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Abstract—We study Archimedean, finite, negative totally or-
dered monoids. We describe an algorithm which generate the
structures of this type in a step-wise fashion. Our approach
benefits from the level set representation of monoids and is
inspired by web geometry.

I. INTRODUCTION

Monoids are important structures in many fields of math-
ematics, including logic, computer science, or the theory of
languages. In fact, in non-classical logic, monoids are often
used to interpret the conjunction. The monoids occurring in
this context are then typically endowed with a translation-
invariant partial order.

In this contribution, we focus on a special class of partially
ordered monoids: we assume that the order is total; that
the monoidal identity coincides with the top element; and
finiteness. Our interest comes from the field of residuated
lattices [GJKO]. Under the additional assumption of commuta-
tivity, the structures that we consider can in fact be identified
with finite MTL-algebras [EsGo]; MTL-algebras are in turn
the algebraic counterpart of the fuzzy logic MTL.

We utilize, as we call it, the level set approach, which
is inspired by the field of web geometry [Acz], [BlBo]. A
tomonoid can be represented by its level sets and associativity
then corresponds to the so-called Reidemeister condition.
The level-set approach has been applied already to triangular
norms [PeSa1] and has been utilized to make a significant
progress in some open problems on convex combinations of
triangular norms [PeSa2].

Furthermore, our previous paper [PeVe] exploits this ap-
proach for the discussion of finite, negative tomonoids. In par-
ticular, we explain how to construct the elementary extensions
of such tomonoids. An elementary extension is by one element
larger and the identification of its two smallest elements leads
back to the tomonoid we have started from. Starting from the
one-element tomonoid, the successive formation of elementary
extensions leads to any given finite, negative tomonoid.

In the present paper, we focus on the algorithmic aspects
of the construction described in [PeVe]. We restrict, to this
end, to the case that the tomonoids under consideration are
Archimedean. For proofs and further details of the underlying
theory, we refer to [PeVe].

II. BASIC NOTIONS

Definition 2.1: A monoid is an algebra (S;�, 1) of type
〈2, 0〉 such that, for any a, b, c ∈ S,

(T1) (a� b)� c = a� (b� c),

(T2) a� 1 = 1� a = a.

A total (linear) order 6 on a monoid S is called compatible
if, for every a, b, c ∈ S,

(T3) a 6 b implies a� c 6 b� c and c� a 6 c� b.

In this case, we call (S;6,�, 1) a totally ordered monoid, or
a tomonoid for short. Further, we call S negative if 1 is the
top element and we call S commutative if, for every a, b ∈ S,

(T4) a� b = b� a.

In this paper, we are exclusively interested in finite,
negative, tomonoids, abbreviated “f. n. tomonoids”. Let us
remark that, in contrast to [EKMMW], we do not assume
commutativity, although we deal also with this case.

The smallest tomonoid, called the trivial tomonoid, is the
one that consists of the monoidal identity 1 alone. Tomonoids
with at least two elements are called non-trivial.

A negative tomonoid is called Archimedean if, for every
x, y ∈ S r {1} such that x ≤ y, there is an n ∈ N such that
yn ≤ x. Here, we define

yn = y � y � . . .� y︸ ︷︷ ︸
n-times

.

We note that negative tomonoids with at most two elements
are trivially Archimedean.

III. LEVEL-SET VIEW ON TOMONOIDS

In this section we introduce the representation of tomonoids
by level sets. Let � : S × S → S be a binary operation on a
totally ordered set S and let ∼ be a binary relation on S × S
such that, for a, b, c, d ∈ S,

(a, b) ∼ (c, d) iff a� b = c� d.

We can see that ∼ is an equivalence relation and that it
partitions S × S into those subsets of pairs that are mapped



by � to equal values. When recovering � from ∼ we need to
know which equivalence class is associated with which value
of S. But this is easy if � possesses a neutral element 1 ∈ S.
In such a case each class contains exactly one pair of the form
(1, a) and one pair of the form (a, 1). Furthermore, for every
a ∈ S there is exactly one class containing the pairs (1, a)
and (a, 1). This gives us a one-to-one mapping between the
equivalence classes and the elements from S.

Thus, a tomonoid (S;6,�, 1) can be characterized by the
totally ordered set (S;6), the equivalence relation ∼ defining
a partition on S×S, and the designated element 1. This simple
idea gives to our hand a tool that is geometric in nature and, in
contrast with the graph of binary operations, gets along with
two dimensions only.

Definition 3.1: Let (S;6,�, 1) be a tomonoid. For two
pairs (a, b), (c, d) ∈ S × S we define

(a, b) ∼ (c, d) iff a� b = c� d

and we call ∼ the level equivalence associated with S.

Definition 3.2: We denote by P the componentwise order
on S × S for some totally ordered set S, i.e., for every
a, b, c, d ∈ S, we put

(a, b) P (c, d) iff a 6 b and c 6 d.

Definition 3.3: Let (S;6) be a totally ordered set, let 1 ∈
S, and let ∼ be an equivalence relation on S × S such that
the following holds.

(P1) For every a, b, c, d, e ∈ S,

(a, b)∼ (1, d) and (b, c)∼ (1, e) imply (d, c)∼ (a, e).

(P2) For every a, b ∈ S there is exactly one c ∈ S such
that

(a, b)∼ (1, c)∼ (c, 1).

(P3) For every a, b, c, d, a′, b′, c′, d′ ∈ S,

(a, b)∼ (a′, b′) P (c, d)∼ (c′, d′) P (a, b)

implies
(a, b)∼ (c, d).

Then we call (S,6, 1,∼) a tomonoid partition.

Proposition 3.4: [PeVe] Let (S;6,�, 1) be a tomonoid
and let ∼ be its level equivalence. Then (S,6, 1,∼) is a
tomonoid partition.

Proposition 3.5: [PeVe] Let (S,6, 1,∼) be a tomonoid
partition. For every a, b ∈ S, let

a� b := the unique c such that (a, b)∼ (1, c)∼ (c, 1).

Then (S;6,�, 1) is the unique tomonoid such that (S,6, 1,∼)
is its associated tomonoid partition.

We conclude from Proposition 3.4 and Proposition 3.5
that tomonoids and tomonoid partitions are in a one-to-one
correspondence.

For a tomonoid S, the level equivalence ∼ partitions the set
S×S into as many equivalence classes as there are elements of
S. In fact, in view of (P2), the classes and the elements of S are
in an one-to-one correspondence. Moreover, the equivalence

1

11

0

0

0

0

a� b
= d a b

b

c

e = b� c

bd

b

e

d

e

(a� b)� c

a� (b� c)

Fig. 1. Illustration of Property (P1) of a tomonoid partition. As depicted,
this property corresponds with the associativity of the tmonoid.

classes inherit under this correspondence the total order from
S.

Property (P1) is related to the associativity of the tomonoid
and has the following geometric interpretation illustrated
in Figure 1. On the square S × S, consider two rectangles
such that one hits the upper edge and the other one hits the
right edge. Assume that the upper left, upper right, and lower
right vertices of these rectangles are in the same equivalence
classes, respectively. Then, by (P1), also the remaining lower
left vertices are elements of the same equivalence class. The
described property corresponds with the Reidemeister condi-
tion known web geometry [Acz], [BlBo].

In the sequel we will use the following simplified notation.
Instead of (a, b)∼(1, c), or equivalently (a, b)∼(c, 1), we will
simply write (a, b)∼ c.

Finally, let us specify the tomonoid partitions that corre-
spond to additional properties of tomonoids.

Observation 3.6: Let (S;6,�, 1) be a tomonoid and let
(S,6, 1,∼) be its associated tomonoid partition.

• S is commutative if, and only if, the equivalence
classes of ∼ are “mirrored by the diagonal”, i.e., if
(a, b)∼ (b, a) for every a, b ∈ S.

• S is negative if, and only if, for every c ∈ S the ∼-
class of c is contained in {(a, b) ∈ S × S | a, b ≥ c}.

• S is finite if, and only if, ∼ is an equivalence relation
on a finite set.

IV. REES QUOTIENTS AND ELEMENTARY EXTENSIONS

For a finite totally ordered set, we will refer to the least
element as the zero, to the second smallest element as its atom,
and to the second greatest element as its coatom.

We now introduce the notion of an elementary extension
of a f. n. tomonoid [PeVe]. A f. n. tomonoid S̄ will be an
elementary extension of a f. n. tomonoid S such that the
cardinality of S̄ is greater by one and S is a quotient of S̄.
Furthermore, this quotient will be the simplest non-trivial Rees
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Fig. 2. Elementary quotients a f. n. tomonoid of size 6. The second tomonoid
is the elementary quotient of the first one, the third is the elementary quotient
of the second one, etc. Finally, we reach the trivial monoid.

quotient, called the elementary quotient of a f. n. tomonoid: it
arises from merging the zero with the atom.

See an illustration in Figure 3 which depicts, successively,
all the elementary quotients of a given f. n. tomonoid. As
we can see in the tomonoid partition picture, the elementary
quotient arises by “cutting off” the column and the row indexed
by the zero and, further, the zero class and the atom class are
joined to a new class which is evaluated to the new smallest
element.

Exact definitions now follow. For unexplained general
notions of see, e.g., [Gri].

Definition 4.1: Let (S;6,�, 1) be a tomonoid. A
tomonoid congruence on S is an equivalence relation ≈ on S
such that

(i) ≈ is a congruence of S as a monoid and

(ii) each equivalence class is convex.

The operation induced by � on the quotient 〈S〉 we denote
again by �. For a, b ∈ S, we define 〈a〉 6 〈b〉 if a ≈ b or
a < b.

We may observe that (〈S〉;6,�, 〈1〉) is a tomonoid again
and we call 〈S〉 the tomonoid quotient w.r.t. ≈. Clearly,
the properties of finiteness, negativity, and commutativity are
preserved by this procedure. What follows is a definition
of the Rees congruence which is commonly used for semi-
groups [How].

Lemma 4.2: Let (S;6,�, 1) be a negative tomonoid and
let q ∈ S. For a, b ∈ S, let a≈q b if a = b or a, b 6 q. Then
≈q is a tomonoid congruence.

Definition 4.3: Let (S;6,�, 1) be a f. n. tomonoid and
let q ∈ S. We call ≈q , as defined in Lemma 4.2, the Rees
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Fig. 3. All the elementary extensions of a f. n. tomonoid of size 6.

congruence w.r.t. q. Furthermore, we denote the quotient by
S/q and we call it the Rees quotient of S w.r.t. q.

Further, let S̄ be a non-trivial f. n. tomonoid and let α
be the atom of S̄. We call the Rees quotient S of S̄ w.r.t. α
the elementary quotient of S̄ and, conversely, S̄ an elementary
extension of S.

V. ARCHIMEDEAN ELEMENTARY EXTENSIONS

We now turn to the main problem of determining the
elementary extensions of an Archimedean f. n. tomonoid which
we present in the form of an algorithm.

Algorithm 5.1:

Input: (S,6, 1,∼) . . . tomonoid partition of an Archimedean
f. n. tomonoid
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Fig. 4. Illustration of Step 8 of Algorithm 5.1.
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Fig. 5. Illustration of Step 9 and Step 10 of Algorithm 5.1.

Output: (S̄,6, 1, ∼̄) . . . elementary extension of (S,6, 1,∼)

1) Let S̄ = S ∪̇ {0̄}, where 0̄ is a new element.

2) Endow S̄ with the total order that extends the total order
on S such that 0̄ < a for every a ∈ S.

3) Let α be the atom of S̄ (i.e., the least element of S).

4) Let κ be the coatom of S̄.

5) Let

P = {(a, b) ∈ S̄×S̄ | there is c > α such that (a, b)∼c}.

6) Define a binary relation ∼̄ on S̄ × S̄ such that

(a, b)∼̄(c, d) iff (a, b)∼(c, d)∼e for some e ∈ S̄r{0̄, α}

7) For every a ∈ S̄ r {0̄}:

• define (a, 0̄) ∼̄ (a, α) ∼̄ (0̄, a) ∼̄ (α, a) ∼̄ 0̄.

8) For every (a, b), (b, c) ∈ P :

• let d ∈ S̄ be such that (a, b) ∼̄ d,

• let e ∈ S̄ be such that (b, c) ∼̄ e,

• define (a, e) ∼̄ (d, c).

9) For every a ∈ S̄ r {0̄, α, 1}:

• let b ∈ S̄ be the highest element such that (a, b) 6∈
P ,

• let e ∈ S̄ be such that (b, κ) ∼̄ e,

• for every (x, y) ∈ S̄ × S̄ such that (x, y) P (a, e):
◦ define (x, y) ∼̄ 0̄.

10) For every a ∈ S̄ r {0̄, α, 1}:

• let b ∈ S̄ be the highest element such that (b, a) 6∈
P ,

• let e ∈ S̄ be such that (κ, b) ∼̄ e,

• for every (x, y) ∈ S̄ × S̄ such that (x, y) P (e, a):
◦ define (x, y) ∼̄ 0̄.

11) Let

R = {(a, b) ∈ S̄ × S̄ | there is no c ∈ S̄
such that (a, b) ∼̄ c}.

12) Relate each pair in R with either 0̄ or α regarding
monotonicity and ∼̄.

Remark 5.2: In Step 8, the pairs, where a = 1, b = 1, or
c = 1, may be omitted as they bring no new information to
∼̄. Step 8, Step 9, and Step 10 are illustrated by Figure 4 and
Figure 5, respectively.

All the steps of the algorithm run in polynomial time
except for Step 12 which has exponential complexity. This is,
however, related to the fact that also the number of the results
increases exponentially with the number of the pairs in R.

Theorem 5.3: Let (S,6, 1,∼) be an Archimedean
f. n. tomonoid partition. The partition (S̄,6, 1, ∼̄) given by
Algorithm 5.1 is an Archimedean elementary extension of
(S,6, 1,∼) and, moreover, all its Archimedean elementary
extension arise in this way.

See [PeVe] for a proof of this theorem.

VI. THE COMMUTATIVE CASE

Under the assumption of commutativity, looking for an
elementary extension of an Archimedean f. n. tomonoid can
be performed analogously to Algorithm 5.1 with the following
differences.

Step 9 and Step 10 can be merged to one single step:

• For every a ∈ S̄ r {0̄, α, 1}:
◦ let b ∈ S̄ be the highest element such that

(a, b) 6∈ P ,
◦ let e ∈ S̄ be such that (b, κ) ∼̄ e,
◦ for every (x, y) ∈ S̄ × S̄ such that (x, y) P

(a, e):
define (x, y) ∼̄ (y, x) ∼̄ 0̄.

Step 12 needs to be changed in the way that when a pair
(a, b) ∈ R is related to 0̄-class or with α-class then the reversed
pair (b, a) has to be related to the same class, as well.



VII. LOWER BOUNDS

In this section we want to show that the number of
Archimedean f. n. tomonoid increases rapidly with the number
of the elements and that it is lower-bounded by a function given
by a bunomial coefficient in the general non-commutative case
and by an exponential function in the commutative case.

Definition 7.1: A finite tomonoid (S;≤,�, 1) with the
least element 0 is called drastic if, for every a, b ∈ S, a, b 6= 1,
we have a� b = 0.

The following lemma is an easy observation.

Lemma 7.2: Let (S;6) be a finite, totally ordered set with
the least element 0, the greatest element 1, and the atom α.
Let � be a binary operation on S defined, for a, b ∈ S, by

a� b = a if b = 1,
a� b = b if a = 1,
a� b = 0 if a ∈ {0, α} and b < 1
a� b = 0 if b ∈ {0, α} and a < 1,
a� b ∈ {0, α} otherwise.

Then S is an Archimedean f. n. monoid.

If, moreover, the two following conditions are fulfilled:

(i) for every a ∈ S there is c ∈ S such that, for every b ∈ S,
we have a� b = 0 if and only if b 6 c,

(ii) for every b ∈ S there is c ∈ S such that, for every a ∈ S,
we have a� b = 0 if and only if a 6 c,

then � is compatible with 6 and S is an Archimedean
f. n. tomonoid.

Proof: We start with the first part of the theorem. Clearly,
1 is a neutral element of S. Thus we only need to prove that
the associativity equation a � (b � c) = (a � b) � c holds
for every a, b, c ∈ S. If any of a, b, c is equal to 1 then the
equation is trivially satisfied. If this is not the case then it can
be easily checked that both sides of the equation are equal to
0.

We are going to prove (T3) as stated in Definition 2.1. Take
a, b, c ∈ S such that a 6 b. If c = 1 then both a � c 6 b � c
and c � a 6 c � b hold trivially. If this is not the case then,
according to (i), we have exactly one of the following cases:

• c� a = 0 and c� b = 0,

• c� a = 0 and c� b = α,

• c� a = α and c� b = α

which implies c � a 6 c � b. In an analogous manner (ii)
implies a� c 6 b� c.

In an inspiration with this lemma we can see that, in order
to obtain all the elementary extensions of a drastic tomonoid,
we simply need to discover in how many ways we can place
a block of zero elements and a block of atom elements to
the multiplication table regarding only the monotonicity (and,
eventually, also the commutativity). This brings the following
statement.

Proposition 7.3: Let (S;6,�, 1) be a drastic
f. n. tomonoid of size n+1, n ∈ N. There are

(
2n
n

)
elementary

extensions of S that are Archimedean f. n. tomonoids. There
are 2n elementary extensions of S that are commutative,
Archimedean f. n. tomonoids.

Proof: Let (S̄;6, �̄, 1) be an elementary extension of S;
let 0̄ be the zero of S̄, let α be the atom of S̄. Since S̄ is
supposed to be Archimedean, we necessarily have (a, b) ∼̄ 0
if a ∈ {0, α} and b < 1 or if b ∈ {0, α} and a < 1 (cf.
with Lemma 7.2). Denote I = S̄ \ {0, α, 1} and note that the
cardinality of I is n. Since S is drastic, we need, in order to
obtain an Archimedean f. n. tomonoid S̄, to make a partition
dividing I × I to Z and A such that

(a, b) ∼̄ 0 if (a, b) ∈ Z,
(a, b) ∼̄ α if (a, b) ∈ A

for every (a, b) ∈ I × I . According to Lemma 7.2, regardless
of the partition, S̄ will be an Archimedean f. n. monoid. Thus
the only thing we need to take into account is the compatibility
of �̄ with 6. This will be satisfied if and only if Z and A
are separated by a border that consists of n vertical and n
horizontal segments. There are

(
2n
n

)
such borders.

If S̄ is, moreover, supposed to be commutative then the
border separating Z and A needs to be symmetric according
to the diagonal. A half of this border consists of n segments
which are either vertical or horizontal. There are 2n such
borders.

Thus, as we can see, the number of f. n. tomonoids of
a given size is lower-bounded by a binomial coefficient in
the non-commutative Archimedean case and by an exponential
function in the commutative Archimedean case.

VIII. COMPARISON WITH BRUTE-FORCE METHODS

We give here a short comparison of our level-set based
method with two brute-force methods. For this purpose, we
have generated all the Archimedean f. n. tomonoids up to the
size 10 and measured the times in which the methods have
run. The times of running the level-set based method are, as
expected, shorter which illustrates the following table:

size number lvl bru sup
3 1 0.0003 0.0004 0.0003
4 2 0.0007 0.0005 0.0008
5 8 0.0038 0.0029 0.0328
6 44 0.0235 0.0329 77.4722
7 333 0.2430 5.7076 -
8 3543 3.4303 32848.5 -
9 54954 67.7673 - -

10 1297705 2864.3895 - -

Column “size” represents the sizes of the generated
tomonoids and “number” represents their numbers. The used
methods are the following.

Column “lvl” shows the times to run the algorithm based
on our level-set method. In order to obtain all the tomonoids
of the given size, first, the trivial tomonoid is created, then all
its elementary extensions are computed, then the extensions
of the extensions are computed, and so on. This way we are
creating a tree of tomonoids until the level of the required size
is reached.



Column “bru” represents, what we call, the brute force
method. The idea is similar to the previous case and a tree of
elementary extensions is created. However, to obtain all the
extensions of a given tomonoid, we simply iterate through all
the possible evaluations of the complement of the set P (see
Step 5 of Algorithm 5.1) and we discard those cases that fail
the tests on associativity, monotonicity, and Archimedeanicity.

Column “sup” contains times of, what we call, the super-
brute-force method. In this case, in order to obtain all the
tomonoids of the given size, we generate all the possible
multiplication tables and test them on the requirements on
associativity, monotonicity, and Archimedeanicity.

The algorithm has been implemented in Python and run on
a personal computer with 1,3 GHz Intel Core i5 processor and
4GB of memory—this is evidently not a computer dedicated
for such a task and thus the absolute times are not very
significant. However, what might give an illustration are the
ratios of the times of the different methods which are as
follows:

size bru/lvl sup/lvl
3 1.3 1.0
4 0.7 1.1
5 0.7 8.6
6 1.4 3296.7
7 23.5 -
8 9576 -
9 - -
10 - -

IX. CONCLUSION

An algorithm to give Archimedean elementary extensions
and commutative Archimedean elementary extensions of a
finite, negative, tomonoid has been presented. The authors, at
the moment, are working also on the algorithm for the general,
non-Archimedean, case.
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