
to check that b′′ ⊥ c′ and a′′ ⊥ b′′ ∨ c′. So (E1) follows.

The commutativity of + is obvious; so also (E2) holds. If [a] + [c] = [b] + [c],
then a′ ∨ c′ ∼ b′ ∨ c′′ for a′ ∼ a, b′ ∼ b, and c′ ∼ c′′ ∼ c such that a′ ⊥ c′ and
b′ ⊥ c′′, whence a′ = (a′ ∨ c′) r c′ ∼ (b′ ∨ c′′) r c′′ = b′, and (E3) follows. (E4)
is trivial.

To see (GE), assume [a] + [b] = 0. This means a′ ∨ b′ ∼ 0 for some a′ ∼ a and
b′ ∼ b, and it follows a′ ∼ b′ ∼ 0; hence a = b = 0. So [L] is a generalized effect
algebra.

We claim that [L] fulfills (RDP2). So let a, b, c, d ∈ L be such that [a] + [b] =
[c]+[d]. We may assume a ⊥ b and c ⊥ d. By Lemma 6.3, there is an orthogonal
pair c′ ∼ c and d′ ∼ d such that a ∨ b = c′ ∨ d′. So (RDP2) follows by Lemma
6.6.

By Theorem 6.9, ([L]; +, 0) is isomorphically embeddable into an Abelian ℓ-
group. Putting µ(a) = [a] for each a ∈ L, the assertions follow. �

We think that the fact that we may associate with a Browerian algebra a GE-
algebra which even fulfills the strong version of the Riesz decomposition prop-
erty, is interesting independently from the actual context of this paper. However,
we should stress that the value of this theorem must not be overestimated. For,
there is no guarantee that the the GE-algebra provides any useful information
on the Browerian algebra from which it is constructed; it may happen that
there are not sufficiently many additions defined. Consider, for instance, an
ordinal sum of Boolean algebras, as described in Example 6.4; in this case, the
associated GE-algebra does not reflect the ordinal sum construction at all.

7 The algebra associated to an

s-equivalence relation on a Browerian algebra

We are henceforth concerned with the quotient of a Browerian algebra with
respect to an s-equivalence relation. We are going to endow this set with the
structure of a residuated lattice, analogous to the case that the underlying poset
is a Boolean algebra. As to be expected without the self-duality of Boolean
algebras, we will have to require stronger conditions to obtain similar results.
We are then again led to a class of residuated lattices, which is larger than
before and still interesting from the point of view of logics.
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Definition 7.1 Let ∼ be an s-equivalence relation on a Browerian algebra
(L;∧, ∨,¬, 0, 1). Consider the bounded poset ([L];≤, 0, 1). If, for every a, b ∈ L,
the set {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b} contains a smallest and a greatest element, we
say that [L] is residuable.

Lemma 7.2 Let ∼ be an s-equivalence relation on a Browerian algebra L. Let

a ∼ a′, b ∼ b′. Then a ∧ b ∼ a′ ∧ b′ if and only if a ∨ b ∼ a′ ∨ b′.

Proof. We have a ∨ b = (a r b) ∨ b and a r b ⊥| b. So from a ∧ b ∼ a′ ∧ b′, it
follows a r b ∼ a′ r b′ by (H2), and a ∨ b ∼ a′ ∨ b′ by (H3).

Conversely, assume a∨b ∼ a′∨b′. Then arb = (a∨b)rb ∼ (a′∨b′)rb′ = a′rb′

by (H2); and a ∧ b ∼ a′ ∧ b′ again by (H2). �

Lemma 7.3 Let ∼ be an s-equivalence relation on a Browerian algebra L. Let

a, a′, b, b′ ∈ L be such that a ∼ a′, b ∼ b′. Then a ∧ b ≺
∼

a′ ∧ b′ if and only if

a ∨ b ≻
∼

a′ ∨ b′.

Proof. Assume a∧ b ≺
∼

a′∧ b′. Let c ∼ a′∧ b′ be such that a∧ b ≤ c ≤ a, and let
b′′ ∼ b be such that c ≤ b′′ ≤ b∨c. Then a∧b′′ ≤ a∧(b∨c) = (a∧b)∨c = c ≤ a, b′′,
that is, c = a ∧ b′′. By Lemma 7.2, it follows a′ ∨ b′ ∼ a ∨ b′′ ≤ a ∨ b.

Conversely, assume a∨b ≻
∼

a′∨b′. Let e ∼ a′∨b′ be such that a ≤ e ≤ a∨b, and
let b′′ ∼ b be such that b∧e ≤ b′′ ≤ e. Then a∨b′′ ≤ e = e∧(a∨b) = a∨(b∧e) ≤
a∨ b′′, that is, e = a∨ b′′. By Lemma 7.2, it follows a′ ∧ b′ ∼ a∧ b′′ ≥ a∧ b. �

Lemma 7.4 Let ∼ be an s-equivalence relation on a Browerian algebra L. Let

a, b ∈ L. Then (i) [a ∨ b] = min {[a′ ∨ b′] : a′ ∼ a, b′ ∼ b} if and only if (ii)
[a ∨ b] = [a] ∨ [b] if and only if (iii) [a ∧ b] = max {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} if

and only if (iv) [a ∧ b] = [a] ∧ [b].

In particular, if [L] is residuable, then [L] is lattice-ordered.

Proof. We proceed just like in the proof of Lemma 4.3 to see that (i) is equivalent
to (ii). Dually, we see that (iii) is equivalent to (iv).

The equivalence of (i) and (iii) follows by Lemma 7.3. �

Lemma 7.5 Let ∼ be an s-equivalence relation on a Browerian algebra L. Let

a, b ∈ L. If [a ∨ b] = [a] ∨ [b], then [a r b] = min {[a′ r b′]: a′ ∼ a, b′ ∼ b}.

Proof. Let a′ ∼ a and b′ ∼ b. By Lemma 7.4, there is a d ∼ a′ ∨ b′ such that
d ≥ a ∨ b. Then, by (H2), a′ r b′ ∼ d r b ≥ (a ∨ b) r b = a r b. �

So we may define the operations ⊕ and ⊖ as in Section 4.
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Definition 7.6 Let ∼ be an s-equivalence relation on a Browerian algebra L

such that [L] is residuable. Then we define for a, b ∈ L

[a] ⊕ [b] = max {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b},

[a] ⊖ [b] = min {[a′ r b′]: a′ ∼ a, b′ ∼ b},

and we let 0 = [0] and 1 = [1]. We call the structure ([L];∧,∨,⊕,⊖, 0, 1) the
ambiguity algebra associated to the pair (L,∼).

To see that this definition is correct, recall that ⊕ is well-defined because [L] is
residuable, and ⊖ is well-defined due to residuability, Lemma 7.4 and Lemma
7.5.

Theorem 7.7 Let ∼ be an s-equivalence relation on a Browerian algebra L such

that [L] is residuable. Then the ambiguity algebra ([L];∧,∨,⊕,⊖, 0, 1) associated

to (L,∼) is a dual residuated lattice.

Proof. This is proved similarly to Lemma 4.8. �

Our next question is if we may sharpen the conditions of an s-equivalence rela-
tion so as to make the representation of BL-algebras possible.

Definition 7.8 Let L be a Browerian algebra L, and let ∼ be an s-equivalence
relation on L. Then we say that [L] is divisible if the following condition holds:

(Div) For any a ∈ L, a ∼ 0 implies a = 0.

Moreover, we say that [L] is prelinear if the following condition holds:

(Pre) Let a, b ∈ L be such that a ∧ b ≻
∼

a′ ∧ b′ for all a′ ∼ a and b′ ∼ b. Then
c1 ∼ c2, c1 ≤ a r b and c2 ≤ b r a implies c1 = c2 = 0.

The condition (Div) may informally be seen as the condition that no non-zero
element represents falsity. Moreover, note that [L] is prelinear if [a∨b] = [a]∨ [b]
implies [a r b] ∧ [b r a] = 0.

The condition (Div) has the following immediate consequence.

Lemma 7.9 Let ∼ be an s-equivalence relation on the Browerian algebra L

such that (Div) hold. Let a, b ∈ L. Then a ∼ b and a ≤ b imply a = b.

Proof. By (H2), b r a ∼ a r a = 0, so the assertion follows by (Div). �

We shall see that (Div) implies the divisibility of an ambiguity algebra associated
to a Browerian algebra.
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Lemma 7.10 Let ∼ be an s-equivalence relation on a Browerian algebra L

such that [L] is residuable and divisible. Let a, b ∈ L be such that a ⊥| b. Then

[a] ⊕ [b] = [a ∨ b].

Proof. Let ā ∼ a and b̄ ∼ b be such that [ā ∨ b̄] = [a] ⊕ [b]. Then in particular,
ā ∨ b̄ ≻

∼
a ∨ b. Let d ∼ a ∨ b be such that ā ≤ d ≤ ā ∨ b̄, and b′ ∼ b such that

d ∧ b̄ ≤ b′ ≤ d. Then we have ā ∨ b′ = d and ā ∧ b′ ≥ ā ∧ b̄.

So ā r b̄ = ā r (ā ∧ b̄) ≥ ā r (ā ∧ b′) = ā r b′ = d r b′ ∼ a r b = a ≻
∼

ā r b̄, that

is, ā r b̄ ∼ ā. By Lemma 7.9, ā ⊥| b̄ and hence ā ∨ b̄ ∼ a ∨ b by (H3). �

Lemma 7.11 Let ∼ be an s-equivalence relation on a Browerian algebra L such

that [L] is residuable and divisible. Let a, b ∈ L. Then

([a] ⊖ [b]) ⊕ [b] = [a] ∨ [b]. (2)

Proof. By replacing a and b by equivalent elements if necessary, we may, in
view of Lemma 7.4, assume that [a ∨ b] = [a] ∨ [b]. Then, by Lemma 7.5,
[a] ⊖ [b] = [a r b]. By Lemma 7.10, [a r b] ⊕ [b] = [a ∨ b]. So the assertion is
proved. �

We proceed taking into account the condition (Pre), and we arrive at the main
theorem of the present section.

Theorem 7.12 Let ∼ be an s-equivalence relation on a Browerian algebra L

such that [L] is residuable, divisible and prelinear. Then the ambiguity algebra

([L];∧,∨, ⊕,⊖, 0, 1) associated to (L,∼) is a BL-algebra.

Proof. Divisibility holds by Lemma 7.11.

To see prelinearity, let a, b ∈ L. By replacing a and b by equivalent elements if
necessary, we may assume that [a∨ b] = [a]∨ [b]. But then [a]⊖ [b] = [ar b] and
[b] ⊖ [a] = [b r a] by Lemma 7.5. So ([a] ⊖ [b]) ∧ ([b] ⊖ [a]) = 0 by (Pre). �

Example 7.13 We shall combine Example 6.4 with Example 4.12. Let (I;≤)
be a totally ordered set. For every ι ∈ I, let (Gι;≤, +ι, 0ι) be a totally ordered
Abelian group, and choose 0 ≤ uι ≤ ∞. Let Lι consist of (i) the finite unions
of half-open intervals [g, h), where g, h ∈ Gι such that 0 ≤ g < h ≤ uι and (ii)
the set [0, uι).

Let now L contain all (Aι)ι ∈
∏

ι Lι such that either Aι = ∅ for all ι, or there is a
smallest κ ∈ I such that Aκ 6= ∅, in which case (i) Aκ $ G+

κ and (ii) Aι = [0, uι)
for all ι < κ. Endow L with the pointwise order; then (L;∧,∨, (∅)ι, ([0, uι))ι)
is a Browerian algebra.

For every ι, define µι : Lι → G+
ι ∪ {∞} by µι(A) = Σi(hi − gi), supposed

that A is the union of the disjoint intervals [gi, hi). For (Aι)ι, (Bι)ι ∈ L, let
(Aι)ι ∼ (Bι)ι if µι(Aι) = µι(Bι) for all ι.

21



Note that L has a greatest element exactly if I has a greatest element τ and
uτ < ∞. Assume that this is the case. Then the ambiguity algebra associated
to (L,∼) is a BL-algebra. In view of Theorem 2.2, we readily see that all totally
ordered BL-algebras can be constructed this way.

Theorem 7.14 Let (M ;∧,∨,⊕,⊖, 0, 1) be a BL-algebra which is the direct

product of totally ordered BL-algebras. Then there is an s-equivalence relation

on a Browerian algebra such that [L] is residuable and such that the ambiguity

algebra associated to (L,∼) is isomorphic to M .

Proof. This is clear from Example 7.13 and its obvious generalization. �

So again we see that in particular, all totally ordered BL-algebras are repre-
sentable by our method, and any BL-algebra is a subalgebra of a BL-algebra
representable in this way.

8 Conditions implying

residuability for Browerian algebras

We again wonder if there are conditions for s-equivalence relations on Browerian
algebras such that residuability of the quotient set is automatic. We will consider
dual locales, and we will require order continuity of the ≺

∼
-relation.

Recall that a dual locale is a structure (L;∧,∨, 0, 1) such that (i) L is a complete
lattice, 0 being the bottom and 1 being the top element, and (ii) ∨ distributes
over arbitrary infima, that is,

a ∨
∧

ι∈I

bι =
∧

ι∈I

(a ∨ bι) for a, bι ∈ L, ι ∈ I.

Note that every dual locale is a Browerian algebra. For detailed information on
locales – the notion dual to a dual locale –, we refer to [Joh].

Definition 8.1 Let L be a separable dual locale, and let ∼ be an s-equivalence
relation on L. We say that ∼ is normal if the following conditions are fulfilled:

(H4) (i) Let a0 ≥ a1 ≥ . . . and b ≺
∼

ai for every i. Then b ≺
∼

∧

i ai.

(ii) Let a0 ≤ a1 ≤ . . . and b ≻
∼

ai for every i. Then b ≻
∼

∨

i ai.

(H5) For any a, b ∈ L, the sets {[a ∧ b] : a′ ∼ a, b′ ∼ b} and {[a ∨ b] : a′ ∼
a, b′ ∼ b} are lower directed.

Lemma 8.2 Let ∼ be a normal s-equivalence relation on a separable dual locale

L.
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(i) Let a0 ≤ a1 ≤ . . .. Then b =
∨

i ai implies [b] =
∨

i [ai].

(ii) [L] is separable.

Proof. This is proved like Lemma 5.2(ii),(iii). Instead of Lemma 5.2(i), (H4)(ii)
is used. �

In several steps, we show that normality of the s-equivalence relation implies
residuability of the quotient set.

Lemma 8.3 Let ∼ be a normal s-equivalence relation on a separable dual locale

L. Let a1, a2, b1, b2 ∈ L be such that a1 ∼ a2 and b1 ∼ b2. Then there is a

b′1 ∼ b1 such that a1 ∧ b1 ≤ a1 ∧ b′1, a1 ∨ b′1 ≤ a1 ∨ b1 and a2 ∧ b2
≺
∼

a1 ∧ b′1,

a1 ∨ b′1 ≺
∼

a2 ∨ b2.

Proof. By (H5), there are a3 ∼ a1 and b3 ∼ b1 such that e3 = a3 ∨ b3
≺
∼

a1 ∨
b1, a2 ∨ b2. By (H1), there is an e1 ∼ e3 such that a1 ≤ e1 ≤ a1 ∨ b1; and there
is a b′1 ∼ b1 such that b1 ∧ e1 ≤ b′1 ≤ e1.

Then a1 ∨ b′1 = e1 ≤ a1 ∨ b1; and a1 ∧ b1 = a1 ∧ b1 ∧ e1 ≤ a1 ∧ b′1. Moreover, we
have a1 ∨ b′1 ≺

∼
a2 ∨ b2 and, by Lemma 7.3, a2 ∧ b2

≺
∼

a1 ∧ b′1. The assertion is
proved. �

Lemma 8.4 Let ∼ be a normal s-equivalence relation on a separable dual locale

L. Let a, b ∈ L. Then {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b} has a smallest element.

Proof. It suffices to show that there are ā ∼ a and b̄ ∼ b such that ā∧ b̄ ≻
∼

a′∧b′

for all a′ ∼ a and b′ ∼ b; the assertion then follows by Lemma 7.4.

By Lemma 8.2(ii), K = {[a′ ∧ b′] : a′ ∼ a, b′ ∼ b} contains a countable subset
K0 = {[ai ∧ bi]: i < ω} such that the upper bounds of K and K0 coincide.

So by Lemma 8.3, there are b′1 ∼ b′2 ∼ . . . ∼ b such that a0 ∨ b0 ≥ a0 ∨ b′1 ≥
a0∨b′2 ≥ . . . and a0∧b0 ≤ a0∧b′1 ≤ . . . and the upper bounds of {[a0∧b′i]: i < ω}
and those of K coincide.

Let d =
∧

i(a0∨b′i). Then we have dra0
≺
∼

b and by (H4)(i) b ≺
∼

d. So d = a0∨b̄

for some b̄ ∼ b. Moreover, a0 ∨ b̄ ≤ a0 ∨ b′i and consequently a0 ∧ b̄ ≻
∼

a0 ∧ b′i for
every i. The assertion follows. �

Lemma 8.5 Let ∼ be a normal s-equivalence relation on a separable dual locale

L. Let a1, a2, b1, b2 ∈ L be such that a1 ∼ a2 and b1 ∼ b2. Then there is a

b′1 ∼ b1 such that a1 ∧ b′1 ≤ a1 ∧ b1, a1 ∨ b1 ≤ a1 ∨ b′1 and a1 ∧ b′1 ≺
∼

a2 ∧ b2,

a2 ∨ b2
≺
∼

a1 ∨ b′1.

Proof. By (H5), there are a3 ∼ a1 and b3 ∼ b1 such that d3 = a3 ∧ b3
≺
∼

a1 ∧
b1, a2 ∧ b2. Let d1 ∼ d3 be such that d1 ≤ a1 ∧ b1 and, in view of Lemma 7.2,
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let e1 ∼ e3 = a3 ∨ b3 be such that e1 ≥ a1 ∨ b1. Then e1 r a1 ∼ e3 r a3 by
(H2), and e1 r a1 ⊥| d1, e3 r a3 ⊥| d3. Let b′1 = (e1 r a1) ∨ d1; then b′1 ∼ b3 by
(H3), and e1 = a1 ∨ b′1. Finally, a1 ∧ b′1 ≥ d1 ∼ a1 ∧ b′1 by Lemma 7.2, whence
d1 = a1 ∧ b′1 by Lemma 7.9. So all assertions follow. �

Lemma 8.6 Let ∼ be a normal s-equivalence relation on a separable dual locale

L. Let a, b ∈ L. Then {[a′ ∨ b′]: a′ ∼ a, b′ ∼ b} has a greatest element.

Proof. By Lemma 8.2(ii), K = {[a′ ∨ b′] : a′ ∼ a, b′ ∼ b} contains a countable
subset K0 = {[ai ∨ bi] : i < ω} such that the upper bounds of K and K0

coincide.

So by Lemma 8.5, there are b′1 ∼ b′2 ∼ . . . ∼ b such that a0 ∨ b0 ≤ a0 ∨ b′1 ≤
a0∨b′2 ≤ . . . and a0∧b0 ≥ a0∧b′1 ≥ . . . and the upper bounds of {[a0∨b′i]: i < ω}
and K coincide.

Let d =
∨

i (a0 ∨ b′i). Then we have by (H4) dr a0 =
∨

i ((a0 ∨ b′i) r a0) ≺
∼

b. So

d = a0 ∨ b̄ for some b̄ ∼ b. We have a0 ∨ b̄ ≥ a0 ∨ b′i for every i; so the assertion
follows. �

Theorem 8.7 Let ∼ be a normal s-equivalence relation on a separable dual

locale L. Then [L] is residuable.

Proof. This is the content of Lemmas 8.4 and 8.6. �

9 Conclusion

We have proposed a way to represent a certain subclass of dual residuated lat-
tices, including the direct products of totally ordered dual MV- or BL-algebras.
Namely, a Boolean algebra or a Browerian algebra, respectively, is endowed
with an equivalence relation subject to conditions which are chosen in accor-
dance with the case that elements of equal size with regard to some measure
are identified. We saw that, under a natural assumption, the set of equivalence
classes bears the structure of an MV- or a dual residuated lattice, respectively.
In particular, any totally ordered dual BL-algebra arises this way, and any dual
BL-algebra is a subalgebra of an algebra arising this way.

It is not clear how the class of algebras arising by the proposed construction can
be characterized. On the other hand, it would be worth to explore possibilities
to make the formalism more flexible, to capture a larger class.
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[DvVe3] A. Dvurečenskij, T. Vetterlein, Generalized pseudoeffect algebras; in:
A. Di Nola, G. Gerla (Hg.), “Lectures on Soft Computing and Fuzzy
Logic”, Springer-Verlag, Berlin 2001; 89 - 111.

[FoBe] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum
logics, Found. Phys. 24 (1994), 1325 - 1346.

[Fuc] L. Fuchs, “Partially Ordered Algebraic Systems”, Pergamon Press,
Oxford, 1963.

[Gil] R. Giles, A non-classical logic for physics, Stud. Log. 33 (1974), 397
- 415.

[Got] S. Gottwald, “A treatise on many-valued logics”, Research Studies
Press, Baldock 2001.

[Haj] P. Hájek, “Metamathematics of Fuzzy Logic”, Kluwer Acad. Publ.,
Dordrecht 1998.
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