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Abstract—By employing state-of-the-art automated design and
optimization techniques from the field of evolutionary computa-
tion, engineers are able to discover electrical machine designs
that are highly competitive with respect to several objectives like
efficiency, material costs, torque ripple and others. Apart from
being Pareto-optimal, a good electrical machine design must also
be quite robust, i.e., it must not be sensitive with regard to its
design parameters as this would severely increase manufactur-
ing costs or make the physical machine exhibit characteristics
that are very different from those of its computer simulation
model. Even when using a modern parallel/distributed computing
environment, carrying out a (global) tolerance analysis of an
electrical machine design is extremely challenging because of
the number of evaluations that must be performed and because
each evaluation requires very time-intensive non-linear finite
element (FE) simulations. In the present research, we describe
how global surrogate models (ensembles of fast-to-train artificial
neural networks) that are created in order to speed-up the multi-
objective evolutionary search can be easily reused to perform
a fast tolerance analysis of the optimized designs. Using two
industrial optimization scenarios, we show that the surrogate-
based approach can offer very valuable insights regarding the
local and global sensitivities of the considered objectives at
a fraction of the computational cost required by a FE-based
strategy. Encouraged by the good performance on individual
designs, we also used the surrogate approach to track the average
sensitivity of the Pareto front during the entire optimization
procedure. Our results indicate that there is no generalized
increase of sensitivity during the runs, i.e., the used evolutionary
algorithms do not enter a stage where they discover electrical
drive designs that trade robustness for quality.

Keywords—tolerance/sensitivity analysis, global surrogate mod-
els, artificial neural networks, evolutionary design optimization.

I. INTRODUCTION AND STATE OF THE ART

When designing various industrial products, carrying out
real-life performance tests is highly impractical due to financial
and time-related reasons. Fortunately, the advent of many
computer-assisted design (CAD) systems and accurate physics-
based simulation software has enabled engineers to perform
required (design) experiments much faster and much cheaper
in a virtual environment.

Even though simulating the behavior of a product is much
faster than constructing physical prototypes and setting up
real-life experiments, high-level tasks like design space explo-
ration, optimization and tolerance/sensitivity analysis remain

rather impractical for many real-life problems. This is be-
cause such high-level tasks require the virtual evaluation (and
hence, computer-based simulation) of thousands of different
models. Since a single computer-based evaluation is a very
computationally-intensive operation that may require anything
from several seconds to a few hours, the total computational
requirements of performing an optimization or a tolerance
analysis remain daunting (even when using parallel/distributed
computing).

In order to try and alleviate this burden, several researchers
[1]–[4] have proposed the usage of surrogate modeling – i.e.,
the creation of fast-to-evaluate linear and non-linear regression
models that can accurately approximate the results produced
by computer/physics-based simulation software.

Concerning the specific task of evaluating the sensitivity
(changes in objectives and constraints) of a fixed design (para-
metric model) to allowed deviations in some of its parameter
values, in [5], Stephens et. al present the comparative results of
applying three types of surrogate modeling techniques: radial-
basis functions [6], artificial neural networks [7] and support
vector machines [8]. The surrogates from [5] were aimed at
replacing high-fidelity computational fluid dynamics models.
The results indicate that, despite proposing a different model
architecture, all three surrogate construction methods produce
largely identical tolerance/sensitivity results. Other noteworthy
examples of using surrogates for performing tolerance analysis
can be found in [9] and [10].

There are several ways in which a tolerance/sensitivity
analysis can be defined/performed [11]. In this paper we
describe a variation based on one of the most common
strategies: the min-max approach. Given a design encoded
as a variable parameter vector x = {x1,x2, . . . ,xn} and m
targets (i.e., objectives, constraints) that we wish to analyze
y(x) = {y1(x),y2(x), . . . ,ym(x)}, the outline of our idea is to:

1) ask the decision maker (i.e, engineer, designer, fi-
nal client) to supply the allowed deviation/tolerance
intervals for each of the n variables. They can be
defined using a relative formulation (e.g., ±pc% of
the nominal value of variable xc), or a nominal-value
formulation (e.g., a lower-bound and upper-bound
interval [lc,uc] with lc ≤ 0, uc ≥ 0 and P(lc = 0∩uc =
0) = 0 that will be centered around xc);



2) for i ∈ 1, . . . ,m, find (as fast as possible) an accurate
estimation for ymin

i and ymax
i , the nominal min and

max values of target yi that one can expect when the
n variables can take any value within their allowed
deviation intervals;

3) compute and present the decision maker with several
informative metrics aimed at displaying the magni-
tude of the expected target changes.

We are particularly focused on industrial problems related
to the optimal design of electrical drives. A generic overview of
such problems and of the need to perform a tolerance analysis
of their solutions is presented in the next section. Section
III contains the detailed description of our general tolerance
analysis approach (i.e., of steps 2 and 3 of the preceding
enumeration). Section IV describes how the particular optimal
motor designs analyzed in this work have been obtained. Sec-
tion V presents the results of two different tolerance analyses
and offers some interpretation hints. The last part of this work
contains the conclusions and some perspectives on future work.

II. SURROGATE-ASSISTED OPTIMIZATION OF
ELECTRICAL MACHINE DESIGNS

By optimizing the design of electrical machines, decision
makers aim to find assemblies that are highly competitive with
respect to several, usually conflicting, objectives like efficiency,
material costs, torque ripple, and others. Hence, decision
makers in the field are actually faced with multi-objective
optimization problems (MOOPs). The result of such problems
is a set of Pareto-optimal (or non-dominated) solutions (PN).
Each member of the PN simultaneously holds two properties:

1) it is not worst across all optimization objectives when
compared to any other solution from the PN;

2) it is better than any other solution from the PN with
regard to at least one of the objectives.

The projection of the PN in objective space is called the Pareto
front (PF).

Population-based stochastic optimization techniques in
general, and evolutionary algorithms in particular, have proven
to be one of the best performing methods for solving MOOPs
[12]. One of the characteristics of multi-objective evolutionary
algorithms (MOEAs) is that a large number of (fitness) evalu-
ations of the objective function (i.e., target quality estimations)
need to be performed during their execution. This is a major
problem since the evaluation of the targets of a single electrical
motor design (i.e., of an individual from the population) is
done via a series of computationally-intensive non-linear finite
element (FE) simulations. The FE simulations are usually
preceded by a modeling stage in which a CAD software is
used to construct a 2D or 3D model/mesh of the assembly from
the given design parameter vector. A sketch of this simulation
based evaluation strategy is presented in the left hand part of
Figure 1.

MagOpt [13] – a state-of-the-art integrated framework for
optimizing mechatronic components – features several MOEAs
(e.g., NSGA-II [14] and SPEA2 [15]) that can be employed
when aiming to optimize electrical drive designs. In order
to reduce the prohibitive run times obtained when running
these algorithms, we have initially proposed [16] a hybrid

optimization strategy that relies on creating global surrogate
models on the fly. The best performing surrogates were based
on multi-layer perceptrons [7] (MLPs) – a specific type of
artificial neural networks. The focal idea was to obtain speed
improvements by switching the MOEA to a surrogate-based
fitness assessment function (that completely removed CAD and
FE dependencies) during the middle part of the optimization
runs. The hybridization strategy was successful and in a
subsequent work [17] we showed that further reductions in
total optimization time could be obtained by switching to
ensemble-based surrogate models trained over Pareto-trimmed
training sets. For each target, the ensemble surrogates are
simply averaging the results of the 10 best individual MLP
models obtained after a predefined limited best parameter grid
search. The new fast-to-train non-linear ensemble predictors
also enabled the integration of multiple surrogate-based op-
timization blocks inside an optimization run as suggested by
the “Repeat option” line from the right hand part of Figure 1.
This was done with the hope of exploring a bigger part of the
search domain. An overview of the resulting surrogate-assisted
optimization procedure is presented in Figure 1.

The main aim of the present work is to show how the global
ensemble surrogate models/predictors can be also used to
rapidly perform a tolerance analysis of the optimized electrical
drive designs. In general, this is a secondary but very important
stage of the overall design process since it is usually demanded
that a good assembly must be robust with regard to (at least
some of) its parameters. Having an oversensitive motor design
would severely increase manufacturing costs or make the
resulting physical machine (prototype) exhibit characteristics
that are very different than those of its computer simulation
model. All in all, if a design that is in the Pareto front is not
deemed robust, the design will likely not be preferred by the
decision maker.

III. THE PROPOSED TOLERANCE ANALYSIS STRATEGY

Regardless of the method used to evaluate a given motor
design (FE or surrogates) and finally compute the minimum
and maximum expected target values, we apply the same toler-
ance analysis strategy. The reason is that, in the present stage
of development, after performing the surrogate analysis, we
want to double-check it using FE computations. Our aim is to
obtain an accurate overview of the estimation imprecision one
should expect from opting for the surrogate-based approach.
On the long run, if the surrogate-induced imprecision is not
causing interpretation issues, the surrogates can be used to (at
least) offer valuable insight related to target sensitivities.

In light of the the limited number of evaluations that are
generally allowed when performing a (time-constrained) FE-
based tolerance analysis, the general analysis we propose is a
sequence of two distinct stages:

• a primary estimation of sensitivity with regard to local
changes that affect a single design variable, i.e., the
standard one-factor-at-a-time (OFAT) [18] approach;

• a secondary estimation of sensitivity with regard to
global interactions between all the considered design
variables.

The reasoning is that, although optimistic in nature, af-
ter performing a limited number of evaluations, the primary



Fig. 1. An overview of the surrogate-based optimization process implemented in the MagOpt [13] framework. There are three hypothetical targets that must
be considered: two optimization objectives (o1 and o2) and one constraint (c1).

(local/OFAT) sensitivity estimation will provide the decision
maker with a quite accurate picture of the individual influ-
ence exhibited on the elicited targets by the various design
variables. The more computationally-intensive – and more
imprecise/stochastic – secondary (global) sensitivity estimation
is aimed at discovering if the possible interactions between the
influences of different design variables are likely to amplify the
local sensitivities.

A. Estimation of Local Sensitivity

Given a design variable vector x of size n, the local
sensitivity of target value yi(x) to the sole variation of the
design variable value xc, c ∈ {1, . . . ,n} inside the interval
[xc+ lc,xc+uc], where lc≤ 0, uc≥ 0 and P(lc = 0∩uc = 0)= 0,
is estimated by:

• evaluating 11 different design variations,
x0,x1, . . . ,x10 obtained using the formula:

xk
j =

{
x j + lc +0.1 · (uc− lc) · k, if j = c
x j, if j 6= c

, (1)

with k ∈ {0,1, . . . ,10} and 1≤ j ≤ n;

• selecting the two extreme target values ymin
i and ymax

i
from the aforementioned 11 design variations

• computing the relative (elasticity) indicator:

∆loc(yi,xc, lc,uc) =
xc · (ymax

i − ymin
i )

yi · (uc− lc)
(2)

Under the assumption of local linearity inside (narrow)
variation intervals, Eq. (2) should provide a good estimation
of the relative influence that variable xc has on target yi.
The interpretation of ∆loc is very simple: for a change of z%
in xc

1, one should expect a change of z ·∆loc(yi,xc, lc,uc)%
in yi. Thus, a major advantage of ∆loc is that its relative
formulation enables a direct comparison between the local
sensitivities induced by a variable across several targets or the
local sensitivities induced by all variables on a single target.

According to our described OFAT approach, the total
number of designs that must be analyzed during the primary
estimation of sensitivity for a single target is 11 ·n where n is
the number of considered design variables.

B. Estimation of Global Sensitivity

The global sensitivity of target value yi(x) to the simul-
taneous variation of all the design variables of x inside their
predefined deviation intervals is estimated by:

• evaluating 1000 ”neighboring” designs obtained via a
Latin Hypercube sampling [19] (LHS) method and,
in some cases, a grid combination of extreme design
variable values;

• selecting the two extreme nominal target values ymin
i

and ymax
i among the 1000+11 ·n (global+local) design

variations;

1Such that xc · (1± z) ∈ [xc + lc,xc +uc] holds.



• computing

∆glob(yi) =
xspr · (ymax

i − ymin
i )

yi · [xmax
spr − xmin

spr ]
(3)

where xspr is the base value of the design variable that
displays the largest relative deviation when looking at
the variable vectors associated with ymin

i and ymax
i . xmax

spr
and xmin

spr denote the minimal and maximal values of
xspr inside the variable vectors associated with ymin

i
and ymax

i .

In order to understand how xspr, xmax
spr and xmin

spr are obtained,
let us consider a simple example with:

• a base vector x = (0.2,0.5,4.8) for which we wish to
analyze the global sensitivity with regard to target yi;

• a variation vector xmin = (0.19,0.505,4.776) which
corresponds to ymin

i ;

• a variation vector xmax = x=(0.21,0.49,4.824) which
corresponds to ymax

i ;

The observed relative variable deviations are |0.21 −
0.19|/0.2 = 0.1 for x1, |0.49− 0.505|/0.5 = 0.03 for x2 and
|4.824−4.776|/4.8 = 0.01 for x3. Since the largest deviation
is observed for variable x1, xspr = x1 = 0.2, xmax

spr = 0.21 and
xmin

spr = 0.19

The 1000 individuals created for the global sensitivity es-
timation stage are generated according to different approaches
depending on the total number of design variables.

If 1 < n≤ 9:

• 2n individuals will be created by performing a grid
combination of extreme values. The idea is that,
when assuming local linearity, extreme target values
correspond to extreme variable values (i.e., xc + lc or
xc+uc) and the strongest interactions are also expected
between combinations of extreme variable values. As
an example, a design variation created in this stage
can have the form: x∗ = (x1 + l1,x2 + l2, . . . ,xn + un).
This part of the global sensitivity estimation is stable
as the same variations are generated whenever fixing
the allowed variable deviation intervals.

• 1000−2n individuals will be created using the LHS.
Obviously, this part of the global sensitivity estimation
is stochastic.

If n > 9, all the 1000 individuals will be created only via
LHS and the resulting global sensitivity estimation is expected
to be slightly more unstable.

Because of the reliance on statistical sampling and a rela-
tively small pool of neighbors, it should be noted that there is
a higher intrinsic uncertainty associated with ∆glob (as opposed
to ∆loc) even when using only FE-based target estimates.
Nevertheless, the global approach is far more realistic as
(especially in production environments) one is far more likely
to encounter simultaneous design parameter deviations. Since
all the targets of a given design are analyzed based on the
same 1000+11 ·n variations, one can use the resulting ∆glob
values to compare between the global sensitivities of different

targets: ∆glob values of different magnitudes help to rapidly
discriminate between robust and highly sensitive targets.

The extreme target values (ymin
i and ymax

i ) discovered during
the global sensitivity estimation are also very useful to the
decision maker. These values are highly practical as they
indicate the expected nominal target values in the worst-case
scenario. Using them, one can compute the expected relative
loss or gain for each target. By design2, our optimization
problems always require target minimization and thus, the
relative loss associated with target yi is given by:

yloss
i =

(ymax
i − yi)

|yi|
(4)

IV. EXPERIMENTAL SETUP

A. The Design Problems and the Elicited Targets

As previously mentioned, the general aim of the present
work lies in trying to improve the design process of electrical
machines by providing decision makers with the means of
performing very fast tolerance analyses. We focus especially
on motor designs that are the (Pareto-optimal/non-dominated)
results of multi-objective optimization runs of two different
industrial problems:

Problem no. 1 concerns a motor with an interior rotor
topology with embedded magnets. The stator and rotor cross-
sections are presented in Figure 2. The corresponding design
parameter vector has a size of 6 and is given by:

x = ( bst , dsi, er, bss, αm, hm ) , (5)

where all parameters are illustrated in Figure 2 except for αm,
which denotes the ratio between the actual magnet size and
the maximum possible magnet size as a result of all other ge-
ometric parameters of the rotor. The goal is to simultaneously
optimize four unconstrained objectives: y1 – the overall cost of
the materials necessary for building the motor, y2 – the peak-
to-peak value of the motor torque for no current excitation, y3
– the efficiency of the electrical drive and y4 – the equivalent of
y2 at load operation. All four objectives are considered during
the tolerance analysis stage.

Fig. 2. Cross-sections with the geometric dimensions of the stator and the
rotor for Problem no. 1

2When yi conceptually needs to be maximized (because, for instance, it
represents the efficiency of the electrical drive), we opt to minimize −yi.



Problem no. 2 is also formulated for a motor that features
an interior rotor topology. The associated stator and rotor
cross-sections are displayed in Figure 3. The design parameter
vector contains 22 real-valued variables that must be config-
ured in order to optimize four unconstrained objectives that
regard efficiency (y2 and y4) and production costs (y3 and y5).
The first target of the tolerance analysis (y1) is a constraint
imposed on peak-to-peak value of the motor torque at load
operation. The performance of the assembly is evaluated at
3000 revolutions per minute.

Fig. 3. Stator and the rotor cross-sections for Problem no. 2

B. The Multi-Objective Optimization Runs

The first electrical drive design optimization problem we
consider is rather standard and we were able to achieve
good optimization results when applying a classic MOEA like
SPEA2. We used standard genetic operators: SBX crossover
[20] and polynomial mutation [21]. We opted for an equal
archive and population size of 100 as this setting has yielded
very good results on this type of problem in multiple runs over
the past four years. We also used a literature-recommended pa-
rameterization with a crossover probability of 0.9, a crossover
distribution index of 20, a mutation probability of 1/|x| and a
mutation distribution index of 20.

For the second, more challenging problem, we used
DECMO [22] – a hybrid multi-objective evolutionary algo-
rithm based on cooperative coevolution that aims to profit
from the very good performance exhibited by differential
evolution (DE) operators on continuous real-valued search
spaces. DECMO was parameterized as described in [23].

Both optimization runs were allowed to perform 10000 FE-
based fitness evaluations.

The way in which surrogate modeling was used to speed-
up the optimizations is straightforward. In each of the two
runs we inserted five surrogate-based optimization blocks: after
1000, 2000, 3000, 4000 and 5000 FE-based fitness evaluations.
We constructed ensemble surrogate models that employed 10
MLPs trained over Pareto-trimmed training sets of at most
1000 individuals. At the end of each surrogate-based optimiza-
tion cycle we re-evaluated the best 600 (i.e. 6 or 3 generations
worth of) individuals discovered during the surrogate-based
search. The surrogate-based optimizations were carried out
using the base algorithm and parameterization of the run
(i.e., SPEA2 or DECMO) and were allowed to generate 5000

individuals. We stopped using surrogate-based optimization
blocks after 5600 FE-based evaluations and re-evaluations
because the improvements delivered by the enhancement were
becoming smaller and smaller. As such, for the last 4400
evaluations, both runs fell back to fully FE-based MOEAs.
When also considering the surrogate-based designs, each final
PN was obtained after considering 32000 possible designs.

The final MLP-based ensemble surrogate models (used
for performing the tolerance analyses described in the next
section) were trained – as described in [17] – after the end of
the optimizations using all the valid FE-evaluated individuals
generated during the runs.

V. RESULTS AND INTERPRETATION

A. Design-wise Local Sensitivities

For each design problem, after performing the multi-
objective optimization, we proceeded to apply the local and
global sensitivity estimation strategies described in Section III
on several designs selected by the decision maker from the
obtained PNs.

We first performed very fast3 surrogate-based analyses and
then we re-evaluated them (i.e., re-analyzed the created design
variations) using lengthy4 FE simulations. For each design
we always considered relative allowed deviations of ±1% for
every variable. The main aim of performing dual surrogate/FE
analyses was to assess the accuracy of the surrogate-based
sensitivity results.

In Figures 4 and 5 we plotted the surrogate-based and
FE-based local sensitivity maps (matrices) of two particular
optimization solutions – EvoDesign1 for the first problem and
EvoDesign2 for the second one. These two solutions are the
ones deemed by the decision maker as the most interesting
with regard to each optimization problem. Each cell in the
local sensitivity matrices is obtained by computing Eq. (2) for
the considered variable/target pair.

The matrices from Fig. 4, that correspond to the optimized
design evolved for Problem No. 1, show that:

• the maximum ∆loc value estimated using the global
surrogate models is slightly optimistic (≈ 5) compared
to the one computed using FE simulations (≈ 7);

• the overall structure of the two local sensitivity maps is
very similar as the surrogate-based analysis is able to
correctly identify the more sensitive targets (y2 and y4)
and the variables that determine the local sensitivities
(x2, x5 and, to a lesser extent, x4).

The matrices from Fig. 5, that corresponding to the opti-
mized design evolved for the second (harder-to-model) prob-
lem, show that:

• the broad structure of the two local sensitivity maps is
very similar as: y1 is identified as generally sensitive
target (that is affected by the local variations of several
variables) and y3 and y5 are quite sensitive only to x3
and, to a lesser extent, x1;

3≈ 7 seconds of local computation
4≈ 6 hours when distributing over 50 HTCondorTM [24] nodes



Fig. 4. Surrogate-based and FE-based local sensitivity maps for EvoDesign1 – a Pareto-optimal solution of Problem no. 1

Fig. 5. Surrogate-based and FE-based local sensitivity maps for EvoDesign2 – a Pareto-optimal solution of Problem no. 2

• although maximum ∆loc values are quite similar, on
the finer level, the surrogate-based analysis is under-
estimating the local sensitivities associated with y1
and slightly overestimating some local sensitivities
associated with y3 and y5;

• for the targets where a very good surrogate model can
be constructed (i.e., y2 and y4), the surrogate-based
analysis is able to correctly identify a rather slight
sensitivity with regard to x3.

A general conclusion for all the comparative surrogate/FE
local sensitivity estimations we have performed is that the

surrogate-based variant is able to correctly identify broad
sensitivity patterns (and thus offer valuable insights to the de-
cision maker) but (as expected) the precision of the sensitivity
estimation is heavily influenced by the quality of the global
surrogate model on which the analysis is based.

B. Design-wise Global Sensitivities

Information concerning the global sensitivities of two an-
alyzed electrical drive designs is centralized in Tables I and
II. The first row of each table also contains the training R2

achieved by each ensemble surrogate model during 10-fold
cross-validation.



TABLE I. GLOBAL SENSITIVITY INDICATORS FOR EVODESIGN1

Indicator
Tolerance analysis targets

y1 y2 y3 y4

Surrogate R2 0.9941 0.9664 0.9938 0.9822

Base value 6.9719 0.1062 -0.9169 0.1104

Surrogate-based ymin
i 6.8968 0.0989 -0.9171 0.1002

Surrogate-based ymax
i 7.0588 0.1140 -0.9165 0.1189

Surrogate-based yloss
i 1.25% 7.34% 0.00% 7.70%

Surrogate-based ∆glob 1.1863 8.4553 0.0306 8.5650

FE-based ymin
i 6.8776 0.0998 -0.9171 0.1034

FE-based ymax
i 7.0824 0.1207 -0.9142 0.1254

FE-based yloss
i 1.58% 13.65% 0.03% 13.59%

FE-based ∆glob 1.4688 9.8396 0.1617 9.9678

TABLE II. GLOBAL SENSITIVITY INDICATORS FOR EVODESIGN2

Indicator
Tolerance analysis targets

y1 y2 y3 y4 y5

Surrogate R2 0.7425 0.7190 0.9651 0.7532 0.9746

Base value 11.1451 -88.4460 37.2550 -84.7884 31.3534

Surrogate-based ymin
i 10.3235 -88.8901 34.7290 -85.4092 29.5796

Surrogate-based ymax
i 12.2576 -88.0092 39.7738 -84.1261 33.1594

Surrogate-based yloss
i 9.98% 0.49% 6.76% 0.78% 5.76%

Surrogate-based ∆glob 9.0530 0.4925 6.7436 0.7460 5.7603

FE-based ymin
i 12.7686 -89.4934 35.8252 -86.2212 30.3409

FE-based ymax
i 15.3052 -88.6053 38.6869 -84.9568 32.3845

FE-based yloss
i 37.33% −0.18% 3.85% −0.20% 3.33%

FE-based ∆glob 11.3801 0.5021 3.8408 0.7456 3.2586

In the case of EvoDesign1, the magnitudes of both the
surrogate and the FE-based indicators show that targets y2
and y4 are highly sensitive and target y1 is slightly sensitive.
Target y3 seems quite insensitive even when considering global
interactions between allowed variable deviations. It should be
noted that while surrogate and FE-based ∆glob values are rather
similar, the FE-based analysis estimates losses for y2 and y4
that are nearly twice as large as those predicted using surrogate
models.

In the case of EvoDesign2, the magnitudes of the surrogate-
based indicators show that targets y1, y3 and y5 are highly
sensitive and targets y2 and y4 are slightly sensitive. The FE-
based indicators confirm these estimations but indicate that
y1 might be more sensitive than initially assessed while y3
and y5 seem less sensitive than the surrogate-based analysis
indicated. Surprisingly, on y2 and y4, two of the three targets
of EvoDesign2 where the quality of the surrogate models is
quite low, the surrogate and FE-based estimations are far more
similar.

The overall conclusion for the global sensitivity tests
we performed is that the surrogate-based approach is able
to produce meaningful estimations. For example, these fast,
surrogate-based, sensitivity results can be used to at least make
inferences about the targets of a design at a broad (fuzzy) level:
highly sensitive, sensitive, slightly sensitive, etc.

C. Pareto-wise Sensitivity Evolution

Since all our FE-based analyses showed that the surrogate-
based global sensitivity indicators are able to at least correctly
assess sensitivity magnitudes5, we attempted to track the
Pareto-wise sensitivity evolution of different objectives. The
reason for this is that we wanted to check if the MOEA-based
optimization is inherently prone to discover models that are
not only better than their predecessors but also more sensitive.
In other words we wanted to check if, at a certain stage during
the optimization runs, we would start trading design sensitivity
for design optimality.

Our approach is quite simple:

• during the run of the MOEA, at the end of each
generation, we stored all the Pareto non-dominated
individuals in the population (i.e., all the individuals
that define the up-to-date PF);

• at the end of the multi-objective optimization process,
we constructed surrogate models for all the elicited
targets using as training samples all the FE-evaluated
individuals;

• for every target, we analyzed the global sensitivity of
every Pareto non-dominated individual in storage and
averaged the results over all the designs stored at a
given time. We considered ±1% deviations for every
design variable.

The results we obtained indicate that, for the performed
optimization runs there is no systematic increase of the (global)
sensitivities associated with PN designs. Nevertheless, some
interesting observations can be made regarding the evolution
of the average Pareto-wise relative loss indicator:

• for the targets where there is a small average improve-
ment in quality, the average Pareto-wise loss displays
a stable behavior. This is exemplified in Figure 6 for
target y3 of Problem no. 1 where the average Pareto-
wise quality improves by a factor of only 1.0042
during the entire run (from -89.74 to -90.12).

• for the targets where there is a significant average
improvement in quality, the average Pareto-wise loss
is showing a steady increase at certain times. This is
exemplified in Figure 7 for target y5 of Problem no. 2
where the average Pareto-wise quality improves by a
factor of 4.0405 during the entire run (from 163.19 to
40.39). The average nominal loss (i.e., ymax

i − yi) also
improves by a factor of 1.3731 during the optimization
run from 3.57 in the first Pareto-optimal set to 2.60 in
the Pareto-optimal set obtained after 10000 FE-based
evaluations. Since for this target the improvements
regarding loss do not match those regarding quality,
the relative loss is sharply increasing between 1000
and 5000 evaluations. Hence, the behavior of the
Pareto-wise relative loss indicator from Figure 7 is
explained by the inability to reduce average losses
with the same efficiency with which the target is
improved.

5Between the different targets of the same electrical drive designs, as well
as between the same target in different designs.
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VI. CONCLUSIONS AND FUTURE WORK

In the present work we have introduced a practical two-
stage tolerance/sensitivity analysis strategy based on the min-
max approach and we have tested this strategy on industrial
problems from the field of electrical drive design. We have
also shown that global surrogate (non-linear regression) models
intended for speeding-up multi-objective design optimization
runs can also be used to rapidly perform very insightful (and
to a certain degree accurate) tolerance analyses of the evolved
designs.

Encouraged by the good performance on individual motor
designs, we also used our new surrogate-based approach to
track the dynamics of the average sensitivity of the Pareto
front over the entire optimization run. Our results indicate
that the applied evolutionary algorithms are not entering a
stage where they discover electrical drive designs that gen-
erally trade robustness for quality. Nevertheless, our analysis
of Pareto-wise sensitivity evolution revealed that there are
certain optimization targets (objectives) for which the average
improvements regarding sensitivity are much smaller than the
average improvements regarding quality. This suggests that,
in the future, it might make a lot of sense to define the
tolerance/sensitivity of a design as an optimization objective
in its own right.

Another idea that seems very promising for future work
is centered around switching the LHS with a more efficient
sampling method like the one proposed by Kato et al. in [25].
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[17] A.-C. Zăvoianu, E. Lughofer, G. Bramerdorfer, W. Amrhein, and E. P.
Klement, “An effective ensemble-based method for creating on-the-fly
surrogate fitness functions for multi-objective evolutionary algorithms,”
in Proceedings of the 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC 2013). IEEE
Computer Society Conference Publishing Services (CPS), 2014, pp.
237–244.

[18] C. Wu and M. Hamada, Experiments: planning, design, and parameter
optimization. Wiley, New York, 2000.

[19] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245,
1979.

[20] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, pp. 115–148, 1995.

[21] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Computer Science and Informatics, vol. 26, pp.
30–45, 1996.
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