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Abstract

We consider the interpolation problem for functions whose
range and whose domain both consist of convex or fuzzy subsets
of a real Euclidean space. This problem arises in fuzzy control-
ling, namely when the functional dependence between two fuzzy
vectors is known only for finitely many cases. To have a crite-
rion for an appropriate choice of an interpolation function, we
generalise the well-known idea from spline interpolation: the
function should be “as smooth as possible”.

1 Introduction

We discuss in this paper ways of interpolation between hyperspaces of
convex or fuzzy sets. The underlying base sets are bounded regions of
Euclidean spaces, which may be of any (finite) dimension.

Our work is based on ideas developed in the Collaborative Research
Centre SFB531-A1 in Dortmund; we may refer e.g. to H. Thiele’s paper
[18]. The intuitive background is the following. Let α and β be vari-
ables which take values either from the closed bounded convex subsets
of some Rm resp. Rn, or from the standard fuzzy sets (i.e. the normal,
support-bounded, upper semicontinuous, and fuzzy-convex fuzzy sets)
over the Rm resp. Rn. As usual, α and β should be thought of as repre-
senting imprecise values, where the impreciseness may well be genuine
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or otherwise caused by insufficient information. We further assume that
α uniquely determines β and that we know about this dependence only
from finitely many cases. The problem is then how to reconstruct the
dependence of β from α in other cases – if possible, in analogy to the
interpolation of crisp data.

The sketched problem occurs for instance in fuzzy controlling, in con-
nection with the construction of devices processing multidimensional
fuzzy data. These devices are typically based on what is called a fuzzy
if-then rule base, that is, a collection of pairs (α1, β1), . . . , (αk, βk) ∈
F(Ω) × F(Ψ), where F(Ω) and F(Ψ) are universes of fuzzy sets over
Ω ⊆ Rm and Ψ ⊆ Rn, respectively. The meaning of such a rule base is
that if the input value is αi, then the output value must be set to βi;
i = 1, ..., k. Since an actual input value certainly need not be among
the finitely many ones occurring in the rule base, we have to extend
the rule base to a total function from F(Ω) to F(Ψ).

In fuzzy controlling, this problem has found practical solutions. Ac-
cording to a typical procedure, a fuzzy relation between Ω and Ψ is
computed from the rule base, and the compositional rule of inference
(CRI) is applied. This pragmatic procedure, which originates from [20],
is in most cases satisfactory because fuzzy data occurs only internally;
the sharp input data is first fuzzified, next the fuzzy data is processed
under the CRI, and the resulting fuzzy data is finally defuzzified. Un-
der these circumstances, the middle part, i.e. the function mapping
F(Ω) to F(Ψ), should not be viewed isolated; what counts is the whole
three-step device mapping sharp input data to sharp output data.

In the present paper, we do not intend to question the value of this
procedure, which has been used successfully in innumerably many ap-
plications. We do not even claim that our proposals can lead to a higher
quality in fuzzy controlling; we simply would like to communicate our
ideas and inspirit the general discussion.

We are led by the observation that the function which maps fuzzy values
to fuzzy values on the base of a fuzzy relation and which may actually
be considered as the key part of a controlling device, does not operate
according to some predefined and easily acceptable criterion. We raise
the question if we cannot apply some natural principle, determining a
function which maps the input fuzzy values to output fuzzy values in a

2



way that the most basic expectations are met; cf. [18].

This aim brings interpolation theory into play. Now, the theory of
interpolation between Euclidean spaces has been very lively for many
decades, and we wonder if we cannot generalise well-accepted methods
of interpolation between “crisp” data to those between universes of
convex sets or fuzzy data.

First to mention, in recent years the theory of radial basis functions
(RBFs) has turned out to be a very general and flexible and the same
time very practical tool for multivariate interpolation. Unfortunately,
an adaptation of the theory of RBFs to our setting is far from being
straightforward. The transition from reproducing kernel Hilbert spaces,
which consist of real-valued functions, to spaces consisting of maps be-
tween hyperspaces is not at all trivial. But we refer to [10, 13] for work
on RBFs. Here, we will rather do one step back in the younger history
of interpolation theory. What we consider in this paper is the formal-
ism of spline interpolation in the abstract form which was developed
mainly by Atteia from the 60s on [3, 4]. The idea underlying spline
interpolation is well-known: The interpolating function minimises the
norm of its image under a certain differential operator, that is, a value
which measures its smoothness.

2 Outline of our approach

Assume that we are given an if-then rule base (α1, β1), . . . , (αk, βk) ∈
C(Ω)×C(Ψ), where C(Ω) and C(Ψ) contain the compact convex subsets
of Ω ⊆ Rm and Ψ ⊆ Rn respectively. Our question is how to single
out a function with reasonable properties f : C(Ω) → C(Ψ) such that
f(α1) = β1, . . . , f(αk) = βk. To this end, we are going to adapt the
formalism of spline interpolation.

In a first step, the hyperspace C(Rm) of compact convex subsets of Rm
needs to be embedded into a Banach space. This is most easily done
by identifying every set α ∈ C(Rm) with its support function

sα: Sm−1 → R, e 7→ max {(x, e): x ∈ α};
cf. e.g. [16]. This function has the following geometric meaning. For any
unit vector e, there is a hyperplane He with normal vector e supporting
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the convex set α; this means that He touches, on the side opposite to
the direction of e, the surface of α. Furthermore, the hyperplane He

is uniquely determined by e and by the (signed) distance from the
origin from He; this distance is sα(e). In other words, the hyperplanes
determined by e and sα(e), where e varies over the unit vectors, enclose
the convex set α and uniquely characterise α in this way.

So the hyperspace of compact convex sets is identified with certain real
functions on Sm−1. Thus, we may embedded it, for instance, into the
Banach space C(Sm−1) of continuous real functions on Sm−1, endowed
with the supremum norm. The support functions of convex subsets
form a positive cone in C(Sm−1); moreover, the addition and the mul-
tiplication with positive reals of support functions correspond to the
same operations performed pointwise with the corresponding convex
subsets. For further details on convex sets, we recommend [16].

The problem we encounter next is easily stated: The space C(Sm−1) is
infinite-dimensional, and when considering functions between two such
spaces, fundamental difficulties arise. For instance, there is no way
to define a measure on C(Sm−1) or C(Rm) with reasonable properties;
measure on appropriate subsets of the hyperspace of compact convex
sets is an own problem, to be treated in another paper; cf. [5].

In practice, however, we have anyhow only finitely many parameters
to specify a convex set. So it does not seem to be too problematic to
switch over to a finite dimensional space approximating C(Sm−1). This
is most simply done by restricting the real functions on Sm−1 to their
values in finitely many points; and this is what we will do here. So we
do what might have been expected: We restrict to (convex) polytopes
with prescribed normal vectors of their bounding hyperplanes. Note
that the set of all polytopes lies dense in the set of compact convex sets
e.g. w.r.t. the Hausdorff metric.

So having fixed, let’s say, r normal vectors, we will, in a first step,
see how the set of support functions restricted to these vectors is to
be characterised. Each such restricted support function is given by
an r-tuple of real numbers; so what we have to describe is a subset
of Rr containing those r-tuples which describe convex polytopes. The
interpolation itself is then done between two such parameter subsets.

The method which we choose is spline interpolation, in the form due
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to Atteia [4]. Very roughly speaking, it works as follows. The space
of functions used for the interpolation between two Euclidean spaces
is a Sobolev space, which contains functions whose (weak) derivatives
of q-th order are square integrable. Here, q must be chosen sufficiently
large, depending on the number of interpolation knots. For each such
function, the square integral over the norms of the q-th derivatives is
taken as a measure of smoothness, and this value is minimised.

We shall furthermore generalise the procedure for fuzzy sets. This step
is, from the theoretical point of view, easy. The crucial point is: We
work with fuzzy sets in their level-wise representation. Recall that a
fuzzy set is usually considered as a function u from an Rn to the real
unit interval [0, 1]. However, when restricting to the normal, support-
bounded, upper semicontinuous, and fuzzy-convex fuzzy sets, we may
equivalently view fuzzy sets as functions from [0, 1] to compact convex
sets, by associating with each α ∈ [0, 1] the α-level set [u]α. See e.g. [7].

We will see that all statements about hyperspaces of convex sets may
be generalised to spaces of fuzzy sets in a straightforward way. The
argumentation just becomes technically slightly more involved.

3 Other approaches

Before beginning the mathematical part, let us discuss the relationship
of our work to others’. We proceed from far-related to closely related
approaches.

It must first be pointed out that our work is not comparable to fuzzy
inference formalised in the framework of some formal system of many-
valued logics. A rule base may well be understood as a set of logical
implications and may be formalised, for instance, within some first-
order version of Hájek’s Basic Logic [8]. Let us stress the difference to
our concerns: In the logical framework, we investigate what is expressed
by a rule base as it stands, not being interested in what is not derivable.
Put into the language of logics, we may say that it is our aim to properly
extend a given rule base, that is, adding statements which are not part
of the information provided by the rules.

It might also be suggestive to say that we work so-to-say “horizon-
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tally” – by using features of the base set –, and not “vertically” – by
considering various ways of how to connect truth values. We must add,
however, that our “horizontal” viewpoint is not principally incompati-
ble with concepts of logics; V. Novák and I. Perfilieva define in [15, 14]
linguistic hedges which do refer to the structure of the base set.

Second, we would like to point out that there are numerous works
concerned with the problem of interpolation of fuzzy data, where it
is assumed that the domain consists of crisp values. For an overview,
we refer to [7, Chapter 12.3]; for more recent work, we may mention
e.g. [1].

Third, as mentioned above, a function mapping fuzzy data to fuzzy data
is typically required to be induced by a fuzzy relation. It is clear that
this condition seriously restricts the possible choices of f . In particular,
f is then already determined by the fuzzy singletons, i.e. those fuzzy
sets having a one-point support, because all suprema are preserved.

When working with functions induced by fuzzy relations, two problems
naturally arise. There might be no function interpolating the entries of
the rule base, and to find a proper alternative is not easy to determine.
Moreover, if there is such a function, there are in general many, and
again it is not easy to find arguments justifying a canonical choice.

Here, we do not work with fuzzy relations, but we remark the following.
We may certainly make use of the approach presented in this article
together with the requirement that the interpolating function is based
on a fuzzy relation. The latter may simply be chosen as smooth as
possible and modelling the rule base as well as possible. This possibility
will be discussed elsewhere.

Finally, a further series of works comes quite close to our ideas. We
have in mind the well-known work of L. T. Kóczy and K. Hirota [12],
which has been further elaborated in numerous articles; we may refer
e.g. to [6, 19]. A further approach is due to S. Jenei [11]. In view
of the present article, the methods along these lines are creditable by
the fact that they are guided by applicational needs and that they are
technically comparably easily realizable. Our own work is notable for
the fact that we are guided by the idea that the interpolating function
should fulfil a certain criterion; although a “smooth” mathematical
theory is the result, it is difficult to realise it in practice.
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The quality of the approach presented here is probably best appreci-
ated by considering the case that the rule base contains one-dimensional
crisp data. The smoothness requirement then leads to results compa-
rable to crisp spline interpolation. As opposed to that, many methods
defined in the past just reduce in this case to the linear interpolation
between neighbouring points.

4 Parametrising convex sets

For the interpolation between hyperspaces of compact convex sets, it
is hardly possible to work with these hyperspaces as a whole: we have
to specify a strict, but still reasonably large subspace. Here, we will
restrict to those (convex) polytopes the normal vectors of the facets of
which are among a fixed finite set of unit vectors. This is a standard
approach; cf. e.g. [17].

Let us fix in this section a dimension n ≥ 1. We will follow [16] in
terminology and notation. In particular, we will denote by H−e,a = {x ∈
Rn: (x, e) ≤ a} the closed halfspace specified by the unit vector e and
the real number a; similarly, H+

e,a = {x ∈ Rn: (x, e) ≥ a}; both these
halfspaces are bounded by the hyperplane He,a = {x ∈ Rn: (x, e) = a}.
Definition 4.1 A finite set E = {e1, . . . , er} of unit vectors of the Rn is
called a direction set if the positive hull of the e1, . . . , er is the whole Rn.
By an E-polytope we then mean the bounded intersection of halfspaces
H−e1,a1

, . . . , H−er,ar , where a1, . . . , ar ∈ R.

Moreover, let α =
⋂
e∈E H

−
e,s(e) be an E-polytope, and let R ∈ R+. Then

α is called R-bounded if |s(e)| ≤ R for every e ∈ E .

The representation of an E-polytope by an intersection of halfspaces
H−e,s(e), e ∈ E , is not unique. We get uniqueness by requiring that every

parameter s(e) is the smallest possible one.

Definition 4.2 Let E be a direction set of the Rn. We then call a
mapping s : E → R an E-support function if (i)

⋂
e∈E H

−
e,s(e) is non-

empty and (ii)
⋂
e∈E,e6=f H

−
e,s(e) ∩H−f,s(f)−ε

⊂6=
⋂
e∈E H

−
e,s(e) for any f ∈ E

and ε > 0.
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In other words, E being a direction set, an E-support function s: E → R
is simply the support function of some polytope α restricted to E .
Namely, the associated E-polytope is α =

⋂
e∈E H

−
e,s(e). Note that we es-

tablished a one-to-one correspondence between the E-support functions
and the E-polytopes.

Given some fixed direction set E , we next have to characterise the set
of all E-support functions algebraically. Recall that support functions
of convex sets, which are defined on the whole unit sphere Sn−1, are
exactly the restrictions of positive homogeneous and subadditive func-
tions to Sn−1; see e.g. [16, Thm 1.7.1]. However, we could not find this
fact useful to derive the following proposition.

Proposition 4.3 Let E be a direction set of the Rn. Then s: E → R
is an E-support function if and only if the following condition holds:

(P) Let e1, . . . , en ∈ E be a basis of Rn and let p be the point in the
intersection of the hyperplanes He1,s(e1), . . . , Hen,s(en); let e ∈ E . If
then e is a positive combination of e1, . . . , en, we have p ∈ H+

e,s(e);

if −e is a positive combination of e1, . . . , en, we have p ∈ H−e,s(e).

Proof. Assume that s is an E-support function. Then α =
⋂
e∈E H

−
e,s(e)

is a polytope, and every He,s(e) is a support hyperplane of α.

Let e1, . . . , en be a basis of Rn, and let p be the point in the intersection
of the hyperplanes He1,s(e1), . . . , Hen,s(en). Then γ = H−e1,s(e1) ∩ . . . ∩
H−en,s(en) is the polyhedral set generated by the point p and by the rays

∩j 6=iHei,s(ei) ∩H−ej ,s(ej), j = 1, ..., n, starting at p. If now e is a positive

combination of e1, . . . , en, there is a support hyperplane He,a of γ at
p; then α ⊆ γ ⊆ H−e,a. On the other hand, He,s(e) supports α, and it
follows H−e,s(e) ⊆ H−e,a. So s(e) ≤ a and p ∈ H+

e,s(e).

If −e is a positive combination of e1, . . . , en, we may similarly conclude
p ∈ H−e,s(e). So (P) is proved.

Assume now (P). Let e1, . . . , ek ∈ E be such that (i) e1, . . . , ek span Rn
and (ii) the polyhedron α′ = H−e1,s(e1)∩ . . .∩H−ek,s(ek) is non-empty. Note
that for k = n, this condition always holds. Now, let e ∈ E be distinct
from e1, . . . , ek. We shall show that then both H+

e,s(e) ∩ α′ 6= ∅ and
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H−e,s(e) ∩ α′ 6= ∅. It will then follow by induction, starting with k = n
and ending with the number of elements of E , that s is an E-support
function.

If α′ contains a ray with direction f such that (e, f) > 0, then clearly
H+
e,s(e) ∩ α′ 6= ∅. Let us assume the opposite case. Then the support

set of α′ belonging to e contains an extreme point p of α′. By [16,
Lemma 2.3.13], we know that for any ε > 0 there are b1, . . . , bk ∈ R
such that |b1− s(e1)|, . . . , |bk− s(ek)| ≤ ε, and α′′ = H−e1,b1 ∩ . . .∩H−ek,bk
is a polyhedron whose extreme points are contained in exactly n facets,
and p is still an extreme point of α′′. By [16, Thm 2.4.9], e is in the
positive hull of the normal vectors of the facets to which p belongs, that
is, e is a positive combination of n vectors among e1, . . . , ek, let’s say of
the first n vectors e1, . . . , en. So p is the point in He1,b1∩ . . .∩Hen,bn and
because ε was arbitrary, p is also contained in He1,s(e1)∩. . .∩Hen,s(en). It
follows by assumption that p ∈ H+

e,s(e), and so H+
e,s(e)∩α′ 6= ∅. Similarly,

we conclude that H−e,s(e) ∩ α′ 6= ∅. 2

For some fixed r-element direction set E , we may consider the collection
of E-support functions as a subset of the Rr in the straightforward way.

Definition 4.4 Let E be an ordered direction set, that is, a direction
set endowed with a fixed order of its elements. Let e1, . . . , er be the
elements of E in this order; we then define the polytope parameter space
associated to E as the set PE of all p = (a1, . . . , ar) ∈ Rr such that

sp: E → R, e1 7→ a1, . . . , er 7→ ar

is an E-support function.

Moreover, for some R > 0, we define the polytope parameter set as-
sociated to E and R as the set PE,R of all (a1, . . . , ar) ∈ PE such that
|a1|, ..., |ar| ≤ R.

Since E-support functions are in a one-to-one correspondence with E-
polytopes, we have thus identified the collection of all E-polytopes with
a certain subset of the Rr – namely with PE , the polytope parameter
space associated to E . Moreover, we have identified the R-bounded
E-polytypes with PE,R.

It is now of central importance to see which shape PE has.
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Theorem 4.5 Let E be an ordered direction set with r elements and
let PE the polytope parameter space associated to E. Then PE is the
intersection of halfspaces of Rr which contain the origin, and PE has
non-empty interior.

In particular, for any R > 0, PE,R is a polytope in Rr with non-empty
interior.

Proof. Let s: E → R; we will use condition (P) of Proposition 4.3 to
formulate exact conditions for s to be an E-support function. In what
follows, we denote by v1, . . . , vn the coefficients of some v ∈ Rn w.r.t.
the canonical basis of Rn.

Let e, e1, . . . , en ∈ E such that e1, . . . , en is a basis of Rn and e is distinct
from e1, . . . , en. Let a = s(e), a1 = s(e1), . . . , an = s(en). The point p
in the intersection of the hyperplanes He1,a1 , . . . , Hen,an fulfils (p, e1) =
a1, . . . , (p, en) = an; so

p =




e1
1 . . . en1
...

...
e1
n . . . enn




−1


a1
...
an


 .

So we see that the condition (p, e) ≤ a or (p, e) ≥ a may be written in
the form 



a1
...
an
a







q1
...
qn
q


 ≤ 0

for properly chosen q1, . . . , qn ∈ R, q ∈ {−1, 1}. In view of (P), it
follows that s is an E-support function iff the (ordered) range of s lies
in the intersection of certain halfspaces of the Rr through the origin.

That the intersection of all these halfspaces has full dimension follows
from the fact that there is an s : E → R and an ε > 0 such that all
s′ : E → R fulfilling |s′(e) − s(e)| ≤ ε for any e ∈ E are E-support
functions; see e.g. [16, Lemma 2.4.12].

Finally, let R > 0. Then PE,R is the intersection of PE with the cube
{p ∈ Rr: ||p||∞ ≤ R}; this is clearly a polytope. 2
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We conclude the section with one more remark. The parametrisation
of polytopes which we use is natural mainly because in our parameter
space PE , the addition and multiplication with positive reals coincides
with the same operations performed pointwise with the corresponding
polytopes. For, we have to do with the restrictions of support functions;
and the linear operations performed pointwise with support functions
correspond to the respective operations performed pointwise with con-
vex sets. For this topic, we refer once again to [16].

Moreover, polytopes are partially ordered by inclusion; and also this
partial order is compatible with the structure of the parameter space.
We state this fact explicitely.

Definition 4.6 Let PE be the polytope parameter space associated to
some ordered direction set E . Then we endow PE as well as PE,R for
any R > 0, with the pointwise natural order.

Proposition 4.7 The order of a polytope parameter space and the in-
clusion relation between the corresponding polytopes coincide.

Note that a bounded parameter space PE,R, R > 0, has a largest ele-
ment.

5 Parametrising fuzzy sets

Having restricted the hyperspace of compact convex sets to a hyper-
space of certain polytopes, we shall continue along the same lines to de-
fine a reasonably wide, but still manageable space of fuzzy sets. Again,
we fix some dimension n ≥ 1.

In the present context, it would clearly be impractical to view fuzzy sets
as functions from the base set to the real unit interval. We will adapt
the “level-set viewpoint” instead: By a fuzzy set, we mean a bounded
and decreasing (w.r.t. ⊆) and left-continuous (w.r.t. Hausdorff metric)
function a: (0, 1]→ C(Rn). But we do not need this general notion; in
accordance with the last section, we will restrict to finitely many levels
only.
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Definition 5.1 Let E be a direction set, and let ∆ be a finite subset of
the real unit interval [0, 1]. Let ∆ be endowed with the natural order,
and let the set of E-polytopes be partially ordered by the inclusion
relation. By a E ,∆-fuzzy set, we then mean a decreasing function a
from ∆ to the set of E-polytopes.

Moreover, for some R > 0, a E ,∆-fuzzy set is called R-bounded if all
E-polytope in its range are R-bounded.

These are the objects under study. Note that E , the direction set, has
the meaning explained in the Section 4; it contains the directions in
which we may bound convex sets. Moreover, the finite set ∆ of reals
between 0 and 1 is new; each element in ∆ corresponds to one of the
levels of the fuzzy sets which we want to parametrise. Both for E and
for ∆, we have to make a fixed choice.

Like in the case of the polytopes, we will identify the E ,∆-fuzzy sets
with elements of an appropriate parameter space.

Definition 5.2 Let E be an ordered direction set with r elements, and
let ∆ = {λ1, . . . , λd} ⊆ [0, 1]. We then define the fuzzy set parameter
space associated to E and ∆ as the set FE,∆ of all d-tuples (p1, . . . , pd) ∈
PEd such that the function mapping λi, i = 1, ..., d, to the E-polytope
represented by pi is an E ,∆-fuzzy set.

Moreover, for some R > 0, we define the fuzzy set parameter space
associated to E , ∆, and R as the set FE,∆,R of all d-tuples (p1, . . . , pd) ∈
FE,∆ such that p1 represents an R-bounded E-polytope.

Consisting of d-tuples of r-tuples, we will treat FE,∆ as a subset of Rdr.

Theorem 5.3 Let E be an ordered direction set with r elements, and
let ∆ = {λ1, . . . , λd} ⊆ [0, 1]. Let FE,∆ be the fuzzy set parameter space
associated to E and ∆. Then FE,∆ is the intersection of halfspaces of
Rdr which contain the origin, and FE,∆ has non-empty interior.

In particular, for any R > 0, FE,∆,R is a polytope in Rdr with non-empty
interior.

Proof. FE,∆ is a subset of the cardinal product of polytope parameter
spaces, which are polytopes. Furthermore, the conditions determining
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this subset are inequalities between certain pairs of components; so
FE,∆ is the meet of two polytopes, which gives again a polytope. This
shows the first part; the second one follows similarly. 2

Like in the case of convex set, our parameter set reflects appropriately
addition, multiplication with positive reals and the partial order of the
corresponding fuzzy sets. The last point gives rise to the following
definition.

Definition 5.4 Let FE,∆ be the fuzzy set parameter space associated
to some ordered direction set E and ∆ ⊆ [0, 1]. Then we endow FE,∆
as well as FE,∆,R with the pointwise natural order.

Proposition 5.5 The order of the fuzzy set parameter space and the
inclusion relation between the corresponding fuzzy sets coincide.

6 Monotone functions between

sets of polytopes

Before turning to the interpolation problem itself, we shall take care
of one specific property which an interpolating function must have. In
the present context, convex subsets or fuzzy sets are meant to represent
propositions in a way that the larger the subset or fuzzy set is, the
weaker is the represented proposition. Furthermore, a pair (α, β) of a
rule base is meant to model an implication of the form “if the input
value is α, then the output value is β”, and the same interpretation
is assumed about any extension of the rule base. Hence it is natural
to require that a rule base and any extension of a rule base to a total
function should be monotone: it should preserve the (subset or fuzzy)
inclusion relation.

Definition 6.1 Let PD and PE be the polytope parameter spaces as-
sociated to some ordered direction sets D and E , respectively. By a
rule w.r.t. PD and PE , we mean a pair (α, β) ∈ PD × PE ; a finite set
of rules is called a rule base. A rule base (α1, β1), . . . , (αk, βk) is called
monotone if αi ≤ αj implies βi ≤ βj for any i, j.
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A rule base respecting the inclusion relation can not only be extended
to a monotone total function; by mollification, even any smoothness re-
quirement can be fulfilled. In the sequel, we denote the ε-neighbourhood
of some point or some subset of Rr by Uε(·).

Lemma 6.2 Let PD,R, PE,S be the polytope parameter spaces associated
to the ordered direction sets D, E and positive reals R, S, respectively.
Let (α1, β1), . . . , (αk, βk) ∈ PD,R × PE,S a monotone rule base. Then
there is an analytic monotone function f : PD,R → PE,S such that
f(α1) = β1, . . . , f(αk) = βk.

Proof. Let ε > 0 be small enough that for any i, j and α′i ∈ U2ε(αi), we
have α′i ≤ αj only in case αi ≤ αj. Extend the pointwise partial order
of PD,R to Uε(PD,R), and let

f̂ : Uε(PD,R)→ PE,S,
α 7→ min {βi: 1 ≤ i ≤ k and α′ ≤ αi for some α′ ∈ Uε(α)},

where min ∅ is understood to be the maximal element of PE,S. Then f̂

is monotone, f̂(αi) = βi, and f̂ is constant in the ε-neighbourhood of
αi; i = 1, ..., k.

Let now ϕ: Rn → R+ be an analytic function such that
∫
Rn ϕ(x)dx = 1

and the support of ϕ is in the ε-neighbourhood of the origin. Let
f : PD,R → PE,S, α 7→ ∫

Uε(0)
f̂(α−x)ϕ(x)dx. Then f is still monotone,

f(αi) = βi for any i, and f is analytic. 2

We note that by Lemma 6.2, a function f extending a monotonous rule
base may be chosen monotone, but this does not imply in general that
f preserves lattice operations. By requiring only that the rule base is
monotone, f need not even be extendible to a lattice homomorphism
between the finite sublattices generated by the rule entries. To ensure
the existence of an f which even preserves lattice operations, the stricter
condition would be needed that if an infimum of left-side entries is
below a supremum of other left-side entries, the same should hold for
the corresponding right-side entries.
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7 Spline interpolation

We finally turn to the interpolation problem itself. We shall first of all
outline our procedure. Let us assume that we are given an if-then rule
base (α1, β1), . . . , (αk, βk) consisting of pairs of convex compact subsets
of the Rm and Ψ ⊆ Rn, respectively. Then we proceed as follows:

• We fix a direction set D in the Rm, and a direction set E in the
Rn. We identify each α1, . . . , αk with an element of the polytope
parameter space associated to D, i.e. with some element of PD;
and we identify each β1, . . . , βk with an element of PE .
• We approach the interpolation problem as follows. We search for

a function from the polytope parameter space PD to the polytope
parameter space PE , such that each αi is mapped to βi, i = 1, ..., k,
under the above identification.

• As the criterion for how to choose the interpolating function, we
adapt the concept of spline interpolation. To this end, we use a
Sobolev space of functions f : PD → PE ; we define a function
from this space to the positive reals; and we minimise the image
under this function.

The case of fuzzy sets is analogous.

We recall next the formalism of spline interpolation in its general form.
It is not possible to give here any detailed explanations; we have to
refer to the literature. The formalism is due to Atteia [3, 4], and the
following version is due to [9, §21B].

We summarise in a few words the meaning of the following theorem.
The space F is supposed to be the space of functions among which
interpolants are chosen. The functions having prescribed values at some
given knots are supposed to be in K. Furthermore, d is a differential
operator the images of which are contained in D; and ||d(f)||D should
represent the “degree of smoothness” of an f ∈ K.

Theorem 7.1 Let F and D be Hilbert spaces; let K be a non-empty
closed convex subset of F ; and let d : F → D be a surjective linear
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operator. Assume that Ker d is finite-dimensional and Ker d ∩ CK =
{0}, where CK = {f ∈ F : K + f ⊆ K} is the recession cone of K.
Then there is a unique f ∈ K minimising {||d(f)||D : f ∈ K}, where
|| · ||D is the norm in D.

The abstract Theorem 7.1 is needed to prove the following lemma.
Here, the (closure of the) set A and the set B stand for the two poly-
tope parameter spaces mentioned before. Furthermore, we consider a
Sobolev space of functions from A to B; for the definition and basic
properties of Sobolev spaces, we refer to [2].

The reason for proving that polytope parameter spaces are polytopes,
becomes now clear. Namely, we assume that A fulfils the strong lo-
cal Lipschitz condition, a notion explained in [2, 4.9], and fulfilled in
particular by polytopes. It ensures by [2, 4.12] that the Sobolev space
W q,2(A), and hence W q,2(A,Rs) for any s, consists of continuous func-
tions extendible to A, assumed that q is large enough.

Finally, a finite set A0 ⊆ Rr is called q-unisolvent if there is no non-
trivial polynomial of degree q on Rr vanishing on A0.

Lemma 7.2 Let r, s ≥ 1; let A be a bounded open subset of Rr fulfilling
the strong local Lipschitz condition; and let B be a closed convex subset
of Rs. Let A and B be endowed with the pointwise natural order.

Furthermore, let q ≥ r+3
2

and F = W q,2(A,Rs) = {f ∈ L2(A,Rs) :
Dtf ∈ L2(A, S((Rr)t,Rs) for all t ≤ q}, where S((Rr)t,Rs) is the space
of symmetric t-linear forms from Rr to Rs. Let D = L2(A, S((Rr)q,Rs));
and let d: F → D, f 7→ Dqf .

Finally, let A0 a finite subset A which is q-unisolvent; and let f0 :
A0 → B be a monotone function. Let K(f0) = {f ∈ F : f(A) ⊆
B, f is monotone, f |A0 = f0} be non-empty.

Then there is a unique f ∈ K(f0) minimising {||Dqf ||D: f ∈ K(f0)}.

Proof. K(f0) is closed, convex, and by assumption non-empty. Because
d(F ) is closed in D, we may consider d as a surjective function from
F to d(F ). Ker d = Polq(A) is the space of polynomials of degree q,
hence finite-dimensional. Furthermore, if f ∈ CK(f0), then f |A0 = 0,
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and if f is a polynomial of degree less than q, we have by assumption
f = 0. So Theorem 7.1 applies. 2

It remains as a purely technical task to apply this lemma for the inter-
polation between spaces of convex or fuzzy sets.

Theorem 7.3 Let D and E be ordered direction sets, containing r and
s vectors, respectively; and let R, S > 0. Let A = PD,R and B = PE,S
be the polytope parameter spaces associated to D and R and to E and
S, respectively. Let q ≥ r+3

2
, and let (α1, β1), . . . , (αk, βk) ∈ A × B

such that {α1, . . . , αk} is q-unisolvent. Define F = W q,2(A,Rs) and
D = L2(A, S((Rr)q,Rs)). Then, among the monotone functions f :
A → B in F such that f(α1) = β1, . . . , f(αk) = βk, there is a unique
one minimising ||Dqf ||D.

Proof. By Theorem 4.5, A is a polytope with non-empty interior, and

thus
◦
A is an open set fulfilling the strong local Lipschitz property. By

Lemma 6.2, there is at least one f ∈ F which maps A monotonously
to B such that f(α1) = β1, . . . , f(αk) = βk. So the assertion follows by
Lemma 7.2. 2

Furthermore, we may formulate a similar result for fuzzy sets.

Theorem 7.4 Let D and E be ordered direction sets, containing r and
s vectors, respectively; let R, S > 0; and let ∆ ⊆ [0, 1] have cardi-
nality d. Let A = FD,∆,R and B = FE,∆,S be the fuzzy set parame-
ter spaces associated to D, ∆, R and to E, ∆, S, respectively. Let
q ≥ dr+3

2
, and let (α1, β1), . . . , (αk, βk) ∈ A×B such that {α1, . . . , αk} is

q-unisolvent. Define F = W q,2(A,Rds) and D = L2(A, S((Rdr)q,Rds)).
Then, among the monotone functions f : A → B in F such that
f(α1) = β1, . . . , f(αk) = βk, there is a unique one minimising ||Dqf ||D.

Proof. This theorem is seen analogously to the preceeding one. 2

We conclude that, by Theorems 7.3 and 7.4, we know that a func-
tion extending a given if-then rule base and having the characteristic
property of being the smoothest one, exists.
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Unfortunately, the theorems do not provide any hint how to calculate
this function. We are provided with neither more nor less than the
knowledge that in principle, we can determine a function with proper-
ties comparable to the case of crisp spline interpolation.

8 Conclusion

We have proposed a way how to realise fuzzy inference by methods
of interpolation: We showed that a fuzzy if-then rule base may be
extended to a total function between fuzzy set universes, fulfilling a
condition analogous to the case of spline interpolation between crisp
values: it minimises a real value measuring smoothness.

The remarkable point about this approach is that we make use of a sin-
gle principle, not allowing ad-hoc assumptions. As a disadvantage, we
mention that the number of entries in the rule base must be rather large
to ensure uniqueness of the interpolating function. We must moreover
admit that the question how to realise the presented concept in practice
is difficult. If technical realisability is a too hard task, it is our hope
that, at least, our point of view on fuzzy inference will contribute to
the development of further methods designed along similar lines.
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