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Abstract

It is well-known that the representation of several clasdagsiduated lat-
tices involves lattice-ordered groups. An often applieatlethod to deter-
mine the representing group (or groups) from a residuatiiddas based
on partial algebras: the monoidal operation is restriatettivse pairs which
fulfil a certain extremality condition, and else left undefin The subsequent
construction applied to the partial algebra is easy, trareagt, and leads di-
rectly to the structure needed for representation.

In this paper, we consider subreducts of residuated lafttbe monoidal and
the meet operation being dropped: the resulting algebmgseudo-BCK
semilattices. Assuming divisibility, we can pass on to iphglgebras also in
this case. To reconstruct the underlying group structara this partial alge-
bra, if applicable, is again straightforward. We demorstthe elegancy of
this method for two classes of pseudo-BCK semilattices:lgezar divisible
pseudo-BCK algebras and cone algebras.

Keywords: Pseudo-BCK algebras, non-commutative fuzzy logics, @iérti
ordered groups.

1 Introduction

In the area of fuzzy logics, the interest in residuateddattihas considerably in-
creased during the last years. Indeed, both fields are gloslelted; the algebraic
semantics of numerous fuzzy logics is based on a subvaffighe @ariety of resid-

uated lattices. The latter reflect the basic propertiedladfby a set of propositions
considered in the framework of a fuzzy logic: the latticeasrthodels the relative



strength of propositions, the monoidal operation modedsdbnjunction of two
propositions, and the implication represents the miningaliteonal information
needed to infer a proposition from another one.

In this paper, we are concerned with a special techniquepi@sent the implica-
tional subreducts of residuated lattices. The technigats ngpon the close rela-
tionship between residuated lattices @n@attice-ordered) groups.

Recall that for several classes of the residuated latttbesrems exist according
to which the algebras arise from &mgroup, or from a collection of-groups, in a
specific way. For instance, a convex subset of-gmoup, like the negative cone
or an interval of it, can serve as the base set and the morapéahtion be defined
by means of the group operation. Algebras constructed sty can be further
combined by means of direct products or ordinal sums or coatioins of both.

The best known examples of residuated lattices whep@ups are used for repre-
sentation, are probably MV-algebras. Recall that the tyaoéMV-algebras is the
algebraic counterpart of the Lukasiewicz infinite-valuedi¢. Let(G;A,V,-, 1)
be a (multiplicatively written) Abeliad-group, and let: be an element of its neg-
ative cone. Lefl = {g € G: u < g < 1}, and define, for any,b € L,

acb = a-b V u,
b—a = ab ! ALl

Then(L; A, V, o, —,u, 1) is an MV-algebra, and any MV-algebra arises in this way
[33]. Further examples wheregroups are used include pseudo-MV algebras [7,
12], BL-algebras and hoops [5, 1], as well as pseudo-BL a&gednd pseudohoops
[8].

It is not a widely known fact that the group representatiomisll these cases
particularly easy to derive by use of partial algebras. Tbageidea what we
mean, consider the MV-algeb(&, 1]; A, V, o, —,1,0) where[3,1] = {r € R:

% < r < 1} is endowed with the natural lattice order, the truncatedipco

o: [3,12 — [3,1], (a,b) — abV i, the truncated quotient : [1 1] —
[2.1], (a,b) — g A 1, and the constantsand1. Clearly, this MV-algebra arises
from (RT™\{0}; A, Vv, -, 1), the multiplicative group of strictly positive reals, ineth
way explained above. Note now that the monoidal operatiooincides with the
group multiplication whenever the group product does nibtoilow the bottom
element. Equivalently, we may state that = abfora,b € [%, 1] ifand only if the
following condition is fulfilled: a is the largest element such thatceb = aob, and

b is the largest element such thatuoy = acb. In other words, we havecb = ab
exactly if whenever is replaced by a larger element, the product will be larger as

well, and similarly forb.



Accordingly, we associate to this MV-algebra the parti@eﬂra([%, 1V, 1),
where the meet operation and the constaisttaken from the original algebra, but
the monoidal operation is replaced by the partial binaryratien -, which is the
restriction ofo to the pairs fulfilling the mentioned maximality conditioBoa-b is
defined as the usual product of reals if and only if this prodsiaot smaller than
%, and else undefined.

Up to order-theoretical dualit%[%, 1]; Vv, -, 1) is a lattice-ordered effect algebra
[15], whose crucial property is cancellativity: if- b and a - ¢ are defined and
coincide, it followsb = ¢. Let now(G; -, 1) be the Abelian group freely generated
by [%, 1] subject to the condition that-b = c if this equation holds in the partial
algebra. It is not difficult to see that is isomorphic to the multiplicative group
of strictly positive reals. In particular, the natural erdtimg of [%, 1] into G is
injective, andG can be linearly ordered in a way tt'{%t, 1] generatesy~ = (0, 1]

as a semigroup. It follows that, as we will s&f4,1];V, -, 1) is isomorphically
embeddable into thé-group (RT\{0}; A, V, -, 1).

The problem to embed a partial groupoid into a group has ptghihe first time
systematically studied by Baer [2]. Effect algebras areigpgartial groupoids;
they are strongly associative, commutative, cancellathagurally ordered, and
bounded w.r.t. this order. For effect algebras, Baer’s outtivas elaborated in
[35] and is applicable to any MV-algebra. But MV-algebras anly one example
where the method works; the procedure can be generalizedngtance, the pres-
ence of a bottom element is not essential; the monoidal tperaeed not to be
assumed to be commutative; the assumption that the partief & a lattice order
can be dropped. As an essential condition, an analogon dRiggz decomposi-
tion property of partially ordered groups remains. Thesésfhave been exhibited
e.g.in[12, 13, 14].

A partial algebra can actually be associated in the way atdit above tanyinte-
gral residuated lattice, with the effect that the total bhges uniquely determined
by the partial algebra.

The full significance of this observation has not yet beerarg. It has been

applied, e.g., to BL-algebras, and the result is a short eantsparent new proof
of the representation theorem for these algebras [37]: dfa algebras are used
only to show that BL-algebras are semilinear; the partigkbias associated to
linearly ordered BL-algebra are easily seen to be ordinadlsnposed from lin-

early ordered generalized effect algebras; and the latibed into linearly ordered
Abelian groups.

In this paper, we deal with pseudo-BCK semilattices. Thes@seudo-BCK alge-
bras whose partial order is a join-semilattice. Such anbadgesay(L;V,\, /,1),



arises from a residuated lattice by dropping the monoidditae meet operation
and by possibly restricting to a subalgebra; this fact has lestablished by J. Kiihr
[28]. The method of using partial algebras to represent@is@®CK semilattices,

however, is directly applicable, that is, without the nezérmbed into a residuated
lattice; cf. [32, Section 4.3]. To be able to define the pheigebras, all what we
have to assume is divisibility, a property defined analoyotesresiduated lattices.

It is open if a complete analysis of pseudo-BCK semilattioeshe basis of po-
(partially ordered) groups is possible under the assumptiodivisibility alone.
A promising idea to study this problem is the poset sum canstn, which was
introduced in [26]. Here, we shall present the line of argntagon needed to
represent (i) linearly ordered divisible pseudo-BCK algsb and (ii) cone alge-
bras. In case (i), we give an alternative proof of the repredion theorem of
A. Dvurecenskij and J. Kuhr [10]; the case (ii) leads to #eraative and in fact
significantly optimized proof of B. Bosbach’s result [4] tlemne algebras embed
into /-groups.

The paper is organized as follows. After recalling somedfsits about pseudo-
BCK semilattices (Section 3), we define the partial algebss®ciated to them, and
we compile a list of properties shared by these partial alggefSection 2). We then
recall the representation theory of a specific type of paatgebras, known under
the name generalized pseudoeffect algebras (Section &se§uently, we apply
the method. An easy case are cone algebras (Section 5).Gesturn to linearly
ordered divisible pseudo-BCK algebras, which are the icagilbnal counterparts
of pseudohoops, which in turn include pseudo-BL algebrast{@ 6). In the last
part (Section 7), we add the corollary that the considerenligha-BCK algebras
embed into residuated lattices of the corresponding kind.

A word is in order concerning the notation used in this agticlThere are two
competing ways to define a residuated lattice: based on #igued tripleo, \, /
wherea\b is the maximal element such thatecex < b and similarly forb/a;
or based on the triples, ©, ®, whereb © a is the minimal element such that
a ® x > band similarly forb @ a. In the latter case, we are led to representations,
if applicable, such thats corresponds to the group addition aRdo to the left
and right difference, respectively. Consider the dual ef ékample of an MV-
algebra above: the algeb(@, 1]; A, v, ®, ©,0) where[0, 1] is the real unit interval
endowed with the natural order and the operations|0, 1]> — [0,1], (a,b) —
(a+b)Alando : 0,12 — [0,1], (a,b) — (a —b) vV 0. The associated
partial algebra i$]0, 1]; +, 0) wherea + b is the usual sum of the reaisb if below

1 and undefined otherwise. The representing group are the wetl addition.
Although this picture might look appealing, both in the fieldresiduated lattices



and in fuzzy logics, the dual notions, which we have alreagdLin the illustrating
example above, are common. In this article, we adopt therlelttoice, and we will
do so consistently in the whole article, the case of partglaras included.

2 Pseudo-BCK semilattices

In this paper, we examine a certain class of pseudo-BCK edgdB3]. As the ad-
junct “pseudo” suggests, we deal with a non-commutativeegeization of BCK-

algebras, which in turn are associated to the so-called BQK. The BCK logic

is distinguished by the fact that it is based solely on thelitapion connective.

For a comprehensive overview of results on pseudo-BCK adgelwe recommend
J. Kuhr's Habilitation Thesis [32].

We will make two restrictions, the first one concerning thetiphorder. Indeed,
any pseudo-BCK algebra can be partially ordered in a natueigl Here, we will
generally assume that all (finite) suprema exist; we willalty add the supre-
mum as an own operation. Actually, a large part of our comatdms would work
without this assumption, which however is fulfilled in thédresting cases and has
turned out to be convenient in some technical respects.

Definition 2.1. A pseudo-BCK semilattices an algebra(L;V,/,\,1) of type
(2,2,2,0) such that for any, b,c € L:

(B1) (L;V,1) is a upper-bounded join-semilattice;

(B2) the mappings — z/a andx — a\z are isotone;

(B3) b <a\cifand only ifa < ¢/b;

(B4) 1\a = a/1 = q;

(B5) (M\a)/c = b\(a/e).

What we call a pseudo-BCK semilattice should actually bkeda “pseudo-BCK
join-semilattice”; cf. [31]. We have chosen the shorteliarofor convenience.

Unlike the larger class of pseudo-BCK algebras, the clagsefido-BCK semi-
lattices is a variety. An axiomatization by equations caridumd in [32, Section
1.1].

To be able to associate a partial algebra to a pseudo-BCKattod, we need a
second condition: divisibility.



Definition 2.2. We will call a pseudo-BCK semilatticgivisibleif, for any a, b, ¢ €
L:

(D) (a\b)\(a\c) = (D\a)\(b\e) = a\((b/a)\c),
(¢/a)/(b/a) = (c/b)/(a/b) = (c/(a\b))/a.

These equations look certainly weird. The motivation beesmear only when
comparing them with the corresponding notion for residuiddétices, where divis-
ibility meansa A b = ac(a\b) = (b/a)ea, o being the monoidal operation
(cf. Section 7 below). Taking into account that furtherm@ieb)\c = b\(a\c)
and similarlyc/(acb) = (c/b)/a, the choice of the equations (D) becomes plau-
sible.

Lemma 2.3. The algebra(L;V, /,\,1) is a divisible pseudo-BCK semilattice if
and only if the axiom$B1), (B3), (B4), and equationgD) hold.

We list some basic properties of the algebras under corgider skipping in some
cases the versions withand/ being interchanged.

Lemma?2.4.Let(L;V,/,\,1) be a pseudo-BCK semilattice. Then we have for all
a,b,ce L:

(i) a <bifandonlyifa\b=1ifand only ifb/a = 1.
(i) The mappings — a/z andx — x\a are antitone.
(i) b< (a/b)\a,

(iv) c\b < (c\a)/(b\a),
(V) b\a < (c\b)\(c\a),
(V) (b/(a\b))\b = a\b,
If L is divisible, we furthermore have:
(vii) Leta,b<c. Ifc\b<c\aorb/c<a/c, thenb <a.
In particular, if c\a = c\bora/c=0b/c, thena = b.
(viii) Leta < b < c. Then[a/(b\a)]/(c\b) = a/(c\a).

Proof. We only show (viii). Leta < b < ¢. By divisibility, b\a = (c\b)\(c\a); so
[a/(0\a)]/(c\b) = [a/((\b)\(c\a))]/(c\b) = a/(c\a) again by divisibility. ]



3 R-algebras

With any divisible pseudo-BCK semilattice, we may asseceapartial algebra as
follows.

Definition 3.1. Let (L;V,/,\,1) be a divisible pseudo-BCK semilattice. For
a,b € L, we definea-b = ¢ if cis the unique element such that

a=c/b and b=ad\c Q)

otherwise, we leave - b undefined. TheriL;V, -, 1) is called thepartial algebra
associated td.. We furthermore define, far,b € L,

a < b ifthereis anr € L such thab -z exists and equals,

)

a <y b ifthereis any € L such thaty - b exists and equals.

The definition of the partial product makes sense becaus&ldmentse andb,
there is at most one element fulfilling the condition (1)sths the content of the
subsequent lemma. Moreover, as to be expectednd=,. are partial orders; this
will be shown only at the end of the present section.

We will adopt the usual convention that statements invghpartial operations are
meant to comprise the statement that these operations &xigarticular, we say
“a-b = c¢”when we mean-b is defined and equalts.

Lemma 3.2. Let L be a divisible pseudo-BCK semilattice, anddeb € L. If
somec € L fulfils (1), thenc is the only element fulfilling).

Proof. Let ¢ be such that (1) holds. Then< a,b. So the uniqueness follows by
Lemma 2.4(vii). O

We will next demonstrate that the transition from a pseu@kBemilattice to its
associated partial algebra means no loss of information.

Lemma 3.3. Let L be a divisible pseudo-BCK semilattice, anddeb € L.

() (a/(0\a))-(b\a) = (a/b)-((a/b)\a) = a.

(i) There is a smallest elemeht> b such thata <, b, namely,b = a/(b\a).
Similarly, there is a smallest elemelnt> b such thata <; b, namely,b =

(a/b)\a-



(i) a =, bifand only ifa/(b\a) = b. Similarly,a <; bif and only if (a/b)\a =
b.

Proof. (i) In view of Lemma 2.4(vi), this is clear from the definitiai the partial
product.

(ii) We show the first half. Put = a/(b\a); thenb > b andb- (b\a) = a by part
OF

Letd’ > b such thate <, /. Thend' -y = a for somey, andd’ = a/(b'\a) >
a/(b\a) = b by Lemma 2.4(ii).

(i) This is obvious by the definition ofand part (i). O
Theorem 3.4. Let (L;V,/,\,1) be a divisible pseudo-BCK semilattice, and let
(L;V,-, 1) be the associated partial algebra. Then the latter struetdetermines
the former uniquely. Namely, far,b € L, letb > b be the smallest element such

thata <. b; then the unique elementsuch that)-z = a equalsb\a. Similarly for
a/b.

Proof. By Lemma 3.3p = a/(b\a). But fromb-z = a, it follows z = b\a =
(a/(b\a))\a = b\a. O

In other words, an analysis of the partial algebra assati@tea divisible pseudo-
BCK semilattice means an analysis of the latter. Accorginglir next aim is to
characterize this partial algebra as far as possible.

Definition 3.5. An R-algebrais a partial algebrdL; Vv, -, 1) of type (2,2, 0) such
that for anya, b, c € L:

(E1) (L;V,1) is a upper-bounded join-semilattice.

(E2) (a-b)-cis defined iffa- (b-c) is defined, and in this cage-b)-c = a- (b-¢).
(E3) a-1 and1-a is defined and equals

(E4) If a-candb-c are defined, then < bifandonlyifa-c < b-ec.
If c-a andc-b are defined, then < bifandonlyifc-a < c-b.

(E5) Leta < b. Then there is a smallest elemént b such thab-2 = o for some
x € L.

Similarly, there is a smallest elemeht> b such thaty - b = a for some
y € L.



(E6) Ifa-b<c<a,thereisamn € L suchthat = a-x.
Similarly, if a-b < ¢ < b, there is @y € L such that = y-b.

On an R-algebra, we define the relationsand=<; according to (2).
Furthermore, an R-algebra will be calladrmalif for any a,b € L:

(N) If a-bis defined, there are,y € L suchthatv-b=z-a=b-y.

As a reader with background in quantum structures will motiwe have broken
with notational and terminological conventions. For mrtilgebras related to
those discussed here, commonly the dual order is taken amddangly the par-
tial operation written as-. Moreover, in the dual notation, an algebra fulfilling
(E1)—(E5) and (N) would be called a “lower-semilattice-eneld weak generalized
pseudoeffect algebra”. This expression is cumbersomeyabkground being the
unfortunate practice to specify a partial algebra not bytwindds, but by what is
not assumed, the structure of reference being effect aigebfamely, when com-
paring R-algebras to effect algebras [15], we see that Bbads are not necessarily
commutative (“pseudo”), that there is not necessarily #obotelement (“general-
ized”), and that the partial ordet is not the one induced by the product in the
natural way (“weak”). We note furthermore that axiom (E6% Imat been used as
a basic axiom before (cf. [37]).

Theorem 3.6. Let(L;V,/,\,1) be a divisible pseudo-BCK semilattice. Then the
associated algebréZ; v, -, 1) is an R-algebra.

Proof. (E1) holds by (B1).

(E3) holds by (B4) and Lemma 2.4(i).

To see (E4), let.-c andb-c be defined. 1 < b, then(a-c)/c=a <b=(b-¢)/c,
soa-c < b-c by Lemma 2.4(vii). Conversely, if-c < b-¢, we conclude: < b by
(B2). So the first part of (E4) follows, and the second parrived similarly.
(E5) holds by Lemma 3.3(iii).

To see (E6), assumeb < ¢ < a. Putd = a-b. By divisibility, c\d = (a\c)\(a\d),
and by Lemma 2.4(viii), it follows: < ¢/(a\c) < (d/(c\d))/(a\c) = d/(a\d) =

a. Soa = ¢/(a\c), whence by Lemma 3.3(iii} - (a\c) = c. By (E4),b < a\c.
This completes one half of (E6); the other one is shown siigila

We finally show (E2). Assume thét-b)-c is defined. Pu¢ = a-b andd = (a-b)-c.
Let f = a\d. Thene-c¢ < f < ¢ by Lemma 2.4(ii), so by (E6f = ¥’ - ¢ for some
b > e. We havet = f/c = (a\d)/c = a\(d/c) = b; so we have shown that

9



f=a\d="0b-c. Now, leta’ = d/f. Thend = o’ - f because/’\d = (d/f)\d =
a\d = f. We havea = (d/c)/b = (d/c)/(f/c) > d/f = d > a; so the proof is
complete that - (b- ¢) is defined and equaté Under the assumption that (b-c)
is defined, we proceed similarly, and the associativity @x{&?2) follows. O

In view of this theorem, we will w.r.t. a divisible pseudo-BGemilattice refer in
the sequel to the “associated R-algebra” rather than tleetieted partial algebra”.

An R-algebra is in general not normal. However, normalityessential in the
present context and will prove to hold in the two specific sashich we are going
to consider. We give some equivalent formulations.

Lemma 3.7. Let(L;V,-, 1) be an R-algebra. Theg; and <, are partial orders,
both being extended by. Moreover,L is normal if and only ifg; and <. coincide.

Proof. x; and <, are partial orders by (E3), the associativity property (E2d
the cancellation property (E4). By (E4) and (E8), bora <; bimply a < b. It
is finally obvious thats,, and<; coincide if and only if (N) holds. O

Definition 3.8. A pseudo-BCK semilatticd. is calledstrictly goodif we have for
a,be L.

(SG) Ifa <b,then(a/b)\a = a/(b\a).

For pseudo-BL algebras, this property restricted to the ¢aatb is the minimal
element, is calledood[6]. This is the reason for our terminology.

Lemma 3.9. Let (L;V,/,\,1) be a divisible pseudo-BCK semilattice, and let
(L;V,-, 1) be the associated R-algebra. Théras an R-algebra is normal if and
only if L as a pseudo-BCK semilattice is strictly good.

Proof. Let L be normal. Ifa < b, then by by Lemma 3.3(i)b = a/(b\a) is
the minimal element abovesuch thate <, b, andb = (a/b)\a is the minimal
element abové such that <; b. But by normality,<;=<,, henceb = b, that is,
(SG) is fulfilled.

Conversely, let (SG) hold. If then- b exists and equals, we havec < a and
a=c/(a\c) = (c/a)\¢, S0a-b=c= (c/a)-a by Lemma 3.3(i). This is one half
of (N); the other one is seen similarly. O

We finally remark that (SG) implies the following propertyased by integral resid-
uated lattices which are normal in the sense of [26]; seel{@@ma 14].
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Lemma 3.10. Let(L; V, /,\, 1) be a strictly good pseudo-BCK semilattice. Then,
foranya,b € L, a = b\a if and only ifa = a/b.

4 Naturally ordered R-algebras

We will now focus our attention on a class of R-algebras wligcbf special im-
portance in the present context: R-algebras whose partial @s the natural one,
that is, induced by the multiplication on either side. Thakgbras coincide with
the upper-semilattice-orderegbneralized pseudoeffect algebraghich were in-
troduced in [13] as a double generalization of effect algept5].

In addition to the natural order, it will be necessary to asswne more condition,
which is a version of the Riesz decomposition property asdmbles the equally
denoted property of po-groups (see, e.g., [20]). A list tftexl properties of partial
algebras can be found in [11].

Definition 4.1. An R-algebra L; Vv, -, 1) is callednaturally orderedf for a,b € L:

(NO) a < bifandonly ifb-x = a for somez € L if and only if y-b = a for some
ye L.

Moreover, we say thal has theweak Riesz decomposition propeiftfor a, b, ¢ €
L:

(RDRy) If a-b < ¢, there araig > a andbg > b such thatc = ag - by.

Clearly, in the presence of (NO), some of the axioms of Rialgebecome redun-
dant.

Lemma 4.2. The partial algebra(L;V,-,1) is a naturally ordered R-algebra if
and only if(E1), (E2), (E3), (E4), and(NO) hold. Moreover, a naturally ordered
R-algebra is normal.

This section is devoted to a concise proof of the fact thatgekaas subject to the
two conditions of Definition 4.1 isomorphically embed int@thegative cone of an
£-group [13]. Note that our procedure includes some optitisisa when compared
to the presentation in [13].

To begin with, we list some basic properties of naturallyeved! R-algebras.

Lemma 4.3. Let(L; V,-, 1) be a naturally ordered R-algebra. For amyb, c,d €
L, the following holds:

11



() If a-bexists,a; > a, andb; > b, then alsau - by exists.

(i) Letc-a andc-bexist. Therc-(a VvV b) = (c-a)V (c-b).
Leta-candb-cexist. Thera Vv b)-c= (a-c)V (b-c).

(i) Leta-b=c-d. Thena < cifand only ifd < b.
If L fulfils (RDP,), we moreover have:

(iv) If avb=1andifa andb possess a lower bound, thenb =b-a = a A b.

(V) fa-bexistsanthVe=bVc=1,thenalsa-bVc=1.

Proof. Assertions (i)—(iii) are easily checked.

(iv) Let a, b, e be given such thai vV b = 1 ande < a,b. Soe = x-b for some
x and, by (RDR), a = dy - dy for somed; > x anddy, > b. But thena,b < ds,
whenced, = 1 andxz < a. It follows by part (i) thata - b exists, and we have
e < a-b. Because-bis a lower bound ofi andb, we concludez-b = a A b. The
remaining assertion follows by symmetry.

(v) This is immediate from (RD§). O

By a scheme of the form (3) in the following lemma to hold, weamehat the
product of any row and any column exists and equals the eletnemhich the
respective arrow points to; the order of multiplicationrigrfi left to right or from
top to bottom, respectively.

Lemma4.4.Let(L;V,-, 1) be anaturally ordered R-algebra fulfillindRDP,). Let
ai,...,Qam,b1,...b, € L besuchthat;-...-a,, =by-...-b,, Wwheren,m > 1.
Then there arelyq, ..., d,, € L such that

d11 dln — a1
dpi oo dmn — am 3)
! !
b1 ... b,
and
dip, Vdy =1foreveryl <i<j<mandl <I<k<n. 4
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Proof. If m = 1 orn = 1, the assertion is trivial. Leth = n = 2; then our
assumption isi - as = by - be. Setd; = a1 V by and letds, ds be the unique
elements such that, = d - dy andb; = d; - ds.

We claim thatb, < ds. Indeed, by (RDP), there areh; < e; andb, < ey such
thata; = e -e9; and because; = d; - ds andd; < eq, we havehy, < ey < ds by
Lemma 4.3(iii). So may choosg, such thatd, - ds = bs.

By Lemma 4.3(ii),d; = (drdz)\/(dyd:;) = dl-(dQ\/dg), sodsVds = 1. By Lemma
4.3(iV) and associativityzl-ag =b1-by = dl-dg-dg-d4 = dl-dg-dg-d4 = al-dg-d4,
whenceas = ds - d4. The proof is complete.

Assume next thatn > 3 andn > 2, and that the assertion holds for any pair
m’ < m andn’ < n. Itis then easily seen that it also holds for the paiandn as
well. The proof is complete. O

A naturally ordered R-algebrél;V,-, 1) given, we will now construct the free
semigroup with the elements éfas its generators and subject to the conditions (i)
a-b = c,wherea,b,c € L such thats-b = cholds inL and (ii)a-b = b-a, where
a,b € L suchthatz v b= 1in L. The technique is, according to our knowledge,
due to Baer [2]. Although the idea is simple it is not comgietdraightforward to
see that, as a consequence of the Riesz decomposition fyrdberR-algebra does
not “collapse” within the semigroup.

Definition 4.5. Let (L; V, -, 1) be a naturally ordered R-algebra. A sequefice

.,ap) of 1 < n < w elements ofL is called aword of L. The set of words
of L is denoted byV(L), and we define the produet W(L)? — W(L) as the
concatenation.

Moreover, we define- to be the smallest equivalence relation)di{ L) such that
(aly"' yAp; Ap+1, - - 7an) ~ (ala---7ap'ap+1"" aan)

and, ifa, V apy1 =1,

(a'lv"'7ap7ap+17"'7an) ~ (a’lv"'aap-f-lva'pv"'aan)

holds for any two words inW(L) of the indicated form, wheré < p < n. The
equivalence class of sonfey,...,a,) € W(L) is denoted bya,,...,a,], and
the set of equivalence classes®y.).

As seen in the next lemmé( L) is a semigroup under elementwise concatenation,
into which L, as a semigroup, naturally embeds.

Lemma 4.6. Let(L;V,-, 1) be a naturally ordered R-algebra fulfillintRDP).
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(i) The equivalence relatior- on W(L) is compatible with. - being the in-
duced relation(C(L); -, [1]) is a monoid.

(i) Letas,...,an,b € L, wheren > 1. Then(ay,...,a,) ~ (b) if and only if
ai-...-ay, = b.
(i) Let
v: L —C(L), a— |d]
be the natural embedding éfinto C(L). Then is injective.
Furthermore, fora,b € L, a-b is defined and equalsif and only ifi(a) -

t(b) = v(c).

Proof. (i) is evident.

(i) In view of Lemma 4.3(iv), we see that for any wofd,, ..., a,) the product
of whose elements exists and equglthe same is true for any word equivalent to
(al, e ,an).

(iii) The injectivity of . follows from part (ii).

Let moreover,b € L. If a-b = ¢, then obviously.(a) - t(b) = ¢(c). Conversely,
t(a)-(b) = t(c) meanda,b) ~ (¢), thatis,a-b = c by part (ii). O

We next show that the monoid(L); -, [1]) fulfills the algebraic properties of the
negative cone of a partially ordered group. As a preliminag/generalize Lemma
4.4,

Lemma 4.7. Let (L;V,-, 1) be a naturally ordered R-algebra fulfillinRDR).
Letay,...,am,b1,...b, € L such that(ay,...,an) ~ (by,...,...,b,), where
n,m > 1. Then there arel;1, .. ., d,, € L such that3) and(4) hold.

Proof. If m = nanda; = by,...,a,, = b,, the assertion s trivial. Let;,...,b,,
be arbitrary, and led;1, . . . , d,,, be such that (3) and (4) hold. We shall show how
to modify the scheme (3) to preserve both its correctnesst@dupremum-one

relations (4) whenby, . .., by,) is replaced (i) by(b1, . .., by-bpt1, . . ., by) for some
1 < p < n, (i) by (bl,...,b;,bg,...,bn), wherel < p < nandby; - by = by,
(iii) (b1,...,bp+1,bp,...,by), Wwherel < p < nandby,V by,,1 = 1. The assertion

will then follow.

Ad (i). We replace, for each= 1, ..., m, the neighbouring entrieg, andd; ,+1
by their product. Then the product of thixh row is obviously stilla;. To see that
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the product of the new column exists andjs+ b, 1, we make repeated use of
Lemma 4.3(iv):

bp . bp+1 - dlp Teelt dmp N dl,p+1 Tt dm,p+1
- dlp N dl,p+1 N dgp Tt dmp N dg,p+1 Tt dm,p+1
= dlp ’ d17p+1 ‘d2p : d2,p+1 tees 'dmp ’ dm,pH-

Moreover, the supremum-one relations are preserved by leef&gv).

Ad (ii). We apply Lemma 4.4 to the equatidf)- b2 = di, .. .- dmyp, and replace
the columnd,y, ..., d,,, with the new double column. Obviously, in the modi-
fied scheme, the rows and columns multiply correctly, andired supremum-one
relations are fulfilled.

Ad (iii). We interchange the-th and the(p + 1)-th column. The product of the
rows remains unchanged by Lemma 4.3(iv) then, and the pteddfithe columns
are the intended values. Furthermore, the newly requirpteswum-one relations
follow from the fact thab, v b, = 1. O

We can now prove thdC(L); -, [1]) is a po-group cone.
Lemma 4.8. Let (L;V,-, 1) be a naturally ordered R-algebra fulfillinRDR).
Then(C(L);-,[1]) is a monoid such that far, b, c € C(L):

(i) Froma-b = [1] it followsa = b = [1].

(i) Froma-b=a-corb-a=c-aitfollowsb = .

(i) There arer,y € C(L) suchthata-b =yr-a="0-v.

Proof. The fact thaC (L) is a monoid was the content of Lemma 4.6(i).
() This follows from Lemma 4.6(ii).

(if) We may restrict to the case that= [a] for somea € L. It follows from Lemma
4.6(ii) that if b = [1], alsob = [1]. Letnowb = [by,...,by], ¢ = [c1,..., ),
m,n > 1, and assuméa,by,...,by) ~ (a,c1,...,cy). We will show that
(b1,...,bm) ~ (c1,...,cp); then the first part will follow, and the second one
is proved analogously.
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By Lemma 4.7, there are elementslirsuch that

d d ... dy — a
€1 €11 e €1n — bl
em €ml --- Cmn — bm
a C1 Cn,

where any pair of elements one of which is placed further wpfarther right than

the other one, has supremum one. By (E4)., ..-d, = e1-...-e,. Furthermore,

by the definition of~ we may exchange successive elements in a word whenever
they have supremum one; so

(b1, ...y bm) ~ (€1,€115 -y €Iny « « 4 EmyCmly---yEmn)
~ (€1, ey Cmy €115y €mly « « s €lny ey Cin)
~ (dy,.. dn,en,...,eml, C e €lny ey Cmn)
~(di,e11y. . yemiy -« o dpy€ln,y .y €mn)
~ (15 cn).

(iif) We may restrict to the case that= [a] andb = [b] for somea, b € L. Choose
a,bsuch thati-(a Vv b) = a andb-(a Vv b) = b. Thena v b = 1. Now choos& such
thata-a = a. Then we havéa,b) ~ (a,a,b,aVb) ~ (a,b,a,aVb) ~ (a,b)-(a).
One half of the assertion follows; the other one is seen aityil O

We next establish that(L) is a lattice under the natural order.

Lemma 4.9. Let (L; V,-, 1) be a naturally ordered R-algebra fulfillingRDP,).
Setting
a<b if b-r=aforsomere C(L)

fora,b € C(L), we endowC (L) with a partial order. We moreover have:

() Letay,aq, by, by € C(L) such thatay -ay = by-bs. Then there ar@q, 02,03,
04 € C(L) such that
01 09 — m
03 04 — a2
Lo
b1 bo

(5)

ando, Vo3 = [1]
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(i) C(L) is lattice-ordered.

Proof. In view of Lemma 4.8, we easily check thdtis a partial order. Note that,
by Lemma 4.8(iii),< is actually a two-sided natural order. Moreover, the phrtia
order onC(L) is directed.

(I) Leta1 = [CL%,...,CL}C], o = [a%,...,alz], bl = [b%,,b}n], 62 = [b%,,bi],
wherea}, ..., b2 € L. By Lemma 4.7 there aré},, ..., d} € E such that

1 1 2 2 1
dll . e dlm dll S dln — CLl
1 1 2 2 1
Ay d, By A~
3 3 4 4 2
@ dh L d S
! Lo l
1 1 2 2
AR S S - B

and such that every two elements in this diagram have supnreame if one of
them is placed further up and further right than the other. ddefine nowd; =
[diy,. . dd,, o o . diy,...,di ]andinasimilar way alsos, 93,04. In view of

the supremum-one relations, we conclude that the schenids.
Let nowa € L such thats, 93 < [a]. We may apply Lemma 4.7 to the equiva-

lence(a,...) ~ (d},...,d2,) to conclude that is the product of some elements
abovedi,,...,d2 . Butby the same reasoning we see that also the product of
elements abové},,...,d; . Soa = 1, and it follows thato, Vv 03 = [1] in the
posetC(L).

(i) Let a1, b; € C(L). By the directedness, there are by such thati;-ag = by-bo.
By part (i), there ar@, 02, 03,04 such that (5) and, Vv 03 = [1] holds. We show
thato, -02-03 = a; A by. Indeed,p; <0203 < ay,by, and ife < ay, b1, we have
e =a-f1 = by -fs and by Lemma 4.8(iip, - f1 = 03 - fo for somefy, fo. Applying
part (i) again, we conclude< 01 - 05 - 03.

Furthermore, we show that = a; Vv by. Clearly,a;,b; < 01. Lete > aq,b;.
Choosef such that - § = a; - as. Thenf < as, bs. By similar reasoning as in the
preceding paragraph, we conclugeA by = 05 -03-04. It follows 07 <'e. O

We arrive at our main theorem. By an isomorphic embeddingnaitarally ordered
R-algebra L; V, -, 1) into an/-group(G; A, V, -, 1), we mean an injective mapping
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t: L — G such that fom, b,c € L

taVvb) = i(a) Vi(b),
a-bis defined and equatsif and only if .(a) - ¢(b) = ¢(c), (6)
(1) = 1.

Note that, with respect to the partial product byv is what is called a full homo-
morphism in [21§13]. Namely, a product is defined inexactly if the product of
the images is inside the rangeof

Theorem 4.10.Let(L;V, -, 1) be a naturally ordered R-algebra fulfillinRDP,).
Then there is an isomorphic embeddingf the R-algebraL; V, -, 1) into the (-
group(G(L); A, V, -, [1]). Therange of is a convex subset 6f L), upper-bounded
by [1], which generate§ (L).

Proof. By a theorem of Birkhoff (see [16, Theorem 11.4]), Lemma 4r&lies that
there is a po-groug(L) such thatC(L) = G(L)~ andG(L) = C(L)-C(L)~! =
C(L)~'-C(L). By Lemma 4.9(ii), it furthermore follows tha(L) is lattice-
ordered.

Clearly, we take.: L — G(L), a + [a]. We have,(1) = [1]. Furthermore, by
Lemma 4.6(iii), is injective.

By the same lemmay-b = cin Lifand only if c(a) - 1(b) = ¢(c) inC(L).

By construction,.(L) generatesj(L) as a group. We next show thatl) is a
convex subset af (L) = G(L)~ containing[1]. Leta € G(L) andb € L such that
[b] < a < [1]. Thena-c = [b] for somec € C(L), and by Lemma 4.6(ii) it follows
thata = «(a) for somea € L.

Finally, leta,b € L. If a < b, clearly.(a) < ¢(b). Conversely, if(a) < ¢(b), then
[b] - ¢ = [a] for somec € C(L), and we conclude by Lemma 4.6(ii) thiatc = a
for somec € L, that is,a < b. The preservation of finite suprema is now easily
derivable. O

In the sequel, we will consider a partial algehtaas a subset of the group
representing. according to Theorem 4.10. Note that then the partial midé&pon
on L is simply the restriction of the multiplication i@ to those pairs of elements
of G whose product is again an element/of
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5 Cone algebras

We are going to apply the representation theorem 4.10 to tagses of pseudo-
BCK semilattices. The first one was proposed by B. Bosbach [4]

Definition 5.1. A divisible pseudo-BCK semilattice is calleccane algebréf, for
anya,b € L,

(B) avb = a/(b\a) = (a/b)\a.

The original definition in [4] was certainly different, busic be seen equivalent by
the subsequent lemma. We note furthermore that in [14],etiempseudo-£ BCK-
algebrawas used.

Lemma 5.2. The algebra(L;/,\) is the /,\-reduct of a cone algebra if and
only if, for anya,b,c € L, (i) (¢/a)/(b/a) = (¢/b)/(a/b) and (a\b)\(a\c) =
(B\a)\(b\c), (ii) (a\a)\b =b/(a/a) = b, (iii) c\(a/b) = (c\a)/b, anda/(b\a) =
(b/a)\b.

In this case, the algebra can be expanded in a unique way to@aalgebra, putting
1 = a\a for an arbitrary a, and defining the partial order by < b if a\b = 1.

Proof. For the indicated properties of cone algebras, see Secti6or2the other
direction, we refer to [4]. O

Lemma 5.3. Let(L;V, -, 1) be the R-algebra associated to a cone algebra. Then
L is a naturally ordered R-algebra fulfillinRDP,).

Proof. If, for a,b € L, a < b, thenb = a/(b\a) = (a/b)\a by (B), soL is a
naturally ordered R-algebra.

To see (RDBR), leta,b,c € L such thata-b < c. Leta; = a V ¢ and chooseé,
such thaic = a; - b;. Clearly,a < a;. Furthermore, fronz/(a\c) > aVc = a;
we concludei\c; = a\¢; it follows by = a\c; = a\c > a\(a-b) = b. O

So we have proved the following representation theorermdJsbmpletely differ-
ent techniques, this theorem was first proved by BosbachA4jroof along the
lines of the present paper is contained in [14]. A furtheropf this theorem can
be found in [17].
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Theorem 5.4. Let (L;V, /,\,1) be a cone algebra. Then there is @mgroup
(G; A, V, -, 1) such that(L; Vv, 1) is a convex subalgebra ¢t7—;V,1), L gener-
atesG as a group, and for, b € L

a/b = a-b"t A1,

ba = b tanl. ()

Proof. By Theorem 4.10, the associated R-algefitav, -, 1) isomorphically em-
beds into th&-group(G(L), A, V, -, 1). Fora,b € L, we haven = (aV b)-(b\a) =
(a/b)-(a V b) by (B) and Lemma 3.3(i); (7) follows. O

6 Divisible pseudo-BCK algebras: the linear case

A pseudo-BCK semilattice is callesemilinear(or representablgif it is the sub-
direct product of pseudo-BCK semilattices whose ordemiedi. The class con-
sisting of these algebras forms a variety [30]. In order tecdbe the semilinear
divisible pseudo-BCK semilattices, the case of a lineaeortkeds to be consid-
ered, and this is what we shall do in this section.

Definition 6.1. A pseudo-BCK toses a pseudo-BCK semilattice whose partial
order is linear.

We will show that divisible pseudo-BCK tosets correspondhi ordinal sum of
naturally ordered R-algebras, which in turn are reprefémtay linearly ordered
groups according to Theorem 4.10.

We give in this way an alternative proof of the representatizeorem in [10].
The only difficult step is the proof that pseudo-BCK tosetssrictly good.

Lemma6.2. Let(L;V,/,\,1) be a divisible pseudo-BCK toset. L{gt; v, -, 1) be
the associated R-algebra.

() Leta <b<c< 1. Thena %, bandb <, cifand only ifa <, ¢. Similarly,
a <y bandb x; cifand only ifa x; c.

(i) Leta <b < 1. Thena <, bifandonly ifa <; b.

Proof. (i) a <, bandb <, cimply a <, ¢ by the axiom of associativity, (E2).

Assumea <, c¢. Thenb <, ¢ follows by (E6). Moreover, we have= b/(c\b) <
[a/(D\a)]/(c\b) = a/(c\a) = cby b <, ¢, Lemma 2.4(viii), andh <, c¢. SO
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[a/(b\a)]/(c\b) = b/(c\b) < 1. In view of the linear order, it follows\b > b and
c\b > a/(b\a). So by Lemma 2.4(vii)p = a/(b\a), that is,a <, b.

The proof of the first half is complete; the second half is shawalogously.

(i) Let a <, b. We will showa =; b; the converse direction will follow analo-
gously.

Letx be suchthab-z = a. If b < x,thena <; z anda < b < x imply a <; b by
part (i).

So let us assumie> x. Thena <, banda < x < bimply a <, 2 by part (i); let
s be such that: - s = a. If thenb < s, we concluder <; b froma < s.

Let us assumeé > s. Since therb-x = x-s < s < b, there is by (E6) an < r
suchthats =b-r. Soa =b-2 = z-b-r then.

If b <r,thena x; rimpliesa <; b. If b > r,thenz-b < r < bimpliesr = u-b
for someu, hencea = x-b-u-b, thatis,a <; b. O

In view of Lemmas 3.7 and 3.9, part (i) of this lemma shows tiasible pseudo-
BCK tosets are strictly good and the associated R-algelpeasoamal.

We note that for the natural question if all divisible psetd®loK semilattices are
strictly good, recently the negative answer was given [Bgré are pseudo-BL
algebras which are not good. So in particular, property (S@dt redundant.

We furthermore note that the proof of part (i) of Lemma 6.2 sigmificant im-
provement of the proof which we have given in the commutatase in [37].

Definition 6.3. Let (I;<) be a linearly ordered set, and for everyc I, let
(Li;V,-,1;) be an R-algebra. Put = |J;c;(L:\{1:}) U {1}, wherel is a new
element. For,b € L, puta < bif eitherb = 1, ora € L; andb € L; such that
i< j,ora,b e L; for somei anda < b holds inL;. Similarly, definea - b if either

a = 1, in which casei-b = b, orb = 1, in which casex-b = a, ora,b € L; for
somei anda - b is defined inL;, in which case: - b is mapped to the same value as
in L;. Then(L; Vv, -, 1) is called theordinal sumof the R-algebrag.; w.r.t. (I; <).

Lemma 6.4. An ordinal sum of R-algebras is again an R-algebra.
An ordinal sum of normal R-algebras is again a normal R-algeb

Lemma 6.5. Let (L;V,/,\,1) be a divisible pseudo-BCK toset. Lt;V,-, 1)
be the associated R-algebra. Thérns the ordinal sum of linearly and naturally
ordered R-algebras fulfillingRDP,).

Proof. By Lemma 6.2(i),L\ {1} is the disjoint union of convex subsetssuch that
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a < bforanya,b € C such thats < b, but not for any pair of elements different
from one and from distinct subsets.

Let C one of these subsets, and consi@eu {1} endowed with the restriction of
< and- to C'U {1} as well as with the constaint Then(C U {1};V, -, 1) fulfills
the axioms (E1)—(E4) and, by Lemma 6.2(ii), also (NO).(50 {1} is a naturally
ordered R-algebra. Sin€g U {1} is linearly ordered, also (RDholds. O

In view of Theorem 4.10, we have proved the following repnéstion theorem.

Theorem 6.6. Let (L;V,/,\,1) be a divisible pseudo-BCK toset. Thek{1} is
the disjoint union of convex subsets, i € I, such that the following holds. For
eachi, there is a linearly ordered groufiz;; A, V, -, 1) such that C; U{1};V, 1) is
aconvex subalgebra o7, ; v, 1) andC;U{1} generate<s; as a group. Moreover,
if a,b € C; for somei € I,

a-b=1 ifa<b, b l.a ifa<b,
a/b= _ b\a = _
1 otherwise, 1 otherwise,
where the differences are calculated@h. If a € C; andb € C; such that # j,
a ifa<b,
b = b\a =
afb = ba {1 if b < a.

Note how that the set§’; are, apart from théd, “initial pieces” of the linearly
ordered groupss;. C; can be of the fornG; \{1} or {g € G;: u < g < 1} for
someu < 1, as known from the case of pseudohoops. In additigrgan also be
of the form{g € G;: u < g < 1} for someu < 1, or C; is bounded from below,
but does not possess an infimuntip

7 Pseudo-BCK semilattices and residuated lattices

Although pseudo-BCK algebras were introduced indepehdérim residuated

lattices, both notions are closely related. For an ovendewcerning residuated
lattices, see [27]; for a comprehensible account, we reft8]. For the particular
notion of divisibility which is central in this paper, see[26].

Definition 7.1. An integral residuated latticés an algebrd L; A, V, o, /,\, 1) such
that (P1)(L; A, V, 1) is a upper-bounded lattice, (P@); <, 1) is monoid, and (P3)
foranya,b,c € L,

acb < ¢ ifandonly if b < a\c ifand only if a < ¢/b. (8)
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The close relationship between pseudo-BCK semilatticesimtegral residuated
lattices is, for the general case, expressed by the subsethemrem of J. Kihr
([28], see also [29]), which was independently found alsdChyan Alten [36].
The intention of this section is to use the representati@ordms 5.4 and 6.6 to
specialize this relationship to the two subclasses of ps&€K semilattices con-
sidered in this paper.

Theorem 7.2. Let (L; A, V,0,/,\,1) be an integral residuated lattice, and let
(L';v,/,\,1) be a subalgebra of its/, /,\, 1-reduct. Then’ is a pseudo-BCK
semilattice.

All pseudo-BCK semilattices are of this form.

So in particular, thev, /,\, 1-reduct of an integral residuated lattice is a pseudo-
BCK semilattice. Furthermore, this reduct determinesdiseluated lattice unique-
ly. So we may wonder under which conditions a pseudo-BCK Isgtice of a type
considered in this paper is expandable to a residuateddattin the remaining
cases, a pseudo-BCK semilattice is by Theorem 7.2 a propaigebra of such a
reduct; we may wonder if this reduct can always be chosenltambdo the same
class.

We will first consider the case of cone algebras. The corredipg subclass of
residuated lattices is the following [3].

Definition 7.3. An integral residuated lattice such that (B) holds is cal€aMV-
algebra

We note that this is what in certain papers is referred to aSraegral GMV-
algebra”.

Proposition 7.4. Let (L; A, V, o, /,\,1) be an integral residuated lattice. Thdn
is a GMV-algebra if and only ifL; \, /,\, 1) is a cone algebra.

Proof. Let L be a GMV-algebra. Then the, /, \, 1-reduct is a pseudo-BCK semi-
lattice by Theorem 7.2L fulfils (B) by assumption. For a proof of the divisibility
conditions (D), see [3, Proposition 5.1] and the remarksrddefinition 2.2. One
direction of the asserted equivalence follows; the otherisrtlear. O

So given a cone algebiia the question is whe# is the reduct of a GMV-algebra

and if L is otherwise a subreduct of a GMV-algebra. The easy answeuisl on
the basis of the representation by Theorem 5.4.
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Theorem 7.5. Let (L;V,/,\,1) be a cone algebra, and I¢G; A, Vv, -, 1) be the
£-group containingL in accordance with TheoreB4 and the notation used there.
ThenL is the reduct of a GMV-algebra if and only(ij L is lattice-ordered and
(i) for anya, b € L there is a minimal elemewrte L such thata-b < c.

Inany case(L;V, /,\, 1) is a subreduct of the GMV-algeb(&—; A, Vv, -, \, /, 1),
where\ and / are defined by7).

Proof. By Proposition 7.4, is the reduct of a GMV-algebra if and only If is
expandable to an integral residuated lattice. This in tarthé case if and only if
L is lattice-ordered and, for any,b € L, the set{c € L: b < a\c} contains

a minimal element. The latter condition holds iff, for amyb € L, the set{c €
L:b<(ave)tlcl ={ceL: ab< c}hasaminimum, thatis, if there
is a minimal element i, abovea - b. The first assertion is proved. The second
assertion is obvious. O

From this theorem, we easily derive a representation thedoe GMV-algebras,
an elegant formulation of which can be found in [17].

We will next consider the case of divisible pseudo-BCK teset

Definition 7.6. An integral residuated lattice is callelivisibleif for a,b € L:
(D) aAb = (a/b)ob = bo(b\a).

We note that this notion comes very close to the notion of agh@goop, but is not
the same; however, in the case of a linear order, the twom®to coincide.

Proposition 7.7. Let(L; A, V, o, /,\, 1) be a semilinear integral residuated lattice.
ThenL is divisible if and only if(L; v, /, \, 1) is a divisible pseudo-BCK semilat-
tice.

Proof. Let L fulfil (D). For the derivation of (D), see the remarks afteefihition
2.2.

Conversely, letL;V, /,\, 1) be a divisible pseudo-BCK semilattice. Leth € L.
From (D), we have(ao(a\b))\c = (a\b)\(a\c) = (B\a)\(b\c) = (bo(b\a))\c

for any ¢, and it followsao(a\b) = be(b\a). Similarly, we concludée(b\a) =
(b/a)ea.

We haveao(a\b) < a,b. If now d < a,b, it follows by the semilinearity that
d = do((b\a) V (a\b)) = (de(b\a)) V (do(a\b)) < ao(a\b). Soa A b = ae(a\b),
and the proof of (D’) is complete. O
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So we pose again the question which divisible pseudo-BC#tsaasre reducts and
which are proper subreducts of divisible integral residddattices. As before, the
answer is found on the basis of the representation by The6rémThe ordinal
sum of integral residuated lattices is defined like in [1].

Theorem 7.8. Let(L;V, /,\,1) be a divisible pseudo-BCK toset. L@}, i € I,
be the convex subsets bfand (G;;V,+,1), i € I, the linearly ordered groups
containingC; U {1} in accordance with Theore®6 and the notation used there.
ThenL is the reduct of a divisible integral residuated lattice ifcaonly if, for each
1, eitherC; possesses a minimal element or igdnnot bounded from below.

In any case, the ordinal sum of the GMV-algeb(és ; A, Vv, -, /,\,1),7 € I,is a
divisible integral residuated lattice, of whidlL; \/, /,\, 1) is a subreduct.

Proof. By Proposition 7.7 L is the reduct of a divisible integral residuated lattice
if and only if L is expandable to an integral residuated lattice. This in isithe
case if and only if, for anyi,b € L, the set{c € L: b < a\c} possesses a
minimum. Ifa =1 orb = 1orif a € C; andb € C}, wherei # j, this is the case.
Leta,b € C; for somei € I. IfthenC; U {1} = G, the minimum isa - b; if then

C; U {1} = [u, 1] for someu; € G \{1}, the minimum isa - b v u;. However, if

C; is in G; bounded from below, but does not possess a minimal elemembse
a,b € C; suchthatz-b < cfor all ¢ € C;; then the minimum does not exist. The
proof of the first part is complete. The last claim is obvious. O

From this theorem, we easily derive the representatiorrémeof A. Dvurecenskij
[8] on pseudohoops.
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