Vagueness:
where degree-based approaches are useful,
and where we can do without

Thomas Vetterlein
Department of Knowledge-Based Mathematical Systems
Johannes Kepler University Linz
Altenberger Strafle 69
4040 Linz, Austria
Thonas. Vetterl ei n@ ku. at

Abstract

The vagueness of a property becomes apparent when morertedevel of gran-
ularity is addressed in a discourse. For instance, the tagietall” can be used
to distinguish just two kinds of persons — those who are &lbpgposed to those
who are not. This coarse distinction contrasts with any fimey, in particular with
the finest possible one, on which we specify sizes, beyorldrats of precision,
by real numbers. We understand vagueness as a relative nodiosing a problem
when information on a coarse level is to be transferred toeal&vel.

Under this viewpoint it is no problem to accept that, depegdin the application,
reasoning under vagueness may require different formaldveorks. In this paper,
we consider the same kind of vague properties in two diffecentexts. We first
discuss a version of the sorites paradox. In this case, iégssary to combine
reasoning on two levels of granularity in a single formalisiollowing estab-
lished practice, we choose an approach based on numergaede Second, we
consider generalised Aristotelian syllogisms. In thisscalegree-based solutions
are unnecessarily rich in structure and are not found adeqWée give preference
to a formalism that stays entirely on the coarse level of meputation.

We conclude that there is no reason to call for a uniform fdismato cope with the

problem of vagueness. In particular, degree-based appesare usually applica-
ble, but there can be simpler alternatives. Different peoid may call for different

solutions, and choosing diversity does not mean that weoapprthe problem of
vagueness incoherently.

1 Introduction

Vagueness in natural language is a topic that has been dtirdensively in recent
times. A variety of approaches has been developed to deaMague information in
practical applications. Usually, pragmatism dominatesravell-founded principles.
It seems that in most cases Zadeh's fuzzy set model is entghleyleose popularity
is in spite of all criticism unbroken. For a general overvieiffuzzy set theory see,



e.g., [DuPr2]. Quite independently from the efforts to ceih vagueness in practical
respects, approaches have been developed to understafgdthre of natural language
on a foundational level. An intensive debate in philosophgrigoing. In this case, the
picture is not dominated by a single idea. An overview of apphes proposed in
recent years can be found, e.g., in [Smi].

Vagueness is usually associated with the existence of Horeleases. It pertains to
properties such that there is a continuous transition fiwerobjects fulfilling the prop-

erty to the objects not fulfilling the property. For instantee adjective “large” refers
vaguely to the size of objects, because objects vary in simérmiously. As a conse-
guence, a set of objects specified by an expression likee’lasgnot sharply delim-

itable. A so-called borderline-large object is an objectahitis not large enough to be
called “large” and the same time not small enough to be catietllarge”.

This paper is meant as a contribution to the general problehow to reason with
vague information by formal means. We pick up a particulpeasof the discussion;
namely, we support our negative attitude to the frequenglyessed concern of finding
a single appropriate method to reason in the presence oénags.

Our considerations are based on the recent paper [Vet],ichwie develop a particular
standpoint with regard to the vagueness debate. Our agpi®ealledperceptionalism
and relies on the conviction that it is our perceptions thmatta be considered as the
basic constituents of reality, rather than the ready-maaigdwconsisting of moving
particles and existing independently of a human observes. vidw properties like
“small” and “large” as describing the observation of obganta comparative way rather
than the objects themselves. Itis then just natural thatrgmns of the same objects
can be made in different frameworks and may in particulagrreg different levels of
granularity. For formal reasoning under vagueness, thiettge is to find models for
the varying levels of granularity relevant in a particulantext. This is easy if there is
only one level involved, but tricky if more than one leveldstie taken into account.

In the philosophical debate, efforts are frequently dedédethe aim to find the one and
only way to argue about vague properties “correctly”. Thia & not in accordance
with the point of view adopted in [Vet]. In fact there is no sea to expect that under
different circumstances similar ways of formal reasonirgappropriate.

The present paper discusses two examples: the soritesopaeat! generalised Aris-
totelian syllogisms. In both cases, we deal with roughlycdjesl proportions of a
whole. Reasoning frameworks are already available for lootisidered situations.
Here we are interested in the particular feature by whichwhecases differ. For, the
difference suggests to proceed formally in totally differeays.

The paper is organised as follows. The first half of the papedeioted to the sorites
paradox. We comment on the variety of approaches to the paiadSection 2. We
then develop a formalism to cope with the paradox on the liddise Logic of Ap-
proximate Entailment (LAE) [Rod]. Section 3 provides a gahatroduction to LAE;
in Section 4, we incorporate elements of first-order logiwg &ve finally explain in
Section 5 how the resulting formalism applies to the sopeasdox.

In the second part of the paper, we discuss generalisedofglistn syllogisms. In



Section 6, we again review existing approaches. Then we miake how a logic to
deal with the syllogisms should look like when based on ogag] and we propose a
specific such logic in Section 7. How this logic applies to sijfogisms is shown in
Section 8. Section 9 contains a summary of the paper and sonctuding remarks.

2 The sorites paradox

Itis amazing in how many scientific contributions the sarjparadox is dealt with. The
paradox is in fact an essential part of the debate on vagaenes

The sorites paradox is highly relevant as with practicatly sague property we may
associate one of its instances. We choose here a versionandance with the setting
of the second part of this paper.

Consider a teapot with a volume oflitre which is leaky. Assume that when the pot
is filled with tea every second one drop of tea leaks out of #sukne furthermore that
one drop has a volume 6f02 millilitres. In this setting, the sorites argument goes as
follows.

(A) When the leaky teapot is nearly full, so it is one secorterla

(B) Filled with 48000 drops of tea, the teapot is nearly full.
Consequently,

(C) the empty teapot is nearly full.

As a paradox, it actually does not represent acceptablemaws but rather a failure of
reasoning; a formal framework is requested to overcomedfieiency. An abundance
of suggestions has been made.

In mathematics, degree-based approaches dominate. Jisdact after L. A. Zadeh in
his seminal paper [Zad1] established the notion of a fuzgzyJsé. Goguen suggested
a framework for reasoning on the basis of a continuous setutti degrees [Gog].
Speaking in modern terminology, his inference method igthas product logic, that
is, the fuzzy logic based on the product of real numbers terjmet the conjunction
and the corresponding residuum to interpret the implicatio [HaNo], V. Novak and
P. Hajek followed similar lines, using the nowadays wethbfished frameworks for
fuzzy logic. Further related papers include [Pao, WaVe, IReVa].

On the philosophical side, the picture is non-uniform. Augioln of the sorites paradox
is a “test case” for all approaches viewing vagueness fronmddmental perspective. |
shall mention a few important references: for epistemicsee [Wil, Ch. 7, App.]; for
supervaluationism, see [Fin]; for contextualism, see [Sha understand the solution
of the sorites paradox from a philosophical viewpoint we lddue required to get fa-
miliar with one of the theories of vagueness; we cannot esdtsech a demanding task
here. We restrict to the remark that none of the mentionedogghes are compatible
with the idea of using degrees, as proposed, e.g., in [HaNo].



In order to justify our own choice how to deal with soritelseliarguments, we must
review our approach developed in [Vet]. First to mentiorréhis a feature common
in the debate among philosophers which in our opinion presvam easy solution. The
discussion is dominated by a realistic world view: it seembe normal to assume
that everything tangible in the world is determined by sdrimgf outside the influence
of humans. It is then natural to understand statements afaldanguage as telling
something about the world, whose existence is assumed tedmigled from its ob-

servation. Consequently, there exist independent aitrcording to which natural-
language statements are true or false. Just like in prediogic, truth conditions are
asked for. Solutions along such lines are complicated.

We reject the idea that natural language is subject to trattaitions referring to an
independent, all-encompassing world. The reference td Skrictures is rather a fea-
ture of propositions of formal languages; formal languayesassociated with abstract
mathematical structures. Instead, we view utterancesturaldanguage as describing
perceptional impressions. Saying, for instance, “K. i tdldo not express an inde-
pendently holding truth; | am not, correctly or falsely,ioling that K.'s precise size
is larger than the medium size of the people under consideraln fact, the concept
of a precise size does not correspond to any observatiors butiathematical notion.
Instead, | express my impression that K. is taller than meepte | have presently in
mind.

But observations are bound to the observer’s perspectaénaparticular to a certain
level of granularity. Observations have a comparativeattar and a comparison can
be performed in more or less detail. That is, to observe meatassify and the
classification can be done at a scale with more or less marigeriVhen saying “K. is
tall”, | could have in mind simply a two-element scale, digtiishing between “tall”
and “not tall”. When saying “K. is around 180 cm tall”, | coutdve in mind a scale
distinguishing differences of 5 cm. The concept of totakfgeness is a mathematical
limit construction, based on the fact that observations gifan precision can always
be imagined to be even more precise.

From this perspective, vagueness is a relative notion; pression is vague relative to
a finer scale than the one associated to it in a given contéwxts Vagueness becomes
problematic in situations where we switch between levetyrahularity. In the present
discussions typically one coarse level together with thestipossible one is consid-
ered: a natural language expression, like “tall”, togettighh a mathematical structure,
like the positive reals. The challenge is then to deal withdbarse notion within the
fine structure. In the general case, the task is to define a comefinement and to
embed into it all occurring notions.

Thusin the presence of vague properties, our primary taskdisal coherently with dif-
ferent levels of granularity. Several formal approachasd¢brrespond to this challenge
have been developed. Not all of them aim at a formal treatroewhgues properties
but have been created for other motivations. Let us mentiewavell-known research
lines.

As a model that seems to correspond to our concerns quitetlglireee may consider
partitions of the universe of discourse of varying coarseng&his idea has been devel-



oped within Z. Pawlak’s theory of rough sets [Pawl, Paw2]e Tdugh set model has
rarely been considered in connection with vagueness, apéra being, for instance,
[BiSt]. Further examinations in this direction seem to betivavhile.

Another idea of how to bring together different levels ofrgskarity makes use of de-
grees of compatibility. To this end, we first choose a set aticoously variable de-
grees, usually the real unitinterval. Given an element afaage scale, we then specify
its compatibility with each of the elements of the fine scaleboosing an element of
the set of degrees. For instance, the coarse scale may tooinie elements “small”,
“medium-sized”, and “large”, and the fine scale mayRbe Then, to each of the three
natural-language expressions and each positive real numbenay assign a real be-
tween0 (“totally incompatible”) andl (“perfectly compatible”).

This is the idea underlying Zadeh's notion of a fuzzy set [Jad’hat is, it is the idea
on which the most popular practical approach to vaguenesased. Reasoning has
been formalised, for instance, within t-norm based maryeadlogic [HaNo]. Among
philosophers, the idea has often been considered as welataly complaisantly; an
exception is [Smi].

Finally, we may mention similarity-based reasoning. We magide to allow the use
of notions referring to a coarse level also within a fine lebet then only in the pro-
totypical cases. Moreover, we may endow the fine structutte avsimilarity relation;

a non-prototypical element has then a certain resemblaithelve closest prototype.
This again leads to the possibility to say that a coarse ptppelds to a certain degree.

For instance, the property “small” may be modelled by a csspof positive reals,
namely those which clearly represent a small size, togethlkm similarity relation on
the set of positive reals. Then we can assign to any predse si R its similarity
with the set of sizes prototypical for “small”. We are agadd lto a fuzzy set, and
conversely, any fuzzy set may interpreted in this way; seg, fDuPri].

One framework for reasoning about similarities is due to @tl&[Ger]. A universe
of discourse is endowed with a fuzzy equivalence relatiowl, tauth degrees refer to
similarities. Another approach which uses a similarityatiein not on a universe of
discourse but directly on the set of propositions has beepqgsed by M. Ying [Ying].

The approach presented in this paper follows the ideas dlesity-based reasoning.
Our priority is a clear and well-justifiable framework, evigradmittedly, the calculus
to which we are led is not particularly elegant. The topicta subsequent chapters
will be approximate reasoning in the sense of Ruspini [Rus].

3 The Logic of Approximate Entailment

A framework for reasoning which allows conclusion to be dnawven if they are only
approximately correct is due to E. Ruspini [Rus]. His prades been elaborated in
a series of further papers from a logical point of view [DPEE&GR, GoRo]. In
particular, the Logic of Approximate Entailment, or LAE feiort, was introduced in
R. O. Rodriguez’ thesis [Rod]. Our aim is to demonstratéeltd is able to cope with



the vagueness of natural-language expressions.

LAE makes use of a continuous set of degrees, just like fuagicl Unlike fuzzy
logic, LAE does not suffer from conceptual arbitrariness;wdnat LAE requires is
(the generalisation of) a metric spadeAE is based on the notion of similarity, just
like the approach of Ying. Unlike Ying’s logic, however, siarity refers in LAE
to the underlying universe of discourse and no special teris needed concerning
compound propositions.

In this section, we shall shortly specifyAE. Our universe of discourse is a non-empty
setW, representing the variety of possible situations which veegming to consider.
The elements off” are commonly callegossible worldsProperties will be modelled
by (crisp) subsets diV’.

In classical propositional logic, the consequence refatietween propositions is re-
flected by the subsethood relation. In approximate reagomie deal with the case
that propositions imply each other only approximately;cadingly, a mean is pro-
vided to express that the subsethood relation holds onlycertain degree. Namely,
the set of worlddV is endowed with a metric, or more generally, with a similarit
relations. We assume that a given world may more or less resemble themnmte;s
maps pairs of worlds to a number betwdkeand1 and expresses in this way a degree
of similarity between them.

For the sequel, IgD, 1] be the real unit interval and let: [0,1]*> — [0, 1] be a fixed
t-norm.

Definition 3.1. Let W be any non-empty set. A function W x W — [0, 1] is called
asimilarity relationon W w.r.t. @ if, for any u, v, w € W,

(S1) s(u,u) =1 (reflexivity),

(S2) s(u,v) = 1 impliesu = v (separability,
(S3) s(u,v) = s(v,u) (Symmetry,

(S4) s(u,v) ® s(v,w) < s(u,w) (O-transitivity).

In this case, we calllV, s) asimilarity space

The valuel is used exactly in case of coincidence, as expressed byftagiviy and
separability ok. Furthermore, similarity is supposed to be a symmetricamotiFinally,
@-transitivity can be viewed as a triangle inequality, whityeconnecting operation is
allowed to be any prior chosen t-norm.

One may think of a similarity space as a generalised metacespindeed, lefiV, s)
be a similarity space and pdtu,v) = 1 — s(u, v) for u,v € W. Then (S4) translates
to d(u,w) < d(u,v) ® d(v,w), whered is the t-conorm associated to. If © is
the Lukasiewicz t-norm, then the triangle inequality in tiseial sense holds antis
indeed a metric, which is bounded by Furthermore, if> is the product t-norny is
isomorphic to a metric as well, which in this case is unboahtiavingR* U {oco} as
its range.



Propositions will be modelled classically: by sets of pbkesivorlds, that is, by subsets
of W. ForA C W andt € [0, 1] we define

Ui(A) = {weW: s(w,a) > tforsomea € A}

to be thef-neighbourhood ofl. Let nowA, B C W model the two propositions and
1), respectively. Then we say thatapproximately implieg) to the degree if

ACU/(B).

The propositional logit. AE is defined model-theoretically as follows. For an axioma-
tisation of LAE, we refer to [Rod, EGRV].

Definition 3.2. The propositional formulaf LAE are built up from a countable set
of variablesyp, . .. and theconstantsL, T by means of the binary operatotsandv
and the unary operator. A conditional formulaof LAE is a triple consisting of two
propositional formulasg andqy as well as a value € [0, 1], denoted by

o> .

Let (W, s) be a similarity space. Aavaluationfor LAE is a structure-preserving map-
ping e from the set of propositional formulas to the Boolean algedfrsubsets ofV'.

We say that a conditional formud/a:ts 1 is satisfiedf

e(p) C Ule(®)).

A theoryof LAE is a set of conditional formulas. We say that a theprgemantically
entailsa conditional formula> = ¢ if any evaluation satisfying all elementsPfalso
satisfiesp = 1.

Aiming at a formal treatment of vague properties, we will fre thext section extend
the setting introduced so far.

4 Logic of Approximate Entailment
for a first-order structure

The Logic of Approximate Entailment has been developed asopggitional logic,
propositions being modelled by subsets of a similarity sgék, s). Heading towards
applications, we next consider the case that our set of wqitdsesses a first-order
structure. We wish to formalise statements of the form ttrat-6rder propositions
imply other such propositions only approximately.

We note that first-order logic for metric spaces has beeriedud recent years. The
concerns are somewhat different, but the setting has soseenidance to ours. See
[BBHU] and the references given there.



Our idea is the following. Let(z) and(x) be formulas of a first-order language
with the only free variable:. We would like to express that(x) implies ¢ (x) ap-
proximately. An interpretation being givep(z) and«(z) can be identified with two
subsetsA and B of the universe. Accordingly,

p(z) = ¥(z)

will be defined to hold exactly i is contained inB to the degree in the sense of
LAE. This in turn means that

there is ay € U;(x) such thatp(z) — ¥(y), (1)

where— is the usual implication of classical propositional logic.

Also constants will be defined to be flexible in meaning. Namlek ¢ be a constant;
then .
p(c) = (c)

will be defined to mean

there is ay € Uy(c) such thatp(c) — 9 (y). (2

For the rest of the section, let us fix a trighé, s, £); here,(W, s) is a similarity space
and/. is a first-order language not containing constants.

Our calculus will be associated witf#V, s, £). Namely, we consider theories in the
languagel which is to be interpreted in a model with the baselgetTo this end, we
add constants for eachw € W, interpreted byw itself. Moreover, we will add binary
relationsR; for eacht € [0, 1], interpreted by those paitsw € W that are similar to
the degree at least

The structured Logic of Approximate Entailmeassociated wit{WW, s, £), or sLAE
for short, is defined as follows.

Definition 4.1. Let L. be the result of adding td a constanto for eachw € W and
additional binary relation®, for eacht € [0, 1].

An ordinary formulaof sLAE is a formula ofC.. A conditional formulaof sLAE is a
triple consisting of a paip, v of ordinary formulas and a numbere [0, 1], denoted
by

o= 0.
By aformula we mean either an ordinary or a conditional formula.
An interpretation of an ordinary formula in a model under asignment of the free
variables is defined as usual, but such that the followindfiorhe model’s base set is

W, forw € W, the constand is interpreted byw; for v,w € W, R;(v,w) is satisfied
if and only if s(v, w) > t.

Let furthermorep andvy(dy, . . ., d,) be ordinary formulas, wheré, ..., d,, n > 0,
are exactly all the constants and free variables of therl&dtenula, and let € [0, 1].
Theny L ¥(dy,...,d,) is satisfied if so is the ordinary formula

=y Ty (BRe(yr, di) Ao A Re(Yn, do) AP (Y1, -5 9n)), ®3)



wherey, ..., y, are variables distinct from eved, ..., d,. In casen = 0, (3) is
understood ag — 1.

A theoryis a set of formulas ofLAE. Semantic entailmemf a formula by a theory is
defined as expected.

The axiomatisation ofLAE does not cause difficulties. The only peculiarity is the fact
that the elements of the base set are requested to be in-@metorrespondence with
the constants. This is not a problem in the finite case; inrifieiie case, however, an
infinitary rule must be assumed.

Definition 4.2. Axioms and rules o§LAE are those of first-order logic faf. as well
as the following ones.

(L1) v # w, wherev,w € W such that # w

(L2a) R:(v,w), wherev,w € W such thats(v, w) > t,
(L2b) —R:(v,w), wherev,w € W such thats(v, w) < t

(w) forallwe W
vz o(z)

(L3) 2

o= Y(dy, ... dn)

L4a ,
(L42) o= 3y yn(Re(yr,di) Ao A Ry(Yn, dn) AP(Y1, -5 yn))
(Lab) £ Fy1 - Ty (Re(y1,d1) Ao A Ry(Yny dn) A(ya, -+, 4n))

wéw(dlvadn)
wheredy, . . . d,, are the free variables and the constants occurring(i , . .., dn)

Provability of a formula from a theory is defined as expected.

We have the following completeness theorem.

Theorem 4.3. Let 7 be a consistent theory 6LAE, and leta be formula ofsLAE.
Then7 provesa if and only if 7 semantically entails.

Proof. The soundness is clear; this is the “only if” part.

By rules (L4a) and (L4b), we may assume that a theory consfatsdinary formu-
las only. Indeed, as these rules are the only ones wheretmoraliformulas appear,
we may assume that conditional formulas do not appear infpeaept (L4a) at the
beginning and (L4b) at the end.

Let 7 not prover.. Then7 U {—a} is consistent. We may exteffduU { ~«} to contain

a set of witnesses, which due to rule (L3) may all be chosein & somew € W.
ThusT U {-a} has a model each of whose elements interprets a constantul®y r
(L1), the base set is actually in a one-to-one corresporedeitb 1. By rules (L2a)
and (L2b), theR;, t € [0, 1], correspond to the similarity relationin the prescribed
way. The proof of the “if” part is complete. O



5 The logicsLAE for the sorites paradox

In which sense can we expect a “solution” of the sorites pardy formal means?

Let us note first that the sentences (A), (B), (C) constigutive paradox all refer to one
and the same object: a partially filled teapot. However, spants refer to a coarse level
of granularity and some to a fine level. In particular, “theget is nearly full” and “the
teapotis empty” are statements on the coarse level; “timteantaingl8000 drops of
tea” and “the teapot contains one drop less than beforef tefine fine level. In other
words, we use for the same thing two different models. Acoaytb the coarse model,
the teapot can be, say, empty, well filled, nearly full, ot;foihly a few distinctions are
made. In contrast, the fine model distinguishes between &&id@ations, taking into
account differences of filling degrees that are as small asvdtume of a single drop
of liquid.

The sequence (A)—(C) shows that a mixture of argumentsriefeto two different
models can lead to confusion. The sorites paradox is in fgceat illustration of the
fact that a coherent argumentation needs to be conductediaogla level of granular-
ity. An entanglement of different levels of granularitiegirone to inconsistency.

To reveal where the argument (A)—(C) is corrupted, we mustienthat that all state-
ments refer to a single model, namely a sufficiently finesggdione. If necessary,
properties must be redefined, further differentiated, odensompatible with the cho-
sen model in another way. Reasoning with regard to a singteehuannot be paradox-
ical, provided that the arguments are sound.

Thus all we have to do is to determine a fine-grained model aptyaur calculus
sLAE to it. The apparent contradiction will necessarily disagypén this sense we can
expect a solution of the paradox. We note that any calcuiagasito sLAE could be
taken as well.

As our set of worlds we tak& = {0,1,2,...,50000}; eachn € G represents the
number of drops contained in the teapot under consideratioequivalently the pro-

portion 5555 of liquid within the total volume of the teapot. Furthermpnes define

min{m,n}

(4)

s(m,n) = max{m,n}
for each two distinct valuesi,n € G ands(n,n) = 1forn € G. Then(G,s)
is a similarity spaces being a similarity relation with respect to the product tmo
Furthermore, we endo@ with the functionS: G — G which maps each < 50000
ton + 1 and50000 to itself.

We next need to take the property “nearly full” into consatern. We deal with this
coarse notion on the fine level by associating with it a setrofqiypes. Letd be a
unary relation;H (n) is to express that filled with. drops of tea the teapot is nearly
full. H is assumed to be chosen such that forarylfilling H(n), we can clearly say
that a teapot filled witlw drops is nearly full.

We note that there is no canonical choice for the interpetaif H; the set of proto-
types of a coarse-grained notion does not exist. The prpfreearly full” refers to a
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coarser model than the one we deal with, so that it does noe reakse to associate
a specific crisp subset to it. Actually, we will not do so — i tfense that we leave
open howH is interpreted. We do assume tH&{48000) is true, nothing else; so any
interpretation off such thatt8000 is among the elements for whidt holds will do.

Let us now ask which conditional formulas wifti(48000) as its antecedefitSR can
prove. We havel (Sn) — Ry, sn)(n, Sn) A H(Sn), hence

H(Sn) — Im(Ry(n,5n) (1, m) A H(m)),

that is, sinces(n, Sn) = ral

n

H(Sn) =" H(n);

for example,H (48000) 099979 b (47999). Similarly, we may related (48000) to

H(1) or evenH (0):

H (38000) * 2% H(T),

H (43000) = H (D).

As expected, reasoning in this framework is no longer pat@adb

Let us conclude the first half of this paper with some addéloemarks. Let us point
out how our approach to vagueness helps to explain why weales taback by the
sorites paradox, that is, why we actually believe that themontradiction to be re-
solved.

A natural-language utterance evokes a picture in our inaigin; this picture is sim-
ple, containing only those details that matter. In genevaluse the coarsest possible
model to comprehend facts. A statement like “the pot is ydall’ is not true or false
depending on a specific proportion of the liquid in the totalwe, but represents a
rough picture. Assuming that a teapot is nearly full, we dofigure out the precise
bounds of filling degrees between which the notion “nearll) fsi correctly applicable
and conclude that the actual filling degree is within theagnds. We rather imagine a
teapot with an amount of tea which gives rise to the statefimeairly full”, as opposed
to, say, “empty” or “well filled” on the one hand and “full” omé other hand. Our
model in use is a coarse one, distinguishing between, saycéses.

We further imagine that by the removal of a single drop theype of a nearly full
teapot remains the same. It is clear to us that although welsserve that one drop
leaks out of the teapot we cannot observe the resultingrdiffee. It follows that we
agree with statement (A). When hearing the second part gf &) might certainly
extend our model — but only by one element, hence not significave now deal with
the properties, say, “empty”, “well filled”, “nearly full mus one drop”, “nearly full”
and “full”. Furthermore48000 is a number that is smaller but quite close5t00;
accordingly it seems appropriate to say that the teapotdagyn&ill when containing
this number of drops. Hence we agree with (B) as well. Finallg two coarse no-

tions “empty” and “nearly full” are distinct. This fact gime we disagree with (C).
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We summarise that when thinking through the three senteseqmrately, we are not
suggested to use any other model than a coarse one. On thargopwhenever notions
like “nearly full” occur, which are not usable on the fine lewge are bound to stay at
the coarse level.

We are taken aback by the paradox because we ignore thistiestto the coarse level
when putting (A) and (B) together. (A) and (B) tell us that thapot is in a certain state
and that this state is preserved after a second. Thus wardesddhis state is preserved
forever and we make the surprising conclusion that “empiy’ ‘aearly full” actually
coincide. Having agreed with (A) at the coarse level, we agpity do not notice that
we switch to the fine level: the repeated application of (Aykemnly in a fine-grained
model, ast8001 different filling degrees are involved. Consequently, wendbnotice
the problem of the argumentation: the filling degree is dptiby the expression
“nearly full” and thus refers exclusively to a coarse leviel.short, when concluding
(C) from (A) and (B), we ignore that “nearly full” is a notiohat at the relevant fine
level is simply not specified.

At last, we may ask for a reason of this ignorance. This gaess certainly inappro-
priate; we have to accept it as a fact; still, we may wondereumdich circumstances
we are led to confusion. We note that the conclusion (C) fréthand (B) could
indeed correctly be drawn with any other property than “lyefad!”, provided it is
compatible with the relevant modé!. For instance, when we replace “nearly full” by
“red”, the paradoxical nature of the argument disappeansset of world would then
beG x {red notred. Thus the point seems to be that when drawing the conclusion
(C), we assume the teapot to be in a specific state and we damadloout the fact that
this state is characterised in a way not compatible with ¢fieed model on which our
argument relies.

6 Generalised Aristotelian syllogisms

We now turn to the second topic of this paper. We continueudsiag the formal
treatment of expressions specifying proportions in a rougir However, we will do
S0 in a different context.

The Aristotelian syllogisms represent a particular kindexsoning, which, although
originating from the fourth century B.C., reminds in a rekeie way of modern logic.
An example is the following:

No X areM All Y areM
No X areY

(5)

Here M, X, Y are to be understood as properties of the elements of a seivdr
discourse. The proposition “N& are M” is to be understood as “No element with
propertyX has propertyl/”, and similarly for the remaining two propositions.

As a natural framework, we may choose an abstract set endwitledne-placed re-
lations. To formalise a syllogism, it is then enough to cdasffirst-order logic, the
language consisting of unary relations. See, e.g., [CCM].
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Generalised Aristotelian syllogisms have been considerga: work of A. De Morgan
[Mor]. The idea is to deal not only with the “particular” anket “universal”, that
is, with single or all elements of some universe, but alsdsiéts whose extent is
characterised by natural-language expressions like ‘féwiany”, or similarly. In
other words, not only existential and universal quantiftcais considered, but also
what is called intermediate quantification. An example &sftillowing, which is cited,
like the other syllogisms mentioned in this paper, from [Rpv

Most X areM All M areY
Many X areY

(6)

The attribute “many” denotes a roughly quantified proparémd thus may be con-
sidered as inherently vague. Vagueness concerns at lead\tels of granularity and
then usually a rough and a fine one. Here, to argue at the fieé newans that we
take into account every single element of the set under derdion; just like in the
case discussed in the previous sections, it means to ddalewatct proportions. At
the coarse level, in contrast, we just make the distinctetwben, say, “none”, “few”,

“many”, “most”, and “all”.

Statements like those in (6) have been considered in a faretihg by many authors.
Zadeh develops in [Zad2] a framework to deal with expressiointhe type “few”,
“many”, or the like; his approach is based on fuzzy sets. T Wwas taken up by
Novak, who has developed the appropriate logical framkvfdov2]. His Theory
of Intermediate Quantifiers extends Fuzzy Type Theory, & gdisation of (classical)
type theory [Nov1]. Furthermore, P. L. Peterson’s monolyij#et] is devoted to the
topic.

A completely different approach relies on probability theoThis might sound sur-
prising, but has led to reasonable results. In fact, a sexetike “mostX are M”
may be read as “the probability that an arbitrary (i.e. ranlyachosen)M is an X is
high”. The paper [DGMP] is based on this idea. To cope witlgiospecifications like
“high”, the authors work with intervals of probabilitiesufhermore, the work of D.
G. Schwartz on the topic is inspired by the probabilisticrapph [Schl, Sch2, Sch3].
The calculus presented in [Sch2] is remarkable in that ndi@xprobability values
appear.

Here, we present an approach which is characterised bynigslisity and scantness.
Vagueness concerns different levels of granularity; batimall arguments involving

vague properties other levels than the coarse one are evedidThe Aristotelian syl-

logisms provide easy examples of reasoning on a singleebarsl. We may check,
for instance, that the inference (6) does not refer to siatfments of the universe of
discourse but just to roughly described subsets.

We suggest a calculus referring only to one coarse levellim@paith a single model,
we just proceed according to common mathematical pracliceur calculus looks
uncommon, the reason might be that we are, as mathematiai@nstomed to arguing
with regard to the finest possible level.
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7 Alogic for generalised Aristotelian syllogisms

Our abstract object under consideration is an algebra daéfggts. We use the com-
mon first-order language describing relationships betvee&s) omitting however a top
element:C, N, U, \, @. We furthermore deal with the size of sets; we use the binary
relation~ to denote equal cardinalities. We finally use specialisesiors of the sub-
sethood relation, expressing not only subsethood but alsghly the proportion of a

w many most n.a.

subset in the set of referencfﬁa; C, C,C. The formulas
ACB, ATB, ATB ACB
mean thatd C B and the proportion oft within B is quite small but not zero, consid-

erably large, larger than a half, or very high but not onepeetively. Referring to the
informal language of (5) and (6), the statements “A few / MaMost / Nearly all B

are A” are expressed byl N B & B, ANB'C B, ANB mCOS‘B, orANB C B,
respectively.

We next proceed as usual in mathematics: we assemble thiemskdps holding be-
tween the chosen predicates. Recall that we wish to stayeoodhrse level; we will

not consider the set under consideration elementwise afinedelations likec- by
fuzzy percentages or similarly. We will rather treat thedations in the same way as
when we reason with them; indeed, when reasoning with egjmes like “a few”, we
do not calculate percentages.

As we will model certain expressions of natural language,axioms below do not
have a definite character; we do not claim that these axiomsharonly acceptable
ones. They represent a specific understanding of the indaiegions, and if under-
stood differently they would have to be formalised diffetgnThe possible imperfect-
ness of our axioms lies in the nature of the representatioatofral language by formal
means.

When formulating axioms to characterise properties exg@e i natural language, we
focus on the typical circumstances under which expressiomsised; we consider the
picture which comes spontaneously to our mind when we thifduathe expressions
to be formalised. Rather than checking systematically @adkfble cases involved, we
choose our axioms on the basis of prototypical situatioresn@ie that it would actually
be problematic to agree with some generalised Aristotaidlogisms if validity was
checked in a systematic way rather than according to typasgs. For instance, in (6)
X is not meant to represent a very small set of individuals.a@dwer, other syllogisms
turn out to be incorrect if the involved sets are empty.

Let us now comment on the basic decisions underlying thewsigelow. The expres-
sion “a few” represents a small but non-zero portion of a wet;accept then any of
its non-empty subsets also as small. The expression “maay’lme formalised in a
“pragmatic” or “semantic” way; that is, we may reflect the wiaywhich the expres-
sion “many” is actively used or the way we would answer to tbegtion if there are
“many”. In accordance with the example (6), we will chose ‘tbemantic” interpre-

tation; that is, the relatiosl 'C B will be stable under an enlargement Afwithin
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B. Furthermore, “many” represents a strictly larger projporthan “a few”; and more
than a half elements represent always “many” elementsli¥ziassubset is defined to
contain “nearly all” elements exactly if its complement tains “a few” elements.

We furthermore have to decide if, given a set, subsets of eifgpeategory should
always exist or not. It does not make sense to postulate ikteage of a subset con-
taining, e.g., “many” elements for small sets of refereiwle.restrict to the following
requirement: if some proper subset of a set represents “hedegnent, then also a
subset with “a few” elements exists.

We specify now the first-ordérheory of Syllogistic Reasoningr TSR for short. Re-
call that generalised Boolean algebras are sectionallypamented distributive lat-
tices [Gra]; they differ from Boolean algebras only in tha top element is omitted.

many most n.a.

Definition 7.1. The language of SR consists of the binary relations, fecw, C,C,Cas
well as~, the binary functions), U, \, and the constarft TSR contains the theory of
generalised Boolean algebras, written in the language, U, \, #, and the following
axioms (where the universal quantification over the fregabdes is understood).

Axioms for size:
(S1) A~ A (S2) (A~ B) — (B~ A4)
(S3) (A~B)A(B~C) —» (A~CQC)
(S4) (A< B)V(B=<A) (S5 (A~D) < (A=0)
(S6) (A~B)A(ACB) - (A=B)
SN A~C)N(B~D)ANANB=0)AN(CND=0) - (AUB ~ CUD)
Here,A < B is an abbreviation oC((A ~ C) A (C C B)).

General axioms for proportions:
(P1) (ACB) — (Dc A)A(AC B)

(P2) (ACC)A(BCC)A(A~DB) — (BCCO)

Here, A C B is an abbreviation ofA C B) A =(A = B). Moreover,C is to be
few many most n.a.

uniformly replaced by one af, C, C, C.

Axioms for “few”:

few few

(fewl) (0 C AYA(ACB)A(BCC) — (ACO)

few

(few2) (AC B)A(BCC) — (ACC)

Axioms for “many”:

many

(manyl) (A'C C)AN(ACB)A(BCC) - (B'C C)
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many

(many2) (A'C C)A(ACB)A(BCC) — (AC B)
(many3) (A'C B) — —~(AC B)

(manyd) (B €' CYA(BC C) — JA(AC B)A(AC C))
Axioms for “most”:

(mostl) (A'C B) + (AC B)A(B\A< A)

many

(most2) (A nESIB) — (A C B)
Here,A < B is an abbreviation oC((A ~ C) A (C C B)).

Axioms for “nearly all”:

few

(na)(AC B) « (B\AC B)

We are led to the following models.

few many most

Definition 7.2. An SR-algebras a structurgS; A, V, —,0, <, <, <, <,"<'a') subject
to the following requirements.

(SR1) (S;A,V,—,0) is a generalised Boolean algebra such that edch S is the
supremum of finitely many atoms. We denotedayd A the number of atoms
below anA € S.

(SR2) ForA, B € S, A — B holds if and only ifcard A = card B.

(SR3) LetB € S. Letn = card B, and leth be smallest such that A > n. Then we
have for anyAd < B:

(i) A< Bifand onlyifcard A > h.
(i) Thereis aj suchthatl < j < h and we have:
A'Z Bifand only if card A > j.

If n > 2,thenjis suchthat < j < h.

(iii) If n > 2, thereis an such thatl <i < j and we have:
A fe<WB ifand only if 1 < card A <.

If n <2, thend fe<w B impliescard A = 1 andn = 2.
(v) A< BifandonlyifB— A< B.
(SR4) LetA, B,C € Ssuchthat) c A C B C C. Then:
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() A BorB < CimpliesA < C.
(i) AS CimpliesA'< BandB'< C.

. few many most n.a.
Lemma 7.3. Each SR-algebra is a model ®6R, whereC, C, C, C, C, ~,N, U, \,
few many most n.a.

(¢ are interpreted bys, <, <, <, <, <, A, V, —, 0, respectively.

We have the following completeness theorem.

Theorem 7.4.Let7 be a consistent finite theory extendin§R and lety be a formula.
ThenT provesy if and only if any interpretation in an SR-algebra satistyin satisfies

@.

Proof. The “only if” part is clear.

few many most n.a.

To see the “if” part, assume th&t does not provep. Let (S;C,C, C,C,C,~
,N,U,\,0) be a finite model off U {—¢}. By assumption(S;N,U,\,?) is a gen-
eralised Boolean algebra. (SR1) is proved. We may assumé&tisaa collection of
subsets of a finite seX. W.l.0.g. we may furthermore assume tlsats actually the
power set ofX .

Let A, B € S§. We next prove (SR2). Let and B be of equal cardinality. If both are
empty,A ~ B by (S1). Ifa € A andb € B, we have{a} ~ {b}, because otherwise
(S4) would imply{a} ~ @ or {b} ~ 0, in contradiction to (S5). Hence for non-empty
AandB, A ~ B follows from (S7). For the converse direction, létbe of strictly
smaller size thaB3. Let C C B be of the same cardinality likd. ThenA ~ C. By
(S2) and (S3)A ~ B would imply C ~ B, in contradiction to (S6).

We now turnto (SR3). Fix somB € S, and letd C B. If B = (), we have-(A c B)
by (P1), in accordance with (SR3). Let us assume thiat non-empty.

By (P2), the relationsi & B depend only on the cardinality of. Letn = card B,
and leth be minimal such tha? - » > n. Then the subsets d? of size> h are those
containing a strict majority of elements; hence (SR3)(ilofes from (mostl).

Furthermore, by (most2), (many1), and (P1) thereis<aj < h such that subsets of
B of size> j contain “many” elements; this is the first half of (SR3)(Ii).B is at least
two-element ang = 1, B would contain a proper one-element subset with “many”
elements, in contradiction to (many4) and (P1). jSe 1 in this case, and (SR3)(ii)
follows.

Let B be at least three-element. Théhcontains a proper subset with “many” ele-
ments. By (many4), (many3), and (fewl), the first half of (Ri#3 follows. Let B at

most two-element and assurdec: B. By (P1),A and B are non-empty. By (most1)

and (most2) B ' B, and by (many3);+(B & B). Hence) C A C B, thatis,A is
one-element and is two-element. (SR3)(iii) is shown.

Finally, (SR3)(iv) is clear by (n.a.). So (SR3) is proved.
(SR4)(i) holds by (fewl) and (few2). (SR4)(ii) holds by (nydhand (many2).
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ThusS is an SR-algebra, and the proof is complete. O

Our calculus refers to an algebra of subsets, endowed withusinal set-theoretical
operations as well as binary relations to compare cardiiesli The same is also true
for most other approaches, with the only difference thatetones a fuzzified version
of the relations is used. So how does our calculus actudfigrdrom other ones?

Usually, the universe of discourse is considered in itsdéutbent, and proportions are
modelled numerically. In contrast, SR-algebras providese-grained models of a the-
ory under consideration, and proportions are dealt withdoalitative way only. SR-
algebras are isomorphic to algebras of subsets; when @esids such, their atoms
contain in general, however, more than one element. Moreavelation like'C is
not assigned a definite range of proportiom&nsyjs only characterised by the properties
that we think it should fulfil. SR-algebras should be thougftds models which do not
involve more structure than necessary.

Consider the following simple example; cf. (6). L&f be the set of flying animal
species, X the set of bird species, arid the set of animal species with a maximal
weight of under 20 kg. Let us describe the inclusions betvikese sets by the the-
oryT ={MnX i< X, M C Y}, expressing thatrhost bird species can fland
“flying species are not heavier than 20'kg\n SR-algebra modelling™ consists, for
instance, of subsets df, b, ¢, d, e, f}, whereM = {a,b,c,e}, X = {a,b,c,d},

Y = {a,b,c,e, f}. Each atom, ..., g represents a smallest unit relevant for reason-
ing; each atom represents a set of equal cardinality whittowgever indeterminate.
This model is particularly coarse-grained. But we woulddhaconsider a finer parti-
tion of the set of animal species to draw the conclusion in‘{(B)any bird species are
species with a maximal weight of under 20°kg.

8 TSR applied to generalised Aristotelian syllogisms
Itis straightforward how generalised Aristotelian sylikmgs are dealt with in the present
framework. We show the details for the example (6) as welbasife following two:

NoY areM Al X areM Nearly allM areY All M areX
Most X are nott” SomeX are notY’

The translation of statements occurring in generalisetb@gims is in most cases
straightforward. However, sometimes small details haveettaken into account which
are essential for the validity of the argument. The shownmgtas are, however, un-
critical in this respect. We just note that “som&’ is to be understood as “at least
one individual with propertyX”. Moreover, the sets appearing in syllogisms are gen-
erally assumed to be non-empty; here it is necessary in aetoaadd this condition
explicitly.
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Theorem 8.1. The following rules are derivable fromSR:

most
MNnX X MCY MNY = XCM X
(AS1) CX MCY  (agy b X< 70
Ynx&x xX\yEx

MNYCM MCX

(AS3) X7 20

Proof. (AS1) FromMNX C X we deriveM NX 'C X. FromMNX CYNX C X
itfollowsY N X C X.

(AS2) We haveX NY C M NY = () and consequentli{ \Y = X. FromX # () we
deriveX C X. The claim follows.

(AS3) M NY C M is equivalent taV/\Y & M. Itfollows M\Y #0.By M C X,
we getX\Y # 0. O

We conclude by presenting one example of a syllogism wherdrémslation tor SR
does need special attention. Recall that we understandlyret as the complement
of a small non-zero proportion. On this fact the validity &S3) relies. Consider,
however, the following syllogism:

NoY areM All X areM
Nearly all X are notY’

This syllogism is not compatible with axiom (n.a.). Infadf,NY = § andX C M
impliesX\Y = X, meaning that "AlLX are nofy™. It furthermore follows—(X c X)
and thus~(X\Y c X), which is the negation of “Nearly alk’ are notY™.

However, the translation to the languagel&R can be chosen as follows.
Theorem 8.2. The following rule is derivable fromSR:

MNY =0 XCM 3Z(ZC X)
AZ(ZC X)A (Y NZ=0))

(AS4)

Proof. From the assumption3,SR provesX NY = (. Furthermore, fromiZ(Z T
X) itfollows 3Z(Z & X) and consequentyZ (Z c X). The claim follows. O

9 Conclusion

We have addressed the problem how to reason formally in #sepce of vagueness.
In search of general guidelines that the formal treatmemagiue properties should
follow, we are faced, on the one hand, with the conceptuatigefties of those ap-
proaches that are either chosen ad hoc to satisfy specifiiqgalneeds or guided by
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formal considerations without reference to the actualds€dn the other hand, we do
not seriously expect that any of the approaches that deaMagueness in foundational
respects can be of any help. Consequently, new ways havedrpbered, revealing
new relevant aspects rather than insisting on conventfositions. Here, we object to
one feature in the discussion about vagueness that calisréuision: the opinion that
it is a serious aim to establish the unique and “correct” veegason about vagueness.
We argue, in contrast, that the aim is appropriateness andmaqgueness; solutions
might be individual and imperfect, but can still be apprafei

We have given a pair of two examples showing that the diweodiformalisms dealing
with vagueness need not imply an inconsistent view of vagsen We rely on the
approach called perceptionalism in [Vet]. We argue thatieagss is a challenge when
reasoning refers to different levels of granularity.

In cases where two levels are to be merged, degree-basembapps are acceptable.
An example is the well-known sorites paradox. We have pregasparticular formal-
ism that uses truth degrees and is based on a comparatiealyadncept. Namely, a
modification of the Logic of Approximate Entailment is preted as an alternative to
fuzzy logic.

In cases where only one level of granularity is involved wa peoceed along com-
mon principles of mathematical modelling. We have illusgdahow to avoid many-
valuedness in such cases. The generalised Aristotelilogsrhs served as the exam-
ple.

Both reasoning frameworks have formally nothing in commstiil, they are in line

with a coherent interpretation of vagueness in naturaldagg. Accepting this inter-
pretation, much of vain effort to bring onto a common line wisadifferent in nature
could be avoided.
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