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Abstract

It is well-known that the representation of several classesof residuated lat-
tices involves lattice-ordered groups. An often applicable method to deter-
mine the representing group (or groups) from a residuated lattice is based
on partial algebras: the monoidal operation is restricted to those pairs which
fulfil a certain extremality condition, and else left undefined. The subsequent
construction applied to the partial algebra is easy, transparent, and leads di-
rectly to the structure needed for representation.

In this paper, we consider subreducts of residuated lattices, the monoidal and
the meet operation being dropped: the resulting algebras are pseudo-BCK
semilattices. Assuming divisibility, we can pass on to partial algebras also in
this case. To reconstruct the underlying group structure from this partial alge-
bra, if applicable, is again straightforward. We demonstrate the elegancy of
this method for two classes of pseudo-BCK semilattices: semilinear divisible
pseudo-BCK algebras and cone algebras.

Keywords:Pseudo-BCK algebras, non-commutative fuzzy logics, partially
ordered groups.

1 Introduction

In the area of fuzzy logics, the interest in residuated lattices has considerably in-
creased during the last years. Indeed, both fields are closely related; the algebraic
semantics of numerous fuzzy logics is based on a subvariety of the variety of resid-
uated lattices. The latter reflect the basic properties fulfilled by a set of propositions
considered in the framework of a fuzzy logic: the lattice order models the relative
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strength of propositions, the monoidal operation models the conjunction of two
propositions, and the implication represents the minimal additional information
needed to infer a proposition from another one.

In this paper, we are concerned with a special technique to represent the implica-
tional subreducts of residuated lattices. The technique rests upon the close rela-
tionship between residuated lattices andℓ- (lattice-ordered) groups.

Recall that for several classes of the residuated lattices,theorems exist according
to which the algebras arise from anℓ-group, or from a collection ofℓ-groups, in a
specific way. For instance, a convex subset of anℓ-group, like the negative cone
or an interval of it, can serve as the base set and the monoidaloperation be defined
by means of the group operation. Algebras constructed in this way can be further
combined by means of direct products or ordinal sums or combinations of both.

The best known examples of residuated lattices whereℓ-groups are used for repre-
sentation, are probably MV-algebras. Recall that the variety of MV-algebras is the
algebraic counterpart of the Łukasiewicz infinite-valued logic. Let (G;∧,∨, ·, 1)
be a (multiplicatively written) Abelianℓ-group, and letu be an element of its neg-
ative cone. LetL = {g ∈ G : u ≤ g ≤ 1}, and define, for anya, b ∈ L,

a◦b = a · b ∨ u,

b→a = a·b−1 ∧ 1.

Then(L;∧,∨, ◦,→, u, 1) is an MV-algebra, and any MV-algebra arises in this way
[33]. Further examples whereℓ-groups are used include pseudo-MV algebras [7,
12], BL-algebras and hoops [5, 1], as well as pseudo-BL algebras and pseudohoops
[8].

It is not a widely known fact that the group representation isin all these cases
particularly easy to derive by use of partial algebras. To get an idea what we
mean, consider the MV-algebra([1

2
, 1];∧,∨, ◦,→, 1, 0) where[1

2
, 1] = {r ∈ R :

1

2
≤ r ≤ 1} is endowed with the natural lattice order, the truncated product

◦ : [1
2
, 1]2 → [1

2
, 1], (a, b) 7→ ab ∨ 1

2
, the truncated quotient→ : [1

2
, 1]2 →

[1
2
, 1], (a, b) 7→ b

a
∧ 1, and the constants0 and1. Clearly, this MV-algebra arises

from (R+\{0};∧,∨, ·, 1), the multiplicative group of strictly positive reals, in the
way explained above. Note now that the monoidal operation◦ coincides with the
group multiplication whenever the group product does not fall below the bottom
element. Equivalently, we may state thata◦b = ab for a, b ∈ [1

2
, 1] if and only if the

following condition is fulfilled:a is the largest elementx such thatx◦b = a◦b, and
b is the largest elementy such thata◦y = a◦b. In other words, we havea◦b = ab

exactly if whenevera is replaced by a larger element, the product will be larger as
well, and similarly forb.
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Accordingly, we associate to this MV-algebra the partial algebra([1
2
, 1];∨, ·, 1),

where the meet operation and the constant1 is taken from the original algebra, but
the monoidal operation is replaced by the partial binary operation ·, which is the
restriction of◦ to the pairs fulfilling the mentioned maximality condition.Soa·b is
defined as the usual product of reals if and only if this product is not smaller than
1

2
, and else undefined.

Up to order-theoretical duality,([1
2
, 1];∨, ·, 1) is a lattice-ordered effect algebra

[15], whose crucial property is cancellativity: ifa · b and a · c are defined and
coincide, it followsb = c. Let now(G; ·, 1) be the Abelian group freely generated
by [1

2
, 1] subject to the condition thata · b = c if this equation holds in the partial

algebra. It is not difficult to see thatG is isomorphic to the multiplicative group
of strictly positive reals. In particular, the natural embedding of [1

2
, 1] into G is

injective, andG can be linearly ordered in a way that[1
2
, 1] generatesG− = (0, 1]

as a semigroup. It follows that, as we will say,([1
2
, 1];∨, ·, 1) is isomorphically

embeddable into theℓ-group(R+\{0};∧,∨, ·, 1).

The problem to embed a partial groupoid into a group has probably the first time
systematically studied by Baer [2]. Effect algebras are special partial groupoids;
they are strongly associative, commutative, cancellative, naturally ordered, and
bounded w.r.t. this order. For effect algebras, Baer’s method was elaborated in
[35] and is applicable to any MV-algebra. But MV-algebras are only one example
where the method works; the procedure can be generalized. For instance, the pres-
ence of a bottom element is not essential; the monoidal operation need not to be
assumed to be commutative; the assumption that the partial order is a lattice order
can be dropped. As an essential condition, an analogon of theRiesz decomposi-
tion property of partially ordered groups remains. These facts have been exhibited
e.g. in [12, 13, 14].

A partial algebra can actually be associated in the way indicated above toany inte-
gral residuated lattice, with the effect that the total algebra is uniquely determined
by the partial algebra.

The full significance of this observation has not yet been explored. It has been
applied, e.g., to BL-algebras, and the result is a short and transparent new proof
of the representation theorem for these algebras [37]: the total algebras are used
only to show that BL-algebras are semilinear; the partial algebras associated to
linearly ordered BL-algebra are easily seen to be ordinallycomposed from lin-
early ordered generalized effect algebras; and the latter embed into linearly ordered
Abelian groups.

In this paper, we deal with pseudo-BCK semilattices. These are pseudo-BCK alge-
bras whose partial order is a join-semilattice. Such an algebra, say(L;∨, \, \, 1),
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arises from a residuated lattice by dropping the monoidal and the meet operation
and by possibly restricting to a subalgebra; this fact has been established by J. Kühr
[28]. The method of using partial algebras to represent pseudo-BCK semilattices,
however, is directly applicable, that is, without the need to embed into a residuated
lattice; cf. [32, Section 4.3]. To be able to define the partial algebras, all what we
have to assume is divisibility, a property defined analogously to residuated lattices.

It is open if a complete analysis of pseudo-BCK semilatticeson the basis of po-
(partially ordered) groups is possible under the assumption of divisibility alone.
A promising idea to study this problem is the poset sum construction, which was
introduced in [26]. Here, we shall present the line of argumentation needed to
represent (i) linearly ordered divisible pseudo-BCK algebras, and (ii) cone alge-
bras. In case (i), we give an alternative proof of the representation theorem of
A. Dvurečenskij and J. Kühr [10]; the case (ii) leads to an alternative and in fact
significantly optimized proof of B. Bosbach’s result [4] that cone algebras embed
into ℓ-groups.

The paper is organized as follows. After recalling some basic facts about pseudo-
BCK semilattices (Section 3), we define the partial algebrasassociated to them, and
we compile a list of properties shared by these partial algebras (Section 2). We then
recall the representation theory of a specific type of partial algebras, known under
the name generalized pseudoeffect algebras (Section 4). Subsequently, we apply
the method. An easy case are cone algebras (Section 5). Second, we turn to linearly
ordered divisible pseudo-BCK algebras, which are the implicational counterparts
of pseudohoops, which in turn include pseudo-BL algebras (Section 6). In the last
part (Section 7), we add the corollary that the considered pseudo-BCK algebras
embed into residuated lattices of the corresponding kind.

A word is in order concerning the notation used in this article. There are two
competing ways to define a residuated lattice: based on the residual triple◦, \, \
wherea\b is the maximal elementx such thata◦x ≤ b and similarly forb \a;
or based on the triple⊕,�,�, whereb � a is the minimal elementx such that
a ⊕ x ≥ b and similarly forb � a. In the latter case, we are led to representations,
if applicable, such that⊕ corresponds to the group addition and�,� to the left
and right difference, respectively. Consider the dual of the example of an MV-
algebra above: the algebra([0, 1];∧,∨,⊕,⊖, 0) where[0, 1] is the real unit interval
endowed with the natural order and the operations⊕ : [0, 1]2 → [0, 1], (a, b) 7→
(a + b) ∧ 1 and⊖ : [0, 1]2 → [0, 1], (a, b) 7→ (a − b) ∨ 0. The associated
partial algebra is([0, 1];+, 0) wherea+b is the usual sum of the realsa, b if below
1 and undefined otherwise. The representing group are the reals with addition.
Although this picture might look appealing, both in the fieldof residuated lattices
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and in fuzzy logics, the dual notions, which we have already used in the illustrating
example above, are common. In this article, we adopt the latter choice, and we will
do so consistently in the whole article, the case of partial algebras included.

2 Pseudo-BCK semilattices

In this paper, we examine a certain class of pseudo-BCK algebras [23]. As the ad-
junct “pseudo” suggests, we deal with a non-commutative generalization of BCK-
algebras, which in turn are associated to the so-called BCK logic. The BCK logic
is distinguished by the fact that it is based solely on the implication connective.
For a comprehensive overview of results on pseudo-BCK algebras, we recommend
J. Kühr’s Habilitation Thesis [32].

We will make two restrictions, the first one concerning the partial order. Indeed,
any pseudo-BCK algebra can be partially ordered in a naturalway. Here, we will
generally assume that all (finite) suprema exist; we will actually add the supre-
mum as an own operation. Actually, a large part of our considerations would work
without this assumption, which however is fulfilled in the interesting cases and has
turned out to be convenient in some technical respects.

Definition 2.1. A pseudo-BCK semilatticeis an algebra(L;∨, \, \, 1) of type
〈2, 2, 2, 0〉 such that for anya, b, c ∈ L:

(B1) (L;∨, 1) is a upper-bounded join-semilattice;

(B2) the mappingsx 7→ x \a andx 7→ a\x are isotone;

(B3) b ≤ a\c if and only if a ≤ c \b;

(B4) 1\a = a \1 = a;

(B5) (b\a) \c = b\(a \c).

What we call a pseudo-BCK semilattice should actually be called a “pseudo-BCK
join-semilattice”; cf. [31]. We have chosen the shorter notion for convenience.

Unlike the larger class of pseudo-BCK algebras, the class ofpseudo-BCK semi-
lattices is a variety. An axiomatization by equations can befound in [32, Section
1.1].

To be able to associate a partial algebra to a pseudo-BCK semilattice, we need a
second condition: divisibility.
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Definition 2.2. We will call a pseudo-BCK semilatticedivisible if, for anya, b, c ∈
L:

(D) (a\b)\(a\c) = (b\a)\(b\c) = a\((b \a)\c),
(c \a) \(b \a) = (c \b) \(a \b) = (c \(a\b)) \a.

These equations look certainly weird. The motivation becomes clear only when
comparing them with the corresponding notion for residuated lattices, where divis-
ibility meansa ∧ b = a◦(a\b) = (b \a)◦a, ◦ being the monoidal operation
(cf. Section 7 below). Taking into account that furthermore(a◦b)\c = b\(a\c)
and similarlyc \(a◦b) = (c \b) \a, the choice of the equations (D) becomes plau-
sible.

Lemma 2.3. The algebra(L;∨, \, \, 1) is a divisible pseudo-BCK semilattice if
and only if the axioms(B1), (B3), (B4), and equations(D) hold.

We list some basic properties of the algebras under consideration, skipping in some
cases the versions with\ and \being interchanged.

Lemma 2.4. Let (L;∨, \, \, 1) be a pseudo-BCK semilattice. Then we have for all
a, b, c ∈ L:

(i) a ≤ b if and only ifa\b = 1 if and only ifb \a = 1.

(ii) The mappingsx 7→ a \x andx 7→ x\a are antitone.

(iii) b ≤ (a \b)\a,

(iv) c\b ≤ (c\a) \(b\a),

(v) b\a ≤ (c\b)\(c\a),

(vi) (b \(a\b))\b = a\b,

If L is divisible, we furthermore have:

(vii) Leta, b ≤ c. If c\b ≤ c\a or b \c ≤ a \c, thenb ≤ a.

In particular, if c\a = c\b or a \c = b \c, thena = b.

(viii) Leta ≤ b ≤ c. Then[a \(b\a)] \(c\b) = a \(c\a).

Proof. We only show (viii). Leta ≤ b ≤ c. By divisibility, b\a = (c\b)\(c\a); so
[a \(b\a)] \(c\b) = [a \((c\b)\(c\a))] \(c\b) = a \(c\a) again by divisibility.
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3 R-algebras

With any divisible pseudo-BCK semilattice, we may associate a partial algebra as
follows.

Definition 3.1. Let (L;∨, \, \, 1) be a divisible pseudo-BCK semilattice. For
a, b ∈ L, we definea · b = c if c is the unique element such that

a = c \b and b = a\c; (1)

otherwise, we leavea · b undefined. Then(L;∨, ·, 1) is called thepartial algebra
associated toL. We furthermore define, fora, b ∈ L,

a 4r b if there is anx ∈ L such thatb ·x exists and equalsa,

a 4l b if there is any ∈ L such thaty · b exists and equalsa.
(2)

The definition of the partial product makes sense because, for elementsa andb,
there is at most one element fulfilling the condition (1); this is the content of the
subsequent lemma. Moreover, as to be expected,4l and4r are partial orders; this
will be shown only at the end of the present section.

We will adopt the usual convention that statements involving partial operations are
meant to comprise the statement that these operations exist. In particular, we say
“a · b = c” when we mean “a · b is defined and equalsc”.

Lemma 3.2. Let L be a divisible pseudo-BCK semilattice, and leta, b ∈ L. If
somec ∈ L fulfils (1), thenc is the only element fulfilling(1).

Proof. Let c be such that (1) holds. Thenc ≤ a, b. So the uniqueness follows by
Lemma 2.4(vii).

We will next demonstrate that the transition from a pseudo-BCK semilattice to its
associated partial algebra means no loss of information.

Lemma 3.3. LetL be a divisible pseudo-BCK semilattice, and leta, b ∈ L.

(i) (a \(b\a)) · (b\a) = (a \b) · ((a \b)\a) = a.

(ii) There is a smallest elementb̄ ≥ b such thata 4r b̄, namely,̄b = a \(b\a).
Similarly, there is a smallest element¯̄b ≥ b such thata 4l

¯̄b, namely,̄b =
(a \b)\a.
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(iii) a 4r b if and only ifa \(b\a) = b. Similarly,a 4l b if and only if(a \b)\a =
b.

Proof. (i) In view of Lemma 2.4(vi), this is clear from the definitionof the partial
product.

(ii) We show the first half. Put̄b = a \(b\a); then b̄ ≥ b andb̄ · (b\a) = a by part
(i).

Let b′ ≥ b such thata 4r b′. Thenb′ · y = a for somey, andb′ = a \(b′\a) ≥
a \(b\a) = b̄ by Lemma 2.4(ii).

(iii) This is obvious by the definition of· and part (i).

Theorem 3.4. Let (L;∨, \, \, 1) be a divisible pseudo-BCK semilattice, and let
(L;∨, ·, 1) be the associated partial algebra. Then the latter structure determines
the former uniquely. Namely, fora, b ∈ L, let b̄ ≥ b be the smallest element such
thata 4r b̄; then the unique elementx such that̄b·x = a equalsb\a. Similarly for
a \b.

Proof. By Lemma 3.3,̄b = a \(b\a). But from b̄ · x = a, it follows x = b̄\a =
(a \(b\a))\a = b\a.

In other words, an analysis of the partial algebra associated to a divisible pseudo-
BCK semilattice means an analysis of the latter. Accordingly, our next aim is to
characterize this partial algebra as far as possible.

Definition 3.5. An R-algebrais a partial algebra(L;∨, ·, 1) of type 〈2, 2, 0〉 such
that for anya, b, c ∈ L:

(E1) (L;∨, 1) is a upper-bounded join-semilattice.

(E2) (a ·b) ·c is defined iffa ·(b ·c) is defined, and in this case(a ·b) ·c = a ·(b ·c).

(E3) a ·1 and1 ·a is defined and equalsa.

(E4) If a ·c andb ·c are defined, thena ≤ b if and only if a ·c ≤ b ·c.

If c ·a andc · b are defined, thena ≤ b if and only if c ·a ≤ c · b.

(E5) Leta ≤ b. Then there is a smallest elementb̄ ≥ b such that̄b·x = a for some
x ∈ L.

Similarly, there is a smallest element¯̄b ≥ b such thaty · ¯̄b = a for some
y ∈ L.
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(E6) If a · b ≤ c ≤ a, there is anx ∈ L such thatc = a ·x.

Similarly, if a · b ≤ c ≤ b, there is ay ∈ L such thatc = y · b.

On an R-algebra, we define the relations4r and4l according to (2).

Furthermore, an R-algebra will be callednormal if for any a, b ∈ L:

(N) If a · b is defined, there arex, y ∈ L such thata · b = x ·a = b ·y.

As a reader with background in quantum structures will notice, we have broken
with notational and terminological conventions. For partial algebras related to
those discussed here, commonly the dual order is taken and accordingly the par-
tial operation written as+. Moreover, in the dual notation, an algebra fulfilling
(E1)–(E5) and (N) would be called a “lower-semilattice-ordered weak generalized
pseudoeffect algebra”. This expression is cumbersome, thebackground being the
unfortunate practice to specify a partial algebra not by what holds, but by what is
not assumed, the structure of reference being effect algebras. Namely, when com-
paring R-algebras to effect algebras [15], we see that R-algebras are not necessarily
commutative (“pseudo”), that there is not necessarily a bottom element (“general-
ized”), and that the partial order≤ is not the one induced by the product in the
natural way (“weak”). We note furthermore that axiom (E6) has not been used as
a basic axiom before (cf. [37]).

Theorem 3.6. Let (L;∨, \, \, 1) be a divisible pseudo-BCK semilattice. Then the
associated algebra(L;∨, ·, 1) is an R-algebra.

Proof. (E1) holds by (B1).

(E3) holds by (B4) and Lemma 2.4(i).

To see (E4), leta·c andb·c be defined. Ifa ≤ b, then(a ·c) \c = a ≤ b = (b ·c) \c,
soa ·c ≤ b ·c by Lemma 2.4(vii). Conversely, ifa ·c ≤ b ·c, we concludea ≤ b by
(B2). So the first part of (E4) follows, and the second part is proved similarly.

(E5) holds by Lemma 3.3(iii).

To see (E6), assumea·b ≤ c ≤ a. Putd = a·b. By divisibility, c\d = (a\c)\(a\d),
and by Lemma 2.4(viii), it followsa ≤ c \(a\c) ≤ (d \(c\d)) \(a\c) = d \(a\d) =
a. Soa = c \(a\c), whence by Lemma 3.3(iii)a · (a\c) = c. By (E4), b ≤ a\c.
This completes one half of (E6); the other one is shown similarly.

We finally show (E2). Assume that(a·b)·c is defined. Pute = a·b andd = (a·b)·c.
Let f = a\d. Thene ·c ≤ f ≤ c by Lemma 2.4(ii), so by (E6)f = b′ ·c for some
b′ ≥ e. We haveb′ = f \c = (a\d) \c = a\(d \c) = b; so we have shown that

9



f = a\d = b · c. Now, leta′ = d \f . Thend = a′ · f becausea′\d = (d \f)\d =
a\d = f . We havea = (d \c) \b = (d \c) \(f \c) ≥ d \f = a′ ≥ a; so the proof is
complete thata · (b ·c) is defined and equalsd. Under the assumption thata · (b ·c)
is defined, we proceed similarly, and the associativity axiom (E2) follows.

In view of this theorem, we will w.r.t. a divisible pseudo-BCK semilattice refer in
the sequel to the “associated R-algebra” rather than the “associated partial algebra”.

An R-algebra is in general not normal. However, normality isessential in the
present context and will prove to hold in the two specific cases which we are going
to consider. We give some equivalent formulations.

Lemma 3.7. Let (L;∨, ·, 1) be an R-algebra. Then4l and4r are partial orders,
both being extended by≤. Moreover,L is normal if and only if4l and4r coincide.

Proof. 4l and4r are partial orders by (E3), the associativity property (E2), and
the cancellation property (E4). By (E4) and (E3),a 4r b or a 4l b imply a ≤ b. It
is finally obvious that4r and4l coincide if and only if (N) holds.

Definition 3.8. A pseudo-BCK semilatticeL is calledstrictly goodif we have for
a, b ∈ L:

(SG) If a ≤ b, then(a \b)\a = a \(b\a).

For pseudo-BL algebras, this property restricted to the case thatb is the minimal
element, is calledgood[6]. This is the reason for our terminology.

Lemma 3.9. Let (L;∨, \, \, 1) be a divisible pseudo-BCK semilattice, and let
(L;∨, ·, 1) be the associated R-algebra. ThenL as an R-algebra is normal if and
only if L as a pseudo-BCK semilattice is strictly good.

Proof. Let L be normal. Ifa ≤ b, then by by Lemma 3.3(ii),̄b = a \(b\a) is
the minimal element aboveb such thata 4r b̄, and¯̄b = (a \b)\a is the minimal
element aboveb such thata 4l

¯̄b. But by normality,4l=4r, hencēb = ¯̄b, that is,
(SG) is fulfilled.

Conversely, let (SG) hold. If thena · b exists and equalsc, we havec ≤ a and
a = c \(a\c) = (c \a)\c, soa · b = c = (c \a) ·a by Lemma 3.3(i). This is one half
of (N); the other one is seen similarly.

We finally remark that (SG) implies the following property shared by integral resid-
uated lattices which are normal in the sense of [26]; see [26,Lemma 14].
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Lemma 3.10. Let (L;∨, \, \, 1) be a strictly good pseudo-BCK semilattice. Then,
for anya, b ∈ L, a = b\a if and only ifa = a \b.

4 Naturally ordered R-algebras

We will now focus our attention on a class of R-algebras whichis of special im-
portance in the present context: R-algebras whose partial order is the natural one,
that is, induced by the multiplication on either side. Thesealgebras coincide with
the upper-semilattice-orderedgeneralized pseudoeffect algebras, which were in-
troduced in [13] as a double generalization of effect algebras [15].

In addition to the natural order, it will be necessary to assume one more condition,
which is a version of the Riesz decomposition property and resembles the equally
denoted property of po-groups (see, e.g., [20]). A list of related properties of partial
algebras can be found in [11].

Definition 4.1. An R-algebra(L;∨, ·, 1) is callednaturally orderedif for a, b ∈ L:

(NO) a ≤ b if and only if b·x = a for somex ∈ L if and only if y ·b = a for some
y ∈ L.

Moreover, we say thatL has theweak Riesz decomposition propertyif for a, b, c ∈
L:

(RDP0) If a · b ≤ c, there area0 ≥ a andb0 ≥ b such thatc = a0 · b0.

Clearly, in the presence of (NO), some of the axioms of R-algebras become redun-
dant.

Lemma 4.2. The partial algebra(L;∨, ·, 1) is a naturally ordered R-algebra if
and only if(E1), (E2), (E3), (E4), and (NO) hold. Moreover, a naturally ordered
R-algebra is normal.

This section is devoted to a concise proof of the fact that R-algebras subject to the
two conditions of Definition 4.1 isomorphically embed into the negative cone of an
ℓ-group [13]. Note that our procedure includes some optimisations when compared
to the presentation in [13].

To begin with, we list some basic properties of naturally ordered R-algebras.

Lemma 4.3. Let (L;∨, ·, 1) be a naturally ordered R-algebra. For anya, b, c, d ∈
L, the following holds:
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(i) If a · b exists,a1 ≥ a, andb1 ≥ b, then alsoa1 · b1 exists.

(ii) Letc ·a andc · b exist. Thenc · (a ∨ b) = (c ·a) ∨ (c · b).

Leta ·c andb ·c exist. Then(a ∨ b) ·c = (a ·c) ∨ (b ·c).

(iii) Leta · b = c ·d. Thena ≤ c if and only ifd ≤ b.

If L fulfils (RDP0), we moreover have:

(iv) If a ∨ b = 1 and ifa andb possess a lower bound, thena · b = b ·a = a ∧ b.

(v) If a · b exists anda ∨ c = b ∨ c = 1, then alsoa · b ∨ c = 1.

Proof. Assertions (i)–(iii) are easily checked.

(iv) Let a, b, e be given such thata ∨ b = 1 ande ≤ a, b. Soe = x · b for some
x and, by (RDP0), a = d1 · d2 for somed1 ≥ x andd2 ≥ b. But thena, b ≤ d2,
whenced2 = 1 andx ≤ a. It follows by part (i) thata · b exists, and we have
e ≤ a · b. Becausea · b is a lower bound ofa andb, we concludea · b = a ∧ b. The
remaining assertion follows by symmetry.

(v) This is immediate from (RDP0).

By a scheme of the form (3) in the following lemma to hold, we mean that the
product of any row and any column exists and equals the element to which the
respective arrow points to; the order of multiplication is from left to right or from
top to bottom, respectively.

Lemma 4.4. Let(L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0). Let
a1, . . . , am, b1, . . . bn ∈ L be such thata1 · . . . ·am = b1 · . . . · bn, wheren,m ≥ 1.
Then there ared11, . . . , dmn ∈ L such that

d11 . . . d1n → a1

...
...

...
dm1 . . . dmn → am

↓ ↓
b1 . . . bn

(3)

and
dik ∨ djl = 1 for every1 ≤ i < j ≤ m and1 ≤ l < k ≤ n. (4)
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Proof. If m = 1 or n = 1, the assertion is trivial. Letm = n = 2; then our
assumption isa1 · a2 = b1 · b2. Setd1 = a1 ∨ b1 and letd2, d3 be the unique
elements such thata1 = d1 ·d2 andb1 = d1 ·d3.

We claim thatb2 ≤ d2. Indeed, by (RDP0), there areb1 ≤ e1 andb2 ≤ e2 such
thata1 = e1 · e2; and becausea1 = d1 ·d2 andd1 ≤ e1, we haveb2 ≤ e2 ≤ d2 by
Lemma 4.3(iii). So may choosed4 such thatd2 ·d4 = b2.

By Lemma 4.3(ii),d1 = (d1·d2)∨(d1·d3) = d1·(d2∨d3), sod2∨d3 = 1. By Lemma
4.3(iv) and associativity,a1·a2 = b1·b2 = d1·d3·d2·d4 = d1·d2·d3·d4 = a1·d3·d4,
whencea2 = d3 ·d4. The proof is complete.

Assume next thatm ≥ 3 andn ≥ 2, and that the assertion holds for any pair
m′ < m andn′ ≤ n. It is then easily seen that it also holds for the pairm andn as
well. The proof is complete.

A naturally ordered R-algebra(L;∨, ·, 1) given, we will now construct the free
semigroup with the elements ofL as its generators and subject to the conditions (i)
a ·b = c, wherea, b, c ∈ L such thata ·b = c holds inL and (ii)a ·b = b ·a, where
a, b ∈ L such thata ∨ b = 1 in L. The technique is, according to our knowledge,
due to Baer [2]. Although the idea is simple it is not completely straightforward to
see that, as a consequence of the Riesz decomposition property, the R-algebra does
not “collapse” within the semigroup.

Definition 4.5. Let (L;∨, ·, 1) be a naturally ordered R-algebra. A sequence(a1,

. . . , an) of 1 ≤ n < ω elements ofL is called aword of L. The set of words
of L is denoted byW(L), and we define the product· : W(L)2 → W(L) as the
concatenation.

Moreover, we define∼ to be the smallest equivalence relation onW(L) such that

(a1, . . . , ap, ap+1, . . . , an) ∼ (a1, . . . , ap ·ap+1, . . . , an)

and, ifap ∨ ap+1 = 1,

(a1, . . . , ap, ap+1, . . . , an) ∼ (a1, . . . , ap+1, ap, . . . , an)

holds for any two words inW(L) of the indicated form, where1 ≤ p < n. The
equivalence class of some(a1, . . . , an) ∈ W(L) is denoted by[a1, . . . , an], and
the set of equivalence classes byC(L).

As seen in the next lemma,C(L) is a semigroup under elementwise concatenation,
into whichL, as a semigroup, naturally embeds.

Lemma 4.6. Let (L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0).
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(i) The equivalence relation∼ on W(L) is compatible with·. · being the in-
duced relation,(C(L); ·, [1]) is a monoid.

(ii) Let a1, . . . , an, b ∈ L, wheren ≥ 1. Then(a1, . . . , an) ∼ (b) if and only if
a1 · . . . ·an = b.

(iii) Let
ι : L → C(L), a 7→ [a]

be the natural embedding ofL into C(L). Thenι is injective.

Furthermore, fora, b ∈ L, a · b is defined and equalsc if and only if ι(a) ·
ι(b) = ι(c).

Proof. (i) is evident.

(ii) In view of Lemma 4.3(iv), we see that for any word(a1, . . . , an) the product
of whose elements exists and equalsb, the same is true for any word equivalent to
(a1, . . . , an).

(iii) The injectivity of ι follows from part (ii).

Let moreovera, b ∈ L. If a · b = c, then obviouslyι(a) · ι(b) = ι(c). Conversely,
ι(a) · ι(b) = ι(c) means(a, b) ∼ (c), that is,a · b = c by part (ii).

We next show that the monoid(C(L); ·, [1]) fulfills the algebraic properties of the
negative cone of a partially ordered group. As a preliminary, we generalize Lemma
4.4.

Lemma 4.7. Let (L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0).
Let a1, . . . , am, b1, . . . bn ∈ L such that(a1, . . . , am) ∼ (b1, . . . , . . . , bn), where
n,m ≥ 1. Then there ared11, . . . , dmn ∈ L such that(3) and(4) hold.

Proof. If m = n anda1 = b1, . . . , am = bn, the assertion is trivial. Leta1, . . . , bm

be arbitrary, and letd11, . . . , dmn be such that (3) and (4) hold. We shall show how
to modify the scheme (3) to preserve both its correctness andthe supremum-one
relations (4) when(b1, . . . , bn) is replaced (i) by(b1, . . . , bp·bp+1, . . . , bn) for some
1 ≤ p < n, (ii) by (b1, . . . , b

1
p, b

2
p, . . . , bn), where1 ≤ p ≤ n andbp1 · bp2 = bp,

(iii) (b1, . . . , bp+1, bp, . . . , bn), where1 ≤ p < n andbp ∨ bp+1 = 1. The assertion
will then follow.

Ad (i). We replace, for eachi = 1, . . . ,m, the neighbouring entriesdip anddi,p+1

by their product. Then the product of thei-th row is obviously stillai. To see that
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the product of the new column exists and isbp + bp+1, we make repeated use of
Lemma 4.3(iv):

bp · bp+1 = d1p · . . . ·dmp ·d1,p+1 · . . . ·dm,p+1

= d1p ·d1,p+1 ·d2p · . . . ·dmp ·d2,p+1 · . . . ·dm,p+1

= . . .

= d1p ·d1,p+1 ·d2p ·d2,p+1 · . . . ·dmp ·dm,p+1.

Moreover, the supremum-one relations are preserved by Lemma 4.3(v).

Ad (ii). We apply Lemma 4.4 to the equationb1
p · b

2
p = d1p · . . . ·dmp, and replace

the columnd1p, . . . , dmp with the new double column. Obviously, in the modi-
fied scheme, the rows and columns multiply correctly, and required supremum-one
relations are fulfilled.

Ad (iii). We interchange thep-th and the(p + 1)-th column. The product of the
rows remains unchanged by Lemma 4.3(iv) then, and the products of the columns
are the intended values. Furthermore, the newly required supremum-one relations
follow from the fact thatbp ∨ bp+1 = 1.

We can now prove that(C(L); ·, [1]) is a po-group cone.

Lemma 4.8. Let (L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0).
Then(C(L); ·, [1]) is a monoid such that fora, b, c ∈ C(L):

(i) Froma ·b = [1] it followsa = b = [1].

(ii) Froma ·b = a · c or b ·a = c ·a it follows b = c.

(iii) There arex, y ∈ C(L) such thata ·b = x ·a = b ·y.

Proof. The fact thatC(L) is a monoid was the content of Lemma 4.6(i).

(i) This follows from Lemma 4.6(ii).

(ii) We may restrict to the case thata = [a] for somea ∈ L. It follows from Lemma
4.6(ii) that if b = [1], alsob = [1]. Let nowb = [b1, . . . , bm], c = [c1, . . . , cn],
m,n ≥ 1, and assume(a, b1, . . . , bm) ∼ (a, c1, . . . , cn). We will show that
(b1, . . . , bm) ∼ (c1, . . . , cn); then the first part will follow, and the second one
is proved analogously.
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By Lemma 4.7, there are elements inL such that

d d1 . . . dn → a

e1 e11 . . . e1n → b1

...
...

...
...

em em1 . . . emn → bm

↓ ↓ ↓
a c1 cn,

where any pair of elements one of which is placed further up and further right than
the other one, has supremum one. By (E4),d1 · . . . ·dn = e1 · . . . ·em. Furthermore,
by the definition of∼ we may exchange successive elements in a word whenever
they have supremum one; so

(b1, . . . , bm) ∼ (e1, e11, . . . , e1n, . . ., em, em1, . . . , emn)

∼ (e1, . . . , em, e11, . . . , em1, . . ., e1n, . . . , emn)

∼ (d1, . . . , dn, e11, . . . , em1, . . ., e1n, . . . , emn)

∼ (d1, e11, . . . , em1, . . ., dn, e1n, . . . , emn)

∼ (c1, . . . , cn).

(iii) We may restrict to the case thata = [a] andb = [b] for somea, b ∈ L. Choose
ā, b̄ such that̄a·(a∨ b) = a andb̄·(a∨ b) = b. Thenā∨ b̄ = 1. Now choosē̄a such
that ¯̄a·ā = a. Then we have(a, b) ∼ (¯̄a, ā, b̄, a∨ b) ∼ (¯̄a, b̄, ā, a∨ b) ∼ (¯̄a, b̄)·(a).
One half of the assertion follows; the other one is seen similarly.

We next establish thatC(L) is a lattice under the natural order.

Lemma 4.9. Let (L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0).
Setting

a ≤ b if b · x = a for somex ∈ C(L)

for a, b ∈ C(L), we endowC(L) with a partial order. We moreover have:

(i) Leta1, a2, b1, b2 ∈ C(L) such thata1 ·a2 = b1 ·b2. Then there ared1, d2, d3,

d4 ∈ C(L) such that
d1 d2 → a1

d3 d4 → a2

↓ ↓
b1 b2

(5)

andd2 ∨ d3 = [1].
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(ii) C(L) is lattice-ordered.

Proof. In view of Lemma 4.8, we easily check that≤ is a partial order. Note that,
by Lemma 4.8(iii),≤ is actually a two-sided natural order. Moreover, the partial
order onC(L) is directed.

(i) Let a1 = [a1
1, . . . , a

1
k], a2 = [a2

1, . . . , a
2
l ], b1 = [b1

1, . . . , b
1
m], b2 = [b2

1, . . . , b
2
n],

wherea1
1, . . . , b

2
n ∈ L. By Lemma 4.7 there ared1

11, . . . , d
4
ln ∈ E such that

d1
11 . . . d1

1m d2
11 . . . d2

1n → a1
1

...
...

...
...

...
d1

k1
. . . d1

km d2
k1

. . . d2
kn → a1

k

d3
11 . . . d3

1m d4
11 . . . d4

1n → a2
1

...
...

...
...

...
d3

l1 . . . d3
lm d4

l1 . . . d4
ln → a2

l

↓ ↓ ↓ ↓
b1
1 . . . b1

m b2
1 . . . b2

n

and such that every two elements in this diagram have supremum one if one of
them is placed further up and further right than the other one. Define nowd1 =
[d1

11, . . . , d
1
1m, . . ., d1

k1
, . . . , d1

km] and in a similar way alsod2, d3, d4. In view of
the supremum-one relations, we conclude that the scheme (5)holds.

Let now a ∈ L such thatd2, d3 ≤ [a]. We may apply Lemma 4.7 to the equiva-
lence(a, . . .) ∼ (d2

11, . . . , d
2
kn) to conclude thata is the product of some elements

aboved2
11, . . . , d

2
kn. But by the same reasoning we see thata is also the product of

elements aboved3
11, . . . , d

3
lm. Soa = 1, and it follows thatd2 ∨ d3 = [1] in the

posetC(L).

(ii) Let a1, b1 ∈ C(L). By the directedness, there area2, b2 such thata1·a2 = b1·b2.
By part (i), there ared1, d2, d3, d4 such that (5) andd2 ∨ d3 = [1] holds. We show
thatd1 · d2 · d3 = a1 ∧ b1. Indeed,d1 · d2 · d3 ≤ a1, b1, and if e ≤ a1, b1, we have
e = a1 · f1 = b1 · f2 and by Lemma 4.8(ii)d2 · f1 = d3 · f2 for somef1, f2. Applying
part (i) again, we concludee ≤ d1 ·d2 ·d3.

Furthermore, we show thatd1 = a1 ∨ b1. Clearly,a1, b1 ≤ d1. Let e ≥ a1, b1.
Choosef such thate · f = a1 · a2. Thenf ≤ a2, b2. By similar reasoning as in the
preceding paragraph, we concludea2 ∧ b2 = d2 ·d3 ·d4. It follows d1 ≤ e.

We arrive at our main theorem. By an isomorphic embedding of anaturally ordered
R-algebra(L;∨, ·, 1) into anℓ-group(G;∧,∨, ·, 1), we mean an injective mapping
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ι : L → G such that fora, b, c ∈ L

ι(a ∨ b) = ι(a) ∨ ι(b),

a · b is defined and equalsc if and only if ι(a) · ι(b) = ι(c),

ι(1) = 1.

(6)

Note that, with respect to the partial product onL, ι is what is called a full homo-
morphism in [21,§13]. Namely, a product is defined inL exactly if the product of
the images is inside the range ofι.

Theorem 4.10.Let (L;∨, ·, 1) be a naturally ordered R-algebra fulfilling(RDP0).
Then there is an isomorphic embeddingι of the R-algebra(L;∨, ·, 1) into theℓ-
group(G(L);∧,∨, ·, [1]). The range ofι is a convex subset ofG(L), upper-bounded
by [1], which generatesG(L).

Proof. By a theorem of Birkhoff (see [16, Theorem II.4]), Lemma 4.8 implies that
there is a po-groupG(L) such thatC(L) = G(L)− andG(L) = C(L) ·C(L)−1 =
C(L)−1 · C(L). By Lemma 4.9(ii), it furthermore follows thatG(L) is lattice-
ordered.

Clearly, we takeι : L → G(L), a 7→ [a]. We haveι(1) = [1]. Furthermore, by
Lemma 4.6(iii),ι is injective.

By the same lemma,a · b = c in L if and only if ι(a) · ι(b) = ι(c) in C(L).

By construction,ι(L) generatesG(L) as a group. We next show thatι(L) is a
convex subset ofC(L) = G(L)− containing[1]. Let a ∈ G(L) andb ∈ L such that
[b] ≤ a ≤ [1]. Thena · c = [b] for somec ∈ C(L), and by Lemma 4.6(ii) it follows
thata = ι(a) for somea ∈ L.

Finally, leta, b ∈ L. If a ≤ b, clearlyι(a) ≤ ι(b). Conversely, ifι(a) ≤ ι(b), then
[b] · c = [a] for somec ∈ C(L), and we conclude by Lemma 4.6(ii) thatb · c = a

for somec ∈ L, that is,a ≤ b. The preservation of finite suprema is now easily
derivable.

In the sequel, we will consider a partial algebraL as a subset of the groupG
representingL according to Theorem 4.10. Note that then the partial multiplication
on L is simply the restriction of the multiplication inG to those pairs of elements
of G whose product is again an element ofL.
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5 Cone algebras

We are going to apply the representation theorem 4.10 to two classes of pseudo-
BCK semilattices. The first one was proposed by B. Bosbach [4].

Definition 5.1. A divisible pseudo-BCK semilattice is called acone algebraif, for
anya, b ∈ L,

(B) a ∨ b = a \(b\a) = (a \b)\a.

The original definition in [4] was certainly different, but can be seen equivalent by
the subsequent lemma. We note furthermore that in [14], the notionpseudo-ŁBCK-
algebrawas used.

Lemma 5.2. The algebra(L; \, \) is the \, \-reduct of a cone algebra if and
only if, for anya, b, c ∈ L, (i) (c \a) \(b \a) = (c \b) \(a \b) and (a\b)\(a\c) =
(b\a)\(b\c), (ii) (a\a)\b = b \(a \a) = b, (iii) c\(a \b) = (c\a) \b, anda \(b\a) =
(b \a)\b.

In this case, the algebra can be expanded in a unique way to a cone algebra, putting
1 = a\a for an arbitrary a, and defining the partial order bya ≤ b if a\b = 1.

Proof. For the indicated properties of cone algebras, see Section 2. For the other
direction, we refer to [4].

Lemma 5.3. Let (L;∨, ·, 1) be the R-algebra associated to a cone algebra. Then
L is a naturally ordered R-algebra fulfilling(RDP0).

Proof. If, for a, b ∈ L, a ≤ b, thenb = a \(b\a) = (a \b)\a by (B), soL is a
naturally ordered R-algebra.

To see (RDP0), let a, b, c ∈ L such thata · b ≤ c. Let a1 = a ∨ c and chooseb1

such thatc = a1 · b1. Clearly,a ≤ a1. Furthermore, fromc \(a\c) ≥ a ∨ c = a1

we concludea\c1 = a\c; it follows b1 = a\c1 = a\c ≥ a\(a · b) = b.

So we have proved the following representation theorem. Using completely differ-
ent techniques, this theorem was first proved by Bosbach [4].A proof along the
lines of the present paper is contained in [14]. A further proof of this theorem can
be found in [17].
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Theorem 5.4. Let (L;∨, \, \, 1) be a cone algebra. Then there is anℓ-group
(G;∧,∨, ·, 1) such that(L;∨, 1) is a convex subalgebra of(G−;∨, 1), L gener-
atesG as a group, and fora, b ∈ L

a \b = a·b−1 ∧ 1,

b\a = b−1 ·a ∧ 1.
(7)

Proof. By Theorem 4.10, the associated R-algebra(L;∨, ·, 1) isomorphically em-
beds into theℓ-group(G(L),∧,∨, ·, 1). Fora, b ∈ L, we havea = (a∨b)·(b\a) =
(a \b) · (a ∨ b) by (B) and Lemma 3.3(i); (7) follows.

6 Divisible pseudo-BCK algebras: the linear case

A pseudo-BCK semilattice is calledsemilinear(or representable) if it is the sub-
direct product of pseudo-BCK semilattices whose order is linear. The class con-
sisting of these algebras forms a variety [30]. In order to describe the semilinear
divisible pseudo-BCK semilattices, the case of a linear order needs to be consid-
ered, and this is what we shall do in this section.

Definition 6.1. A pseudo-BCK tosetis a pseudo-BCK semilattice whose partial
order is linear.

We will show that divisible pseudo-BCK tosets correspond tothe ordinal sum of
naturally ordered R-algebras, which in turn are representable by linearly ordered
groups according to Theorem 4.10.

We give in this way an alternative proof of the representation theorem in [10].

The only difficult step is the proof that pseudo-BCK tosets are strictly good.

Lemma 6.2. Let (L;∨, \, \, 1) be a divisible pseudo-BCK toset. Let(L;∨, ·, 1) be
the associated R-algebra.

(i) Leta ≤ b ≤ c < 1. Thena 4r b andb 4r c if and only ifa 4r c. Similarly,
a 4l b andb 4l c if and only ifa 4l c.

(ii) Leta ≤ b < 1. Thena 4r b if and only ifa 4l b.

Proof. (i) a 4r b andb 4r c imply a 4r c by the axiom of associativity, (E2).

Assumea 4r c. Thenb 4r c follows by (E6). Moreover, we havec = b \(c\b) ≤
[a \(b\a)] \(c\b) = a \(c\a) = c by b 4r c, Lemma 2.4(viii), anda 4r c. So
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[a \(b\a)] \(c\b) = b \(c\b) < 1. In view of the linear order, it followsc\b > b and
c\b > a \(b\a). So by Lemma 2.4(vii),b = a \(b\a), that is,a 4r b.

The proof of the first half is complete; the second half is shown analogously.

(ii) Let a 4r b. We will showa 4l b; the converse direction will follow analo-
gously.

Let x be such thatb ·x = a. If b ≤ x, thena 4l x anda ≤ b ≤ x imply a 4l b by
part (i).

So let us assumeb > x. Thena 4r b anda ≤ x ≤ b imply a 4r x by part (i); let
s be such thatx ·s = a. If thenb ≤ s, we concludea 4l b from a 4l s.

Let us assumeb > s. Since thenb ·x = x · s < s < b, there is by (E6) anx ≤ r

such thats = b ·r. Soa = b ·x = x · b ·r then.

If b ≤ r, thena 4l r impliesa 4l b. If b > r, thenx · b < r < b impliesr = u · b
for someu, hencea = x · b ·u · b, that is,a 4l b.

In view of Lemmas 3.7 and 3.9, part (ii) of this lemma shows that divisible pseudo-
BCK tosets are strictly good and the associated R-algebras are normal.

We note that for the natural question if all divisible pseudo-BCK semilattices are
strictly good, recently the negative answer was given [9]; there are pseudo-BL
algebras which are not good. So in particular, property (SG)is not redundant.

We furthermore note that the proof of part (i) of Lemma 6.2 is asignificant im-
provement of the proof which we have given in the commutativecase in [37].

Definition 6.3. Let (I;≤) be a linearly ordered set, and for everyi ∈ I, let
(Li;∨, ·, 1i) be an R-algebra. PutL = ˙⋃

i∈I(Li\{1i}) ∪ {1}, where1 is a new
element. Fora, b ∈ L, put a ≤ b if either b = 1, or a ∈ Li andb ∈ Lj such that
i < j, or a, b ∈ Li for somei anda ≤ b holds inLi. Similarly, definea ·b if either
a = 1, in which casea · b = b, or b = 1, in which casea · b = a, or a, b ∈ Li for
somei anda · b is defined inLi, in which casea · b is mapped to the same value as
in Li. Then(L;∨, ·, 1) is called theordinal sumof the R-algebrasLi w.r.t. (I;≤).

Lemma 6.4. An ordinal sum of R-algebras is again an R-algebra.

An ordinal sum of normal R-algebras is again a normal R-algebra.

Lemma 6.5. Let (L;∨, \, \, 1) be a divisible pseudo-BCK toset. Let(L;∨, ·, 1)
be the associated R-algebra. ThenL is the ordinal sum of linearly and naturally
ordered R-algebras fulfilling(RDP0).

Proof. By Lemma 6.2(i),L\{1} is the disjoint union of convex subsetsC such that
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a 4r b for anya, b ∈ C such thata ≤ b, but not for any pair of elements different
from one and from distinct subsets.

Let C one of these subsets, and considerC ∪ {1} endowed with the restriction of
≤ and· to C ∪ {1} as well as with the constant1. Then(C ∪ {1};∨, ·, 1) fulfills
the axioms (E1)–(E4) and, by Lemma 6.2(ii), also (NO). SoC ∪ {1} is a naturally
ordered R-algebra. SinceC ∪ {1} is linearly ordered, also (RDP0) holds.

In view of Theorem 4.10, we have proved the following representation theorem.

Theorem 6.6. Let (L;∨, \, \, 1) be a divisible pseudo-BCK toset. ThenL\{1} is
the disjoint union of convex subsetsCi, i ∈ I, such that the following holds. For
eachi, there is a linearly ordered group(Gi;∧,∨, ·, 1) such that(Ci∪{1};∨, 1) is
a convex subalgebra of(G−

i ;∨, 1) andCi∪{1} generatesGi as a group. Moreover,
if a, b ∈ Ci for somei ∈ I,

a \b =

{

a·b−1 if a < b,

1 otherwise,
b\a =

{

b−1 ·a if a < b,

1 otherwise,

where the differences are calculated inGi. If a ∈ Ci andb ∈ Cj such thati 6= j,

a \b = b\a =

{

a if a < b,

1 if b < a.

Note how that the setsCi are, apart from the1, “initial pieces” of the linearly
ordered groupsGi. Ci can be of the formG−

i \{1} or {g ∈ Gi : u ≤ g < 1} for
someu < 1, as known from the case of pseudohoops. In addition,Ci can also be
of the form{g ∈ Gi : u < g < 1} for someu < 1, or Ci is bounded from below,
but does not possess an infimum inGi.

7 Pseudo-BCK semilattices and residuated lattices

Although pseudo-BCK algebras were introduced independently from residuated
lattices, both notions are closely related. For an overviewconcerning residuated
lattices, see [27]; for a comprehensible account, we refer to [18]. For the particular
notion of divisibility which is central in this paper, see [25, 26].

Definition 7.1. An integral residuated latticeis an algebra(L;∧,∨, ◦, \, \, 1) such
that (P1)(L;∧,∨, 1) is a upper-bounded lattice, (P2)(L; ◦, 1) is monoid, and (P3)
for anya, b, c ∈ L,

a◦b ≤ c if and only if b ≤ a\c if and only if a ≤ c \b. (8)
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The close relationship between pseudo-BCK semilattices and integral residuated
lattices is, for the general case, expressed by the subsequent theorem of J. Kühr
([28], see also [29]), which was independently found also byC. van Alten [36].
The intention of this section is to use the representation theorems 5.4 and 6.6 to
specialize this relationship to the two subclasses of pseudo-BCK semilattices con-
sidered in this paper.

Theorem 7.2. Let (L;∧,∨, ◦, \, \, 1) be an integral residuated lattice, and let
(L′;∨, \, \, 1) be a subalgebra of its∨, \, \, 1-reduct. ThenL′ is a pseudo-BCK
semilattice.

All pseudo-BCK semilattices are of this form.

So in particular, the∨, \, \, 1-reduct of an integral residuated lattice is a pseudo-
BCK semilattice. Furthermore, this reduct determines the residuated lattice unique-
ly. So we may wonder under which conditions a pseudo-BCK semilattice of a type
considered in this paper is expandable to a residuated lattice. In the remaining
cases, a pseudo-BCK semilattice is by Theorem 7.2 a proper subalgebra of such a
reduct; we may wonder if this reduct can always be chosen to belong to the same
class.

We will first consider the case of cone algebras. The corresponding subclass of
residuated lattices is the following [3].

Definition 7.3. An integral residuated lattice such that (B) holds is calleda GMV-
algebra.

We note that this is what in certain papers is referred to as an“integral GMV-
algebra”.

Proposition 7.4. Let (L;∧,∨, ◦, \, \, 1) be an integral residuated lattice. ThenL
is a GMV-algebra if and only if(L;∨, \, \, 1) is a cone algebra.

Proof. Let L be a GMV-algebra. Then the∨, \, \, 1-reduct is a pseudo-BCK semi-
lattice by Theorem 7.2.L fulfils (B) by assumption. For a proof of the divisibility
conditions (D), see [3, Proposition 5.1] and the remarks after Definition 2.2. One
direction of the asserted equivalence follows; the other one is clear.

So given a cone algebraL, the question is whenL is the reduct of a GMV-algebra
and ifL is otherwise a subreduct of a GMV-algebra. The easy answer isfound on
the basis of the representation by Theorem 5.4.
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Theorem 7.5. Let (L;∨, \, \, 1) be a cone algebra, and let(G;∧,∨, ·, 1) be the
ℓ-group containingL in accordance with Theorem5.4and the notation used there.
ThenL is the reduct of a GMV-algebra if and only if(i) L is lattice-ordered and
(ii) for anya, b ∈ L there is a minimal elementc ∈ L such thata · b ≤ c.

In any case,(L;∨, \, \, 1) is a subreduct of the GMV-algebra(G−;∧,∨, ·, \, \, 1),
where\ and \are defined by(7).

Proof. By Proposition 7.4,L is the reduct of a GMV-algebra if and only ifL is
expandable to an integral residuated lattice. This in turn is the case if and only if
L is lattice-ordered and, for anya, b ∈ L, the set{c ∈ L : b ≤ a\c} contains
a minimal element. The latter condition holds iff, for anya, b ∈ L, the set{c ∈
L : b ≤ (a ∨ c)−1 · c} = {c ∈ L : a · b ≤ c} has a minimum, that is, if there
is a minimal element inL abovea · b. The first assertion is proved. The second
assertion is obvious.

From this theorem, we easily derive a representation theorem for GMV-algebras,
an elegant formulation of which can be found in [17].

We will next consider the case of divisible pseudo-BCK tosets.

Definition 7.6. An integral residuated lattice is calleddivisible if for a, b ∈ L:

(D’) a ∧ b = (a \b)◦b = b◦(b\a).

We note that this notion comes very close to the notion of a pseudohoop, but is not
the same; however, in the case of a linear order, the two notions do coincide.

Proposition 7.7. Let(L;∧,∨, ◦, \, \, 1) be a semilinear integral residuated lattice.
ThenL is divisible if and only if(L;∨, \, \, 1) is a divisible pseudo-BCK semilat-
tice.

Proof. Let L fulfil (D’). For the derivation of (D), see the remarks after Definition
2.2.

Conversely, let(L;∨, \, \, 1) be a divisible pseudo-BCK semilattice. Leta, b ∈ L.
From (D), we have(a◦(a\b))\c = (a\b)\(a\c) = (b\a)\(b\c) = (b◦(b\a))\c
for any c, and it followsa◦(a\b) = b◦(b\a). Similarly, we concludeb◦(b\a) =
(b \a)◦a.

We havea◦(a\b) ≤ a, b. If now d ≤ a, b, it follows by the semilinearity that
d = d◦((b\a) ∨ (a\b)) = (d◦(b\a)) ∨ (d◦(a\b)) ≤ a◦(a\b). Soa ∧ b = a◦(a\b),
and the proof of (D’) is complete.
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So we pose again the question which divisible pseudo-BCK tosets are reducts and
which are proper subreducts of divisible integral residuated lattices. As before, the
answer is found on the basis of the representation by Theorem6.6. The ordinal
sum of integral residuated lattices is defined like in [1].

Theorem 7.8. Let (L;∨, \, \, 1) be a divisible pseudo-BCK toset. LetCi, i ∈ I,
be the convex subsets ofL and (Gi;∨, ·, 1), i ∈ I, the linearly ordered groups
containingCi ∪ {1} in accordance with Theorem6.6and the notation used there.
ThenL is the reduct of a divisible integral residuated lattice if and only if, for each
i, eitherCi possesses a minimal element or is inGi not bounded from below.

In any case, the ordinal sum of the GMV-algebras(G−

i ;∧,∨, ·, \, \, 1), i ∈ I, is a
divisible integral residuated lattice, of which(L;∨, \, \, 1) is a subreduct.

Proof. By Proposition 7.7,L is the reduct of a divisible integral residuated lattice
if and only if L is expandable to an integral residuated lattice. This in turn is the
case if and only if, for anya, b ∈ L, the set{c ∈ L : b ≤ a\c} possesses a
minimum. If a = 1 or b = 1 or if a ∈ Ci andb ∈ Cj , wherei 6= j, this is the case.
Let a, b ∈ Ci for somei ∈ I. If thenCi ∪ {1} = G−

i , the minimum isa · b; if then
Ci ∪ {1} = [ui, 1] for someui ∈ G−

i \{1}, the minimum isa · b ∨ ui. However, if
Ci is in Gi bounded from below, but does not possess a minimal element, choose
a, b ∈ Ci such thata · b < c for all c ∈ Ci; then the minimum does not exist. The
proof of the first part is complete. The last claim is obvious.

From this theorem, we easily derive the representation theorem of A. Dvurečenskij
[8] on pseudohoops.
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[14] A. Dvurečenskij, T. Vetterlein, Algebras in the negative cone of po-
groups,Order19 (2002), 127 - 146.

[15] D. J. Foulis, M. K. Bennett, Effect algebras and unsharpquantum logics,
Found. Phys.24 (1994), 1325–1346.

[16] L. Fuchs, “Partially Ordered Algebraic Systems”, Pergamon Press, Ox-
ford 1963.

[17] N. Galatos, C. Tsinakis, Generalized MV-algebras,J. Algebra 283
(2005), 254 - 291.

[18] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, “ResiduatedLattices: An
Algebraic Glimpse at Substructural Logics”, Elsevier, Amsterdam 2007.

26



[19] G. Georgescu, L. Leutean, V. Preoteasa, Pseudo-hoops,J. Mult.-Val.
Log. Soft Comput.11 (2005), 153 - 184.

[20] K. R. Goodearl, “Partially ordered Abelian groups withinterpolation”,
American Mathematical Society, Providence 1986.

[21] G. Grätzer, “Universal algebra”, 2nd ed., 2nd printing, Springer-Verlag,
New York 2008.
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[34] Palasiński, M. (1980) Some remarks on BCK-algebras,Math. Seminar
Notes Univ. Kobe8, 137–144.

[35] K. Ravindran, On a structure theory of effect algebras,PhD Thesis, Man-
hattan, 1996.

[36] C. J. van Alten, On varieties of biresiduation algebras, Stud. Log.83
(2006), 425 - 445.

[37] T. Vetterlein, Weak effect algebras,Algebra Univers.58 (2008), 129 -
143.

28


