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Abstract

The vagueness of a property becomes apparent when more than one level of gran-
ularity is addressed in a discourse. For instance, the adjective “tall” can be used
to distinguish just two kinds of persons – those who are tall as opposed to those
who are not. This coarse distinction contrasts with any finerone, in particular with
the finest possible one, on which we specify sizes, beyond alllimits of precision,
by real numbers. We understand vagueness as a relative notion, causing a problem
when information on a coarse level is to be transferred to a fine level.

Under this viewpoint it is no problem to accept that, depending on the application,
reasoning under vagueness may require different formal frameworks. In this paper,
we consider the same kind of vague properties in two different contexts. We first
discuss a version of the sorites paradox. In this case, it is necessary to combine
reasoning on two levels of granularity in a single formalism. Following estab-
lished practice, we choose an approach based on numerical degrees. Second, we
consider generalised Aristotelian syllogisms. In this case, degree-based solutions
are unnecessarily rich in structure and are not found adequate. We give preference
to a formalism that stays entirely on the coarse level of argumentation.

We conclude that there is no reason to call for a uniform formalism to cope with the
problem of vagueness. In particular, degree-based approaches are usually applica-
ble, but there can be simpler alternatives. Different problems may call for different
solutions, and choosing diversity does not mean that we approach the problem of
vagueness incoherently.

1 Introduction

Vagueness in natural language is a topic that has been studied intensively in recent
times. A variety of approaches has been developed to deal with vague information in
practical applications. Usually, pragmatism dominates over well-founded principles.
It seems that in most cases Zadeh’s fuzzy set model is employed, whose popularity
is in spite of all criticism unbroken. For a general overviewof fuzzy set theory see,
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e.g., [DuPr2]. Quite independently from the efforts to copewith vagueness in practical
respects, approaches have been developed to understand this feature of natural language
on a foundational level. An intensive debate in philosophy is ongoing. In this case, the
picture is not dominated by a single idea. An overview of approaches proposed in
recent years can be found, e.g., in [Smi].

Vagueness is usually associated with the existence of borderline cases. It pertains to
properties such that there is a continuous transition from the objects fulfilling the prop-
erty to the objects not fulfilling the property. For instance, the adjective “large” refers
vaguely to the size of objects, because objects vary in size continuously. As a conse-
quence, a set of objects specified by an expression like “large” is not sharply delim-
itable. A so-called borderline-large object is an object which is not large enough to be
called “large” and the same time not small enough to be called“not large”.

This paper is meant as a contribution to the general problem of how to reason with
vague information by formal means. We pick up a particular aspect of the discussion;
namely, we support our negative attitude to the frequently expressed concern of finding
a single appropriate method to reason in the presence of vagueness.

Our considerations are based on the recent paper [Vet], in which we develop a particular
standpoint with regard to the vagueness debate. Our approach is calledperceptionalism
and relies on the conviction that it is our perceptions that are to be considered as the
basic constituents of reality, rather than the ready-made world consisting of moving
particles and existing independently of a human observer. We view properties like
“small” and “large” as describing the observation of objects in a comparative way rather
than the objects themselves. It is then just natural that descriptions of the same objects
can be made in different frameworks and may in particular refer to different levels of
granularity. For formal reasoning under vagueness, the challenge is to find models for
the varying levels of granularity relevant in a particular context. This is easy if there is
only one level involved, but tricky if more than one level is to be taken into account.

In the philosophical debate, efforts are frequently devoted to the aim to find the one and
only way to argue about vague properties “correctly”. This aim is not in accordance
with the point of view adopted in [Vet]. In fact there is no reason to expect that under
different circumstances similar ways of formal reasoning are appropriate.

The present paper discusses two examples: the sorites paradox, and generalised Aris-
totelian syllogisms. In both cases, we deal with roughly specified proportions of a
whole. Reasoning frameworks are already available for bothconsidered situations.
Here we are interested in the particular feature by which thetwo cases differ. For, the
difference suggests to proceed formally in totally different ways.

The paper is organised as follows. The first half of the paper is devoted to the sorites
paradox. We comment on the variety of approaches to the paradox in Section 2. We
then develop a formalism to cope with the paradox on the basisof the Logic of Ap-
proximate Entailment (LAE) [Rod]. Section 3 provides a general introduction to LAE;
in Section 4, we incorporate elements of first-order logic; and we finally explain in
Section 5 how the resulting formalism applies to the soritesparadox.

In the second part of the paper, we discuss generalised Aristotelian syllogisms. In
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Section 6, we again review existing approaches. Then we makeclear how a logic to
deal with the syllogisms should look like when based on our ideas, and we propose a
specific such logic in Section 7. How this logic applies to thesyllogisms is shown in
Section 8. Section 9 contains a summary of the paper and some concluding remarks.

2 The sorites paradox

It is amazing in how many scientific contributions the sorites paradox is dealt with. The
paradox is in fact an essential part of the debate on vagueness.

The sorites paradox is highly relevant as with practically any vague property we may
associate one of its instances. We choose here a version in accordance with the setting
of the second part of this paper.

Consider a teapot with a volume of1 litre which is leaky. Assume that when the pot
is filled with tea every second one drop of tea leaks out of it. Assume furthermore that
one drop has a volume of0.02 millilitres. In this setting, the sorites argument goes as
follows.

(A) When the leaky teapot is nearly full, so it is one second later.

(B) Filled with 48000 drops of tea, the teapot is nearly full.

Consequently,

(C) the empty teapot is nearly full.

As a paradox, it actually does not represent acceptable reasoning, but rather a failure of
reasoning; a formal framework is requested to overcome the deficiency. An abundance
of suggestions has been made.

In mathematics, degree-based approaches dominate. In fact, soon after L. A. Zadeh in
his seminal paper [Zad1] established the notion of a fuzzy set, J. A. Goguen suggested
a framework for reasoning on the basis of a continuous set of truth degrees [Gog].
Speaking in modern terminology, his inference method is based on product logic, that
is, the fuzzy logic based on the product of real numbers to interpret the conjunction
and the corresponding residuum to interpret the implication. In [HaNo], V. Novák and
P. Hájek followed similar lines, using the nowadays well established frameworks for
fuzzy logic. Further related papers include [Pao, WaVe, Pel, KeVa].

On the philosophical side, the picture is non-uniform. A solution of the sorites paradox
is a “test case” for all approaches viewing vagueness from a fundamental perspective. I
shall mention a few important references: for epistemicism, see [Wil, Ch. 7, App.]; for
supervaluationism, see [Fin]; for contextualism, see [Sha]. To understand the solution
of the sorites paradox from a philosophical viewpoint we would be required to get fa-
miliar with one of the theories of vagueness; we cannot address such a demanding task
here. We restrict to the remark that none of the mentioned approaches are compatible
with the idea of using degrees, as proposed, e.g., in [HaNo].
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In order to justify our own choice how to deal with sorites-like arguments, we must
review our approach developed in [Vet]. First to mention, there is a feature common
in the debate among philosophers which in our opinion prevents an easy solution. The
discussion is dominated by a realistic world view: it seems to be normal to assume
that everything tangible in the world is determined by something outside the influence
of humans. It is then natural to understand statements of natural language as telling
something about the world, whose existence is assumed to be decoupled from its ob-
servation. Consequently, there exist independent criteria according to which natural-
language statements are true or false. Just like in predicate logic, truth conditions are
asked for. Solutions along such lines are complicated.

We reject the idea that natural language is subject to truth conditions referring to an
independent, all-encompassing world. The reference to fixed structures is rather a fea-
ture of propositions of formal languages; formal languagesare associated with abstract
mathematical structures. Instead, we view utterances in natural language as describing
perceptional impressions. Saying, for instance, “K. is tall”, I do not express an inde-
pendently holding truth; I am not, correctly or falsely, claiming that K.’s precise size
is larger than the medium size of the people under consideration. In fact, the concept
of a precise size does not correspond to any observation but is a mathematical notion.
Instead, I express my impression that K. is taller than most people I have presently in
mind.

But observations are bound to the observer’s perspective and in particular to a certain
level of granularity. Observations have a comparative character and a comparison can
be performed in more or less detail. That is, to observe meansto classify and the
classification can be done at a scale with more or less many entries. When saying “K. is
tall”, I could have in mind simply a two-element scale, distinguishing between “tall”
and “not tall”. When saying “K. is around 180 cm tall”, I couldhave in mind a scale
distinguishing differences of 5 cm. The concept of total preciseness is a mathematical
limit construction, based on the fact that observations of agiven precision can always
be imagined to be even more precise.

From this perspective, vagueness is a relative notion; an expression is vague relative to
a finer scale than the one associated to it in a given context. Thus vagueness becomes
problematic in situations where we switch between levels ofgranularity. In the present
discussions typically one coarse level together with the finest possible one is consid-
ered: a natural language expression, like “tall”, togetherwith a mathematical structure,
like the positive reals. The challenge is then to deal with the coarse notion within the
fine structure. In the general case, the task is to define a common refinement and to
embed into it all occurring notions.

Thus in the presence of vague properties, our primary task isto deal coherently with dif-
ferent levels of granularity. Several formal approaches that correspond to this challenge
have been developed. Not all of them aim at a formal treatmentof vagues properties
but have been created for other motivations. Let us mention afew well-known research
lines.

As a model that seems to correspond to our concerns quite directly, we may consider
partitions of the universe of discourse of varying coarseness. This idea has been devel-
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oped within Z. Pawlak’s theory of rough sets [Paw1, Paw2]. The rough set model has
rarely been considered in connection with vagueness, an exception being, for instance,
[BiSt]. Further examinations in this direction seem to be worthwhile.

Another idea of how to bring together different levels of granularity makes use of de-
grees of compatibility. To this end, we first choose a set of continuously variable de-
grees, usually the real unit interval. Given an element of a coarse scale, we then specify
its compatibility with each of the elements of the fine scale by choosing an element of
the set of degrees. For instance, the coarse scale may consist of the elements “small”,
“medium-sized”, and “large”, and the fine scale may beR

+. Then, to each of the three
natural-language expressions and each positive real number, we may assign a real be-
tween0 (“totally incompatible”) and1 (“perfectly compatible”).

This is the idea underlying Zadeh’s notion of a fuzzy set [Zad1]. That is, it is the idea
on which the most popular practical approach to vagueness isbased. Reasoning has
been formalised, for instance, within t-norm based many-valued logic [HaNo]. Among
philosophers, the idea has often been considered as well, but rarely complaisantly; an
exception is [Smi].

Finally, we may mention similarity-based reasoning. We maydecide to allow the use
of notions referring to a coarse level also within a fine level, but then only in the pro-
totypical cases. Moreover, we may endow the fine structure with a similarity relation;
a non-prototypical element has then a certain resemblance with the closest prototype.
This again leads to the possibility to say that a coarse property holds to a certain degree.

For instance, the property “small” may be modelled by a crispset of positive reals,
namely those which clearly represent a small size, togetherwith a similarity relation on
the set of positive reals. Then we can assign to any precise sizer ∈ R

+ its similarity
with the set of sizes prototypical for “small”. We are again led to a fuzzy set, and
conversely, any fuzzy set may interpreted in this way; see, e.g., [DuPr1].

One framework for reasoning about similarities is due to G. Gerla [Ger]. A universe
of discourse is endowed with a fuzzy equivalence relation, and truth degrees refer to
similarities. Another approach which uses a similarity relation not on a universe of
discourse but directly on the set of propositions has been proposed by M. Ying [Ying].

The approach presented in this paper follows the ideas of similarity-based reasoning.
Our priority is a clear and well-justifiable framework, evenif, admittedly, the calculus
to which we are led is not particularly elegant. The topic of the subsequent chapters
will be approximate reasoning in the sense of Ruspini [Rus].

3 The Logic of Approximate Entailment

A framework for reasoning which allows conclusion to be drawn even if they are only
approximately correct is due to E. Ruspini [Rus]. His proposal has been elaborated in
a series of further papers from a logical point of view [DPEGG, EGGR, GoRo]. In
particular, the Logic of Approximate Entailment, or LAE forshort, was introduced in
R. O. Rodrı́guez’ thesis [Rod]. Our aim is to demonstrate that LAE is able to cope with
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the vagueness of natural-language expressions.

LAE makes use of a continuous set of degrees, just like fuzzy logic. Unlike fuzzy
logic, LAE does not suffer from conceptual arbitrariness; all what LAE requires is
(the generalisation of) a metric space.LAE is based on the notion of similarity, just
like the approach of Ying. Unlike Ying’s logic, however, similarity refers in LAE

to the underlying universe of discourse and no special decision is needed concerning
compound propositions.

In this section, we shall shortly specifyLAE. Our universe of discourse is a non-empty
setW , representing the variety of possible situations which we are going to consider.
The elements ofW are commonly calledpossible worlds. Properties will be modelled
by (crisp) subsets ofW .

In classical propositional logic, the consequence relation between propositions is re-
flected by the subsethood relation. In approximate reasoning, we deal with the case
that propositions imply each other only approximately; accordingly, a mean is pro-
vided to express that the subsethood relation holds only to acertain degree. Namely,
the set of worldsW is endowed with a metric, or more generally, with a similarity
relations. We assume that a given world may more or less resemble to another one;s
maps pairs of worlds to a number between0 and1 and expresses in this way a degree
of similarity between them.

For the sequel, let[0, 1] be the real unit interval and let⊙ : [0, 1]2 → [0, 1] be a fixed
t-norm.

Definition 3.1. LetW be any non-empty set. A functions : W ×W → [0, 1] is called
asimilarity relationonW w.r.t.⊙ if, for anyu, v, w ∈W ,

(S1) s(u, u) = 1 (reflexivity),

(S2) s(u, v) = 1 impliesu = v (separability),

(S3) s(u, v) = s(v, u) (symmetry),

(S4) s(u, v)⊙ s(v, w) ≤ s(u,w) (⊙-transitivity).

In this case, we call(W, s) a similarity space.

The value1 is used exactly in case of coincidence, as expressed by the reflexivity and
separability ofs. Furthermore, similarity is supposed to be a symmetric notion. Finally,
⊙-transitivity can be viewed as a triangle inequality, wherethe connecting operation is
allowed to be any prior chosen t-norm.

One may think of a similarity space as a generalised metric space. Indeed, let(W, s)
be a similarity space and putd(u, v) = 1− s(u, v) for u, v ∈W . Then (S4) translates
to d(u,w) ≤ d(u, v) ⊕ d(v, w), where⊕ is the t-conorm associated to⊙. If ⊙ is
the Łukasiewicz t-norm, then the triangle inequality in theusual sense holds andd is
indeed a metric, which is bounded by1. Furthermore, if⊙ is the product t-norm,d is
isomorphic to a metric as well, which in this case is unbounded, havingR+ ∪ {∞} as
its range.
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Propositions will be modelled classically: by sets of possible worlds, that is, by subsets
of W . ForA ⊆W andt ∈ [0, 1] we define

Ut(A) = {w ∈W : s(w, a) ≥ t for somea ∈ A}

to be thet-neighbourhood ofA. Let nowA,B ⊆W model the two propositionsϕ and
ψ, respectively. Then we say thatϕ approximately impliesψ to the degreet if

A ⊆ Ut(B).

The propositional logicLAE is defined model-theoretically as follows. For an axioma-
tisation ofLAE, we refer to [Rod, EGRV].

Definition 3.2. Thepropositional formulasof LAE are built up from a countable set
of variablesϕ1, . . . and theconstants⊥,⊤ by means of the binary operators∧ and∨
and the unary operator¬. A conditional formulaof LAE is a triple consisting of two
propositional formulasϕ andψ as well as a valuet ∈ [0, 1], denoted by

ϕ
t
⇒ ψ.

Let (W, s) be a similarity space. Anevaluationfor LAE is a structure-preserving map-
ping e from the set of propositional formulas to the Boolean algebra of subsets ofW .

We say that a conditional formulaϕ
t
⇒ ψ is satisfiedif

e(ϕ) ⊆ Ut(e(ψ)).

A theoryof LAE is a set of conditional formulas. We say that a theoryT semantically

entailsa conditional formulaϕ
t
⇒ ψ if any evaluation satisfying all elements ofT also

satisfiesϕ
t
⇒ ψ.

Aiming at a formal treatment of vague properties, we will in the next section extend
the setting introduced so far.

4 Logic of Approximate Entailment
for a first-order structure

The Logic of Approximate Entailment has been developed as a propositional logic,
propositions being modelled by subsets of a similarity space (W, s). Heading towards
applications, we next consider the case that our set of worlds possesses a first-order
structure. We wish to formalise statements of the form that first-order propositions
imply other such propositions only approximately.

We note that first-order logic for metric spaces has been studied in recent years. The
concerns are somewhat different, but the setting has some resemblance to ours. See
[BBHU] and the references given there.
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Our idea is the following. Letϕ(x) andψ(x) be formulas of a first-order language
with the only free variablex. We would like to express thatϕ(x) impliesψ(x) ap-
proximately. An interpretation being given,ϕ(x) andψ(x) can be identified with two
subsetsA andB of the universe. Accordingly,

ϕ(x)
t
⇒ ψ(x)

will be defined to hold exactly ifA is contained inB to the degreet in the sense of
LAE. This in turn means that

there is ay ∈ Ut(x) such thatϕ(x) → ψ(y), (1)

where→ is the usual implication of classical propositional logic.

Also constants will be defined to be flexible in meaning. Namely, let c be a constant;
then

ϕ(c)
t
⇒ ψ(c)

will be defined to mean

there is ay ∈ Ut(c) such thatϕ(c) → ψ(y). (2)

For the rest of the section, let us fix a triple(W, s,L); here,(W, s) is a similarity space
andL is a first-order language not containing constants.

Our calculus will be associated with(W, s,L). Namely, we consider theories in the
languageL which is to be interpreted in a model with the base setW . To this end, we
add constants̄w for eachw ∈W , interpreted byw itself. Moreover, we will add binary
relationsRt for eacht ∈ [0, 1], interpreted by those pairsv, w ∈ W that are similar to
the degree at leastt.

The structured Logic of Approximate Entailmentassociated with(W, s,L), or sLAE
for short, is defined as follows.

Definition 4.1. Let Lc be the result of adding toL a constant̄w for eachw ∈ W and
additional binary relationsRt for eacht ∈ [0, 1].

An ordinary formulaof sLAE is a formula ofLc. A conditional formulaof sLAE is a
triple consisting of a pairϕ, ψ of ordinary formulas and a numbert ∈ [0, 1], denoted
by

ϕ
t
⇒ ψ.

By a formula, we mean either an ordinary or a conditional formula.

An interpretation of an ordinary formula in a model under an assignment of the free
variables is defined as usual, but such that the following holds. The model’s base set is
W ; forw ∈W , the constant̄w is interpreted byw; for v, w ∈ W , Rt(v̄, w̄) is satisfied
if and only if s(v, w) ≥ t.

Let furthermoreϕ andψ(d1, . . . , dn) be ordinary formulas, whered1, . . . , dn, n ≥ 0,
are exactly all the constants and free variables of the latter formula, and lett ∈ [0, 1].

Thenϕ
t
⇒ ψ(d1, . . . , dn) is satisfied if so is the ordinary formula

ϕ→ ∃y1 . . . ∃yn(Rt(y1, d1) ∧ . . . ∧Rt(yn, dn) ∧ ψ(y1, . . . , yn)), (3)
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wherey1, . . . , yn are variables distinct from everyd1, . . . , dn. In casen = 0, (3) is
understood asϕ→ ψ.

A theoryis a set of formulas ofsLAE. Semantic entailmentof a formula by a theory is
defined as expected.

The axiomatisation ofsLAE does not cause difficulties. The only peculiarity is the fact
that the elements of the base set are requested to be in one-to-one correspondence with
the constants. This is not a problem in the finite case; in the infinite case, however, an
infinitary rule must be assumed.

Definition 4.2. Axioms and rules ofsLAE are those of first-order logic forLc as well
as the following ones.

(L1) v̄ 6= w̄, wherev, w ∈ W such thatv 6= w

(L2a) Rt(v̄, w̄), wherev, w ∈ W such thats(v, w) ≥ t,

(L2b) ¬Rt(v̄, w̄), wherev, w ∈ W such thats(v, w) < t

(L3)
ϕ(w̄) for all w ∈ W

∀xϕ(x)

(L4a)
ϕ

t
⇒ ψ(d1, . . . , dn)

ϕ→ ∃y1 . . . ∃yn(Rt(y1, d1) ∧ . . . ∧Rt(yn, dn) ∧ ψ(y1, . . . , yn))
,

(L4b)
ϕ→ ∃y1 . . .∃yn(Rt(y1, d1) ∧ . . . ∧Rt(yn, dn) ∧ ψ(y1, . . . , yn))

ϕ
t
⇒ ψ(d1, . . . , dn)

,

whered1, . . . dn are the free variables and the constants occurring inψ(d1, . . . , dn)

Provability of a formula from a theory is defined as expected.

We have the following completeness theorem.

Theorem 4.3. Let T be a consistent theory ofsLAE, and letα be formula ofsLAE.
ThenT provesα if and only ifT semantically entailsα.

Proof. The soundness is clear; this is the “only if” part.

By rules (L4a) and (L4b), we may assume that a theory consistsof ordinary formu-
las only. Indeed, as these rules are the only ones where conditional formulas appear,
we may assume that conditional formulas do not appear in proofs except (L4a) at the
beginning and (L4b) at the end.

Let T not proveα. ThenT ∪{¬α} is consistent. We may extendT ∪{¬α} to contain
a set of witnesses, which due to rule (L3) may all be chosen asw̄ for somew ∈ W .
ThusT ∪ {¬α} has a model each of whose elements interprets a constant. By rule
(L1), the base set is actually in a one-to-one correspondence withW . By rules (L2a)
and (L2b), theRt, t ∈ [0, 1], correspond to the similarity relations in the prescribed
way. The proof of the “if” part is complete.
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5 The logicsLAE for the sorites paradox

In which sense can we expect a “solution” of the sorites paradox by formal means?

Let us note first that the sentences (A), (B), (C) constituting the paradox all refer to one
and the same object: a partially filled teapot. However, someparts refer to a coarse level
of granularity and some to a fine level. In particular, “the teapot is nearly full” and “the
teapot is empty” are statements on the coarse level; “the teapot contains48000 drops of
tea” and “the teapot contains one drop less than before” refer to the fine level. In other
words, we use for the same thing two different models. According to the coarse model,
the teapot can be, say, empty, well filled, nearly full, or full; only a few distinctions are
made. In contrast, the fine model distinguishes between 50 001 situations, taking into
account differences of filling degrees that are as small as the volume of a single drop
of liquid.

The sequence (A)–(C) shows that a mixture of arguments referring to two different
models can lead to confusion. The sorites paradox is in fact agreat illustration of the
fact that a coherent argumentation needs to be conducted on asingle level of granular-
ity. An entanglement of different levels of granularities is prone to inconsistency.

To reveal where the argument (A)–(C) is corrupted, we must ensure that that all state-
ments refer to a single model, namely a sufficiently fine-grained one. If necessary,
properties must be redefined, further differentiated, or made compatible with the cho-
sen model in another way. Reasoning with regard to a single model cannot be paradox-
ical, provided that the arguments are sound.

Thus all we have to do is to determine a fine-grained model and apply our calculus
sLAE to it. The apparent contradiction will necessarily disappear. In this sense we can
expect a solution of the paradox. We note that any calculus similar to sLAE could be
taken as well.

As our set of worlds we takeG = {0, 1, 2, . . . , 50000}; eachn ∈ G represents the
number of drops contained in the teapot under consideration, or equivalently the pro-
portion n

50000 of liquid within the total volume of the teapot. Furthermore, we define

s(m,n) =
min{m,n}

max{m,n}
(4)

for each two distinct valuesm,n ∈ G and s(n, n) = 1 for n ∈ G. Then(G, s)
is a similarity space,s being a similarity relation with respect to the product t-norm.
Furthermore, we endowG with the functionS : G → G which maps eachn < 50000
to n+ 1 and50000 to itself.

We next need to take the property “nearly full” into consideration. We deal with this
coarse notion on the fine level by associating with it a set of prototypes. LetH be a
unary relation;H(n) is to express that filled withn drops of tea the teapot is nearly
full. H is assumed to be chosen such that for anyn fulfilling H(n), we can clearly say
that a teapot filled withn drops is nearly full.

We note that there is no canonical choice for the interpretation ofH ; theset of proto-
types of a coarse-grained notion does not exist. The property “nearly full” refers to a
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coarser model than the one we deal with, so that it does not make sense to associate
a specific crisp subset to it. Actually, we will not do so – in the sense that we leave
open howH is interpreted. We do assume thatH(48000) is true, nothing else; so any
interpretation ofH such that48000 is among the elements for whichH holds will do.

Let us now ask which conditional formulas withH(48000) as its antecedentTSR can
prove. We haveH(Sn) → Rs(n,Sn)(n, Sn) ∧H(Sn), hence

H(Sn) → ∃m(Rs(n,Sn)(n,m) ∧H(m)),

that is, sinces(n, Sn) = n
n+1 ,

H(Sn)
n

n+1

⇒ H(n);

for example,H(48000)
0.999979

⇒ H(47999). Similarly, we may relateH(48000) to
H(1) or evenH(0):

H(48000)
0.00002
⇒ H(1),

H(48000)
0
⇒ H(0).

As expected, reasoning in this framework is no longer paradoxical.

Let us conclude the first half of this paper with some additional remarks. Let us point
out how our approach to vagueness helps to explain why we are taken aback by the
sorites paradox, that is, why we actually believe that thereis contradiction to be re-
solved.

A natural-language utterance evokes a picture in our imagination; this picture is sim-
ple, containing only those details that matter. In general,we use the coarsest possible
model to comprehend facts. A statement like “the pot is nearly full” is not true or false
depending on a specific proportion of the liquid in the total volume, but represents a
rough picture. Assuming that a teapot is nearly full, we do not figure out the precise
bounds of filling degrees between which the notion “nearly full” is correctly applicable
and conclude that the actual filling degree is within these bounds. We rather imagine a
teapot with an amount of tea which gives rise to the statement“nearly full”, as opposed
to, say, “empty” or “well filled” on the one hand and “full” on the other hand. Our
model in use is a coarse one, distinguishing between, say, four cases.

We further imagine that by the removal of a single drop the picture of a nearly full
teapot remains the same. It is clear to us that although we canobserve that one drop
leaks out of the teapot we cannot observe the resulting difference. It follows that we
agree with statement (A). When hearing the second part of (A), we might certainly
extend our model – but only by one element, hence not significantly: we now deal with
the properties, say, “empty”, “well filled”, “nearly full minus one drop”, “nearly full”
and “full”. Furthermore,48000 is a number that is smaller but quite close to50000;
accordingly it seems appropriate to say that the teapot is nearly full when containing
this number of drops. Hence we agree with (B) as well. Finally, the two coarse no-
tions “empty” and “nearly full” are distinct. This fact given, we disagree with (C).
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We summarise that when thinking through the three sentencesseparately, we are not
suggested to use any other model than a coarse one. On the contrary, whenever notions
like “nearly full” occur, which are not usable on the fine level, we are bound to stay at
the coarse level.

We are taken aback by the paradox because we ignore this restriction to the coarse level
when putting (A) and (B) together. (A) and (B) tell us that theteapot is in a certain state
and that this state is preserved after a second. Thus we reason that this state is preserved
forever and we make the surprising conclusion that “empty” and “nearly full” actually
coincide. Having agreed with (A) at the coarse level, we apparently do not notice that
we switch to the fine level: the repeated application of (A) works only in a fine-grained
model, as48001 different filling degrees are involved. Consequently, we donot notice
the problem of the argumentation: the filling degree is specified by the expression
“nearly full” and thus refers exclusively to a coarse level.In short, when concluding
(C) from (A) and (B), we ignore that “nearly full” is a notion that at the relevant fine
level is simply not specified.

At last, we may ask for a reason of this ignorance. This question is certainly inappro-
priate; we have to accept it as a fact; still, we may wonder under which circumstances
we are led to confusion. We note that the conclusion (C) from (A) and (B) could
indeed correctly be drawn with any other property than “nearly full”, provided it is
compatible with the relevant modelG. For instance, when we replace “nearly full” by
“red”, the paradoxical nature of the argument disappears; our set of world would then
beG × {red, not red}. Thus the point seems to be that when drawing the conclusion
(C), we assume the teapot to be in a specific state and we do not care about the fact that
this state is characterised in a way not compatible with the refined model on which our
argument relies.

6 Generalised Aristotelian syllogisms

We now turn to the second topic of this paper. We continue discussing the formal
treatment of expressions specifying proportions in a roughway. However, we will do
so in a different context.

The Aristotelian syllogisms represent a particular kind ofreasoning, which, although
originating from the fourth century B.C., reminds in a remarkable way of modern logic.
An example is the following:

NoX areM All Y areM
NoX areY

(5)

HereM , X , Y are to be understood as properties of the elements of a universe of
discourse. The proposition “NoX areM ” is to be understood as “No element with
propertyX has propertyM ”, and similarly for the remaining two propositions.

As a natural framework, we may choose an abstract set endowedwith one-placed re-
lations. To formalise a syllogism, it is then enough to consider first-order logic, the
language consisting of unary relations. See, e.g., [CCM].
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Generalised Aristotelian syllogisms have been consideredin the work of A. De Morgan
[Mor]. The idea is to deal not only with the “particular” and the “universal”, that
is, with single or all elements of some universe, but also with sets whose extent is
characterised by natural-language expressions like “few”, “many”, or similarly. In
other words, not only existential and universal quantification is considered, but also
what is called intermediate quantification. An example is the following, which is cited,
like the other syllogisms mentioned in this paper, from [Nov2]:

MostX areM All M areY
ManyX areY

(6)

The attribute “many” denotes a roughly quantified proportion and thus may be con-
sidered as inherently vague. Vagueness concerns at least two levels of granularity and
then usually a rough and a fine one. Here, to argue at the fine level means that we
take into account every single element of the set under consideration; just like in the
case discussed in the previous sections, it means to deal with exact proportions. At
the coarse level, in contrast, we just make the distinction between, say, “none”, “few”,
“many”, “most”, and “all”.

Statements like those in (6) have been considered in a formalsetting by many authors.
Zadeh develops in [Zad2] a framework to deal with expressions of the type “few”,
“many”, or the like; his approach is based on fuzzy sets. The line was taken up by
Novák, who has developed the appropriate logical framework [Nov2]. His Theory
of Intermediate Quantifiers extends Fuzzy Type Theory, a generalisation of (classical)
type theory [Nov1]. Furthermore, P. L. Peterson’s monograph [Pet] is devoted to the
topic.

A completely different approach relies on probability theory. This might sound sur-
prising, but has led to reasonable results. In fact, a statement like “mostX areM ”
may be read as “the probability that an arbitrary (i.e. randomly chosen)M is anX is
high”. The paper [DGMP] is based on this idea. To cope with rough specifications like
“high”, the authors work with intervals of probabilities. Furthermore, the work of D.
G. Schwartz on the topic is inspired by the probabilistic approach [Sch1, Sch2, Sch3].
The calculus presented in [Sch2] is remarkable in that no explicit probability values
appear.

Here, we present an approach which is characterised by its simplicity and scantness.
Vagueness concerns different levels of granularity; but not in all arguments involving
vague properties other levels than the coarse one are considered. The Aristotelian syl-
logisms provide easy examples of reasoning on a single coarse level. We may check,
for instance, that the inference (6) does not refer to singleelements of the universe of
discourse but just to roughly described subsets.

We suggest a calculus referring only to one coarse level. Dealing with a single model,
we just proceed according to common mathematical practice.If our calculus looks
uncommon, the reason might be that we are, as mathematicians, accustomed to arguing
with regard to the finest possible level.
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7 A logic for generalised Aristotelian syllogisms

Our abstract object under consideration is an algebra of finite sets. We use the com-
mon first-order language describing relationships betweensets, omitting however a top
element:⊆, ∩, ∪, \, ∅. We furthermore deal with the size of sets; we use the binary
relation∼ to denote equal cardinalities. We finally use specialised versions of the sub-
sethood relation, expressing not only subsethood but also roughly the proportion of a

subset in the set of reference:
few

⊂,
many

⊂ ,
most

⊂ ,
n.a.

⊂. The formulas

A
few

⊂ B, A
many

⊂ B, A
most

⊂ B, A
n.a.

⊂ B

mean thatA ⊆ B and the proportion ofA within B is quite small but not zero, consid-
erably large, larger than a half, or very high but not one, respectively. Referring to the
informal language of (5) and (6), the statements “A few / Many/ Most / Nearly allB

areA” are expressed byA ∩ B
few

⊂ B, A ∩ B
many

⊂ B, A ∩ B
most

⊂ B, orA ∩ B
n.a.

⊂ B,
respectively.

We next proceed as usual in mathematics: we assemble the relationships holding be-
tween the chosen predicates. Recall that we wish to stay on the coarse level; we will

not consider the set under consideration elementwise and define relations like
few

⊂ by
fuzzy percentages or similarly. We will rather treat these relations in the same way as
when we reason with them; indeed, when reasoning with expressions like “a few”, we
do not calculate percentages.

As we will model certain expressions of natural language, our axioms below do not
have a definite character; we do not claim that these axioms are the only acceptable
ones. They represent a specific understanding of the involved notions, and if under-
stood differently they would have to be formalised differently. The possible imperfect-
ness of our axioms lies in the nature of the representation ofnatural language by formal
means.

When formulating axioms to characterise properties expressed in natural language, we
focus on the typical circumstances under which expressionsare used; we consider the
picture which comes spontaneously to our mind when we think about the expressions
to be formalised. Rather than checking systematically all possible cases involved, we
choose our axioms on the basis of prototypical situations. We note that it would actually
be problematic to agree with some generalised Aristoteliansyllogisms if validity was
checked in a systematic way rather than according to typicalcases. For instance, in (6)
X is not meant to represent a very small set of individuals. Moreover, other syllogisms
turn out to be incorrect if the involved sets are empty.

Let us now comment on the basic decisions underlying the axioms below. The expres-
sion “a few” represents a small but non-zero portion of a set;we accept then any of
its non-empty subsets also as small. The expression “many” may be formalised in a
“pragmatic” or “semantic” way; that is, we may reflect the wayin which the expres-
sion “many” is actively used or the way we would answer to the question if there are
“many”. In accordance with the example (6), we will chose the“semantic” interpre-

tation; that is, the relationA
many

⊂ B will be stable under an enlargement ofA within
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B. Furthermore, “many” represents a strictly larger proportion than “a few”; and more
than a half elements represent always “many” elements. Finally, a subset is defined to
contain “nearly all” elements exactly if its complement contains “a few” elements.

We furthermore have to decide if, given a set, subsets of a specific category should
always exist or not. It does not make sense to postulate the existence of a subset con-
taining, e.g., “many” elements for small sets of reference.We restrict to the following
requirement: if some proper subset of a set represents “many” element, then also a
subset with “a few” elements exists.

We specify now the first-orderTheory of Syllogistic Reasoning, orTSR for short. Re-
call that generalised Boolean algebras are sectionally complemented distributive lat-
tices [Gra]; they differ from Boolean algebras only in that the top element is omitted.

Definition 7.1. The language ofTSR consists of the binary relations⊆,
few

⊂,
many

⊂ ,
most

⊂ ,
n.a.

⊂ as
well as∼, the binary functions∩,∪, \, and the constant∅. TSR contains the theory of
generalised Boolean algebras, written in the language⊆,∩,∪, \, ∅, and the following
axioms (where the universal quantification over the free variables is understood).

Axioms for size:

(S1) A ∼ A (S2) (A ∼ B) → (B ∼ A)

(S3) (A ∼ B) ∧ (B ∼ C) → (A ∼ C)

(S4) (A 4 B) ∨ (B 4 A) (S5) (A ∼ ∅) ↔ (A = ∅)

(S6) (A ∼ B) ∧ (A ⊆ B) → (A = B)

(S7) (A ∼ C) ∧ (B ∼ D) ∧ (A ∩B = ∅) ∧ (C ∩D = ∅) → (A ∪B ∼ C ∪D)

Here,A 4 B is an abbreviation of∃C((A ∼ C) ∧ (C ⊆ B)).

General axioms for proportions:

(P1) (A
⋆
⊂ B) → (∅ ⊂ A) ∧ (A ⊆ B)

(P2) (A
⋆
⊂ C) ∧ (B ⊆ C) ∧ (A ∼ B) → (B

⋆
⊂ C)

Here,A ⊂ B is an abbreviation of(A ⊆ B) ∧ ¬(A = B). Moreover,
⋆
⊂ is to be

uniformly replaced by one of
few

⊂,
many

⊂ ,
most

⊂ ,
n.a.

⊂.

Axioms for “few”:

(few1) (∅ ⊂ A) ∧ (A ⊆ B) ∧ (B
few

⊂ C) → (A
few

⊂ C)

(few2) (A
few

⊂ B) ∧ (B ⊆ C) → (A
few

⊂ C)

Axioms for “many”:

(many1) (A
many

⊂ C) ∧ (A ⊆ B) ∧ (B ⊆ C) → (B
many

⊂ C)
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(many2) (A
many

⊂ C) ∧ (A ⊆ B) ∧ (B ⊆ C) → (A
many

⊂ B)

(many3) (A
many

⊂ B) → ¬(A
few

⊂ B)

(many4) (B
many

⊂ C) ∧ (B ⊂ C) → ∃A((A ⊂ B) ∧ (A
few

⊂ C))

Axioms for “most”:

(most1) (A
most

⊂ B) ↔ (A ⊆ B) ∧ (B\A ≺ A)

(most2) (A
most

⊂ B) → (A
many

⊂ B)

Here,A ≺ B is an abbreviation of∃C((A ∼ C) ∧ (C ⊂ B)).

Axioms for “nearly all”:

(n.a.) (A
n.a.

⊂ B) ↔ (B\A
few

⊂ B)

We are led to the following models.

Definition 7.2. An SR-algebrais a structure(S;∧,∨,−, 0,↼⇁,
few

<,
many

< ,
most

<,
n.a.

<) subject
to the following requirements.

(SR1) (S;∧,∨,−, 0) is a generalised Boolean algebra such that eachA ∈ S is the
supremum of finitely many atoms. We denote bycardA the number of atoms
below anA ∈ S.

(SR2) ForA,B ∈ S, A ↼⇁ B holds if and only ifcardA = cardB.

(SR3) LetB ∈ S. Letn = cardB, and leth be smallest such that2 · h > n. Then we
have for anyA ≤ B:

(i) A
most

< B if and only if cardA ≥ h.

(ii) There is aj such that1 ≤ j ≤ h and we have:

A
many

< B if and only if cardA ≥ j.

If n ≥ 2, thenj is such that1 < j ≤ h.

(iii) If n > 2, there is ani such that1 ≤ i < j and we have:

A
few

< B if and only if 1 ≤ cardA ≤ i.

If n ≤ 2, thenA
few

< B impliescardA = 1 andn = 2.

(iv) A
n.a.

< B if and only ifB −A
few

< B.

(SR4) LetA,B,C ∈ S such that∅ ⊂ A ⊆ B ⊆ C. Then:
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(i) A
few

< B orB
few

< C impliesA
few

< C.

(ii) A
many

< C impliesA
many

< B andB
many

< C.

Lemma 7.3. Each SR-algebra is a model ofTSR, where⊆,
few

⊂,
many

⊂ ,
most

⊂ ,
n.a.

⊂, ∼, ∩, ∪, \,

∅ are interpreted by≤,
few

<,
many

< ,
most

<,
n.a.

<,↼⇁, ∧, ∨, −, 0, respectively.

We have the following completeness theorem.

Theorem 7.4.LetT be a consistent finite theory extendingTSR and letϕ be a formula.
ThenT provesϕ if and only if any interpretation in an SR-algebra satisfyingT satisfies
ϕ.

Proof. The “only if” part is clear.

To see the “if” part, assume thatT does not proveϕ. Let (S;⊆,
few

⊂,
many

⊂ ,
most

⊂ ,
n.a.

⊂,∼
,∩,∪, \, ∅) be a finite model ofT ∪ {¬ϕ}. By assumption(S;∩,∪, \, ∅) is a gen-
eralised Boolean algebra. (SR1) is proved. We may assume that S is a collection of
subsets of a finite setX . W.l.o.g. we may furthermore assume thatS is actually the
power set ofX .

LetA,B ∈ S. We next prove (SR2). LetA andB be of equal cardinality. If both are
empty,A ∼ B by (S1). Ifa ∈ A andb ∈ B, we have{a} ∼ {b}, because otherwise
(S4) would imply{a} ∼ ∅ or {b} ∼ ∅, in contradiction to (S5). Hence for non-empty
A andB, A ∼ B follows from (S7). For the converse direction, letA be of strictly
smaller size thanB. LetC ⊂ B be of the same cardinality likeA. ThenA ∼ C. By
(S2) and (S3),A ∼ B would implyC ∼ B, in contradiction to (S6).

We now turn to (SR3). Fix someB ∈ S, and letA ⊆ B. If B = ∅, we have¬(A
⋆
⊂ B)

by (P1), in accordance with (SR3). Let us assume thatB is non-empty.

By (P2), the relationsA
⋆
⊂ B depend only on the cardinality ofA. Let n = cardB,

and leth be minimal such that2 · h > n. Then the subsets ofB of size≥ h are those
containing a strict majority of elements; hence (SR3)(i) follows from (most1).

Furthermore, by (most2), (many1), and (P1) there is a1 ≤ j ≤ h such that subsets of
B of size≥ j contain “many” elements; this is the first half of (SR3)(ii).If B is at least
two-element andj = 1, B would contain a proper one-element subset with “many”
elements, in contradiction to (many4) and (P1). Soj > 1 in this case, and (SR3)(ii)
follows.

Let B be at least three-element. ThenB contains a proper subset with “many” ele-
ments. By (many4), (many3), and (few1), the first half of (SR3)(iii) follows. Let B at

most two-element and assumeA
few

⊂ B. By (P1),A andB are non-empty. By (most1)

and (most2),B
many

⊂ B, and by (many3),¬(B
few

⊂ B). Hence∅ ⊂ A ⊂ B, that is,A is
one-element andB is two-element. (SR3)(iii) is shown.

Finally, (SR3)(iv) is clear by (n.a.). So (SR3) is proved.

(SR4)(i) holds by (few1) and (few2). (SR4)(ii) holds by (many1) and (many2).
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ThusS is an SR-algebra, and the proof is complete.

Our calculus refers to an algebra of subsets, endowed with the usual set-theoretical
operations as well as binary relations to compare cardinalities. The same is also true
for most other approaches, with the only difference that sometimes a fuzzified version
of the relations is used. So how does our calculus actually differ from other ones?

Usually, the universe of discourse is considered in its fullextent, and proportions are
modelled numerically. In contrast, SR-algebras provide coarse-grained models of a the-
ory under consideration, and proportions are dealt with in aqualitative way only. SR-
algebras are isomorphic to algebras of subsets; when considered as such, their atoms

contain in general, however, more than one element. Moreover, a relation like
many

⊂ is

not assigned a definite range of proportions;
many

⊂ is only characterised by the properties
that we think it should fulfil. SR-algebras should be thoughtof as models which do not
involve more structure than necessary.

Consider the following simple example; cf. (6). LetM be the set of flying animal
species,X the set of bird species, andY the set of animal species with a maximal
weight of under 20 kg. Let us describe the inclusions betweenthese sets by the the-

ory T = {M ∩ X
most

⊂ X, M ⊆ Y }, expressing that “most bird species can fly” and
“flying species are not heavier than 20 kg”. An SR-algebra modellingT consists, for
instance, of subsets of{a, b, c, d, e, f}, whereM = {a, b, c, e}, X = {a, b, c, d},
Y = {a, b, c, e, f}. Each atoma, . . . , g represents a smallest unit relevant for reason-
ing; each atom represents a set of equal cardinality which ishowever indeterminate.
This model is particularly coarse-grained. But we would hardly consider a finer parti-
tion of the set of animal species to draw the conclusion in (6): “many bird species are
species with a maximal weight of under 20 kg.”

8 TSR applied to generalised Aristotelian syllogisms

It is straightforward how generalised Aristotelian syllogisms are dealt with in the present
framework. We show the details for the example (6) as well as for the following two:

No Y areM All X areM
MostX are notY

Nearly allM areY All M areX
SomeX are notY

The translation of statements occurring in generalised syllogisms is in most cases
straightforward. However, sometimes small details have tobe taken into account which
are essential for the validity of the argument. The shown examples are, however, un-
critical in this respect. We just note that “someX” is to be understood as “at least
one individual with propertyX”. Moreover, the sets appearing in syllogisms are gen-
erally assumed to be non-empty; here it is necessary in one case to add this condition
explicitly.
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Theorem 8.1. The following rules are derivable fromTSR:

(AS1)
M ∩X

most

⊂ X M ⊆ Y

Y ∩X
many

⊂ X
(AS2)

M ∩ Y = ∅ X ⊆M X 6= ∅

X\Y
most

⊂ X

(AS3)
M ∩ Y

n.a.

⊂M M ⊆ X

X\Y 6= ∅

Proof. (AS1) FromM∩X
most

⊂ X we deriveM∩X
many

⊂ X . FromM∩X ⊆ Y ∩X ⊆ X

it follows Y ∩X
many

⊂ X .

(AS2) We haveX ∩ Y ⊆M ∩ Y = ∅ and consequentlyX\Y = X . FromX 6= ∅ we

deriveX
most

⊂ X . The claim follows.

(AS3)M ∩ Y
n.a.

⊂ M is equivalent toM\Y
few

⊂ M . It follows M\Y 6= ∅. By M ⊆ X ,
we getX\Y 6= ∅.

We conclude by presenting one example of a syllogism where the translation toTSR
does need special attention. Recall that we understand “nearly all” as the complement
of a small non-zero proportion. On this fact the validity of (AS3) relies. Consider,
however, the following syllogism:

No Y areM All X areM
Nearly allX are notY

This syllogism is not compatible with axiom (n.a.). In fact,M ∩ Y = ∅ andX ⊆ M

impliesX\Y = X , meaning that “AllX are notY ”. It furthermore follows¬(X
n.a.

⊂ X)

and thus¬(X\Y
n.a.

⊂ X), which is the negation of “Nearly allX are notY ”.

However, the translation to the language ofTSR can be chosen as follows.

Theorem 8.2. The following rule is derivable fromTSR:

(AS4)
M ∩ Y = ∅ X ⊆M ∃Z(Z

many

⊂ X)

∃Z((Z
n.a.

⊂ X) ∧ (Y ∩ Z = ∅))

Proof. From the assumptions,TSR provesX ∩ Y = ∅. Furthermore, from∃Z(Z
many

⊂

X) it follows ∃Z(Z
few

⊂ X) and consequently∃Z(Z
n.a.

⊂ X). The claim follows.

9 Conclusion

We have addressed the problem how to reason formally in the presence of vagueness.
In search of general guidelines that the formal treatment ofvague properties should
follow, we are faced, on the one hand, with the conceptual deficiencies of those ap-
proaches that are either chosen ad hoc to satisfy specific practical needs or guided by
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formal considerations without reference to the actual issue. On the other hand, we do
not seriously expect that any of the approaches that deal with vagueness in foundational
respects can be of any help. Consequently, new ways have to beexplored, revealing
new relevant aspects rather than insisting on conventionalpositions. Here, we object to
one feature in the discussion about vagueness that calls fora revision: the opinion that
it is a serious aim to establish the unique and “correct” way to reason about vagueness.
We argue, in contrast, that the aim is appropriateness and not uniqueness; solutions
might be individual and imperfect, but can still be appropriate.

We have given a pair of two examples showing that the diversity of formalisms dealing
with vagueness need not imply an inconsistent view of vagueness. We rely on the
approach called perceptionalism in [Vet]. We argue that vagueness is a challenge when
reasoning refers to different levels of granularity.

In cases where two levels are to be merged, degree-based approaches are acceptable.
An example is the well-known sorites paradox. We have proposed a particular formal-
ism that uses truth degrees and is based on a comparatively clear concept. Namely, a
modification of the Logic of Approximate Entailment is presented as an alternative to
fuzzy logic.

In cases where only one level of granularity is involved we can proceed along com-
mon principles of mathematical modelling. We have illustrated how to avoid many-
valuedness in such cases. The generalised Aristotelian syllogisms served as the exam-
ple.

Both reasoning frameworks have formally nothing in common,still they are in line
with a coherent interpretation of vagueness in natural language. Accepting this inter-
pretation, much of vain effort to bring onto a common line what is different in nature
could be avoided.
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