
IEEE TRANSACTIONS ON MAGNETICS, 2017 1

Surrogate-Based Multi-Objective Optimization of Electrical Machine

Designs Facilitating Tolerance Analysis

Gerd Bramerdorfer1, Member, IEEE, Alexandru-Ciprian Zăvoianu2
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Multi-objective optimization algorithms are becoming ever more popular in the field of electrical machine design as they provide
engineers with an automated way of efficiently exploring huge design spaces when searching for machines that are simultaneously
highly competitive regarding several objectives like efficiency, material costs, torque ripple and others. Apart from exhibiting
these good target characteristics, a good design should also be robust, i.e., it should not be very sensitive to slight changes in its
design parameters as this would either seriously impact production costs or make the physical machine behave differently than
its (optimized) computer simulation model. The present work is focused on describing how global surrogate models (i.e., nonlinear
regression models), that are created in order to reduce the dependency on finite element (FE-)simulations during the multi-objective
optimization run, can be easily reused to perform very fast local and global tolerance/sensitivity analyses of generated designs. While
obtained in a fraction of the time required by the complementary FE-based approach, the surrogate-based sensitivity estimates are
able to provide accurate and valuable information regarding the robustness of electrical machine designs. Ultimately, by integrating
robustness-related information with Pareto front projections, we aim to provide engineers with much clearer pictures of the specific
problem-related trade-offs discovered by the automated design optimization procedure.

Index Terms—cogging torque, efficiency, multi-objective optimization, optimal design, surrogate-based optimization, toler-
ance/sensitivity analysis, torque ripple

I. INTRODUCTION

Engineers dealing with electric machine design usually try

to find the best possible assembly for predefined objectives

and constraints. For instance, the efficiency and the torque

ripple are usually considered. In former times, the optimal

design was obtained using analytical equations. Safety factors

were typically introduced as the nonlinear effects could not be

taken into account with satisfying accuracy. Subsequently, the

use of finite element (FE-) simulations arose but the lack of

computational power meant that the number of designs to be

analyzed was severely limited.

As computing power has continuously increased, today,

complex FE-simulations are typically run and nonlinear ma-

chine models are derived to quantify and compare the char-

acteristics of machine designs. Moreover, a lot of design

parameters with large parameter areas are investigated. Using

optimization algorithms, an efficient exploration of the design

space can be achieved and engineers have the option to

perform very fine grained parameter discretizations or even

optimize over continuous design spaces (whenever the latter

makes sense from a technical/manufacturing point of view).

Prominent examples of state-of-the-art optimization algorithms

used in the field comprise the improved Strength Pareto Evo-

lutionary Algorithm (SPEA2) [1], the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [2], particle swarm optimiza-

tion (PSO) [3], and various techniques based on differen-

tial evolution (DE) [4]. Furthermore hybrid or asynchronous
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algorithms have also been investigated [5], [6]. A typical

optimization scenario can, e.g., be found in [7].

Due to the economic pressure and the need for high power

densities, cost-optimal machine designs receive preferential

treatment. With this at the back of one’s mind and applying the

by now available techniques, highly-utilized machine designs

are typically obtained. For instance, the ferromagnetic compo-

nents are driven at very high flux densities. As a consequence,

the obtained machine design most likely show an increased

sensitivity regarding manufacturing imperfections or changes

of the material characteristics. Such tolerances are unavoid-

able and thus researchers try to investigate their impact. For

instance, the influence of the manufacturing technique on the

material characteristics was treated in [8]–[11]. The results

reveal that analyzing the sensitivity of particular assemblies

with regard to tolerances is crucial. Further studies were car-

ried out in [12]–[19]. However, usually just a single objective,

an analytical model, or just a few design parameters are

considered. Knowing the sensitivity of the obtained machine

designs permits the engineer to trade off rated performance

against robustness. Fig. 1 gives the explanation of robustness

for a simplified single-objective problem (minimization) with

a single design parameter. The design with the best overall

rated performance as well as a less sensitive design are shown

and the impact of tolerances for the design parameter x is

illustrated.

Considering the reliability of machine designs with regard to

parameter changes inevitably causes the computational cost to

increase. Additional computations need to be conducted in or-

der to derive predictions about the change of the performance

with regard to tolerances. In particular, an accurate FE-based

evaluation of the performances of machine designs incurs a
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Fig. 1. Robust vs. optimal rated performance: While for rated operation the
solution indicated by the red circle performs best, this is not necessarily the
case when tolerances occur. An example for a Gaussian distribution of the
selected design parameters and their impact on the output is presented.

long runtime.

Some researchers already considered minimizing the com-

putational cost for conventional optimization scenarios by

generating surrogate models [20]–[24]. This allows replac-

ing costly FE-simulations and speeding up the optimization

process. This paper is about analyzing the feasibility of such

surrogate models for conducting tolerance analyses. A typical

optimization scenario for electric machine design is consid-

ered. Section II gives the experimental setup, discussing the

design parameters and the objectives and providing a sketch of

the motor topology to be investigated. As the electric machine

features nonlinear characteristics, analyzing a design involves

the run of multiple 2D-FE-calculations. While Section III ex-

plains a common FE-based approach for optimizing machine

designs, Section IV illustrates the advantages when applying a

surrogate-based strategy. For both approaches a computer clus-

ter of 50 HTCondor™-managed [25] cores is used in order to

analyze machine designs in parallel. In Section V, the applied

sensitivity analysis strategy is described in detail. The derived

measure of sensitiveness can be included as an objective for

the optimization run. By contrast, Section VI highlights how

a tolerance analysis could be incorporated to typical Pareto

fronts of multi-objective optimization scenarios. This allows

for identifying and differentiating between more sensitive and

less sensitive designs. Thus, the user can manually select a

machine design in due consideration of the effects caused

by tolerances. We conclude by providing general remarks

regarding the proposed technique and obtained results and by

giving an outlook on future work.

II. EXPERIMENTAL SETUP

The stator and the rotor for the considered optimization

problem are presented in Figs. 2 and 3, respectively. Table I

lists all the design parameters that are considered for optimiza-

tion comprising the used designation, the symbol and unit,

as well as the parameter range given by the minimum and

maximum value and the step size. The total number of possible

combinations is approximately 13.35 × 106. When having a

closer look to the parameters it can easily be observed that

most of them are related to the shape of the rotor. Even varying
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Fig. 2. Cross-section of the stator for the considered optimization problem.
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Fig. 3. Cross-section of the rotor for the considered optimization problem.

the stator inner diameter has a direct impact on the rotor, as

the air gap width is kept constant. Further constant (geometry)

parameters are presented in Table II. The installation space

was fixed by defining the stack length and the stator outer

diameter, while the change of the axial height of the end

winding region was neglected. Besides the temperature of the

permanent magnets and the stator coils, the considered load

point, defined by rated torque and speed, is also denoted in

this table.

The scenario comprises multiple objectives, as they are the

material costs of the assembly, the cogging torque at no load

operation and the machine’s efficiency and the torque ripple

for the given load point. Table III lists the four objectives. The

material cost cmat involve the cost for coils made of copper

ccoils, the cost for the Neodymium-Iron-Boron (NdFeB-) mag-

TABLE I
CONSIDERED DESIGN PARAMETERS

Name Symbol / Unit Min. Step Max.

magnet height hm [mm] 1.0 0.2 4.0

magnet pole pitch αm [1] 0.70 0.05 1.00

pole height hr [mm] 0.5 0.1 2.0

pole eccentricity er [mm] 0.0 0.1 2.5

stator inner diameter dsi [mm] 45.0 0.5 50.0

stator tooth width bst [mm] 3.5 0.1 6.0
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TABLE II
CONSTANT AND RATED PARAMETERS

Name Symbol [Unit] Value

number of stator slots Ns [1] 12

number of rotor poles pz [1] 8

air gap width δ [mm] 0.8

slot width bss [mm] 2

stator outer diameter dso [mm] 75

rotor inner diameter dri [mm] 28

stack length lstack [mm] 40

coils’ temperature ϑcoil [◦C] 120

permanent magnets’ temperature ϑpm [◦C] 90

rated torque Trate [Nm] 0.5

rated speed nrate [rpm] 3000

TABLE III
OBJECTIVES

Name Symbol / Unit

material costs cmat [Euro]

peak-to-peak cogging torque Tcogpp [Nm]

efficiency η [%]

peak-to-peak torque ripple at load Trippp [Nm]

nets cmagnet and the cost for the core material ccore. As the

assembly is modeled using common CAD-software, the total

volumes of the permanent magnets vmagnet and the coils vcoils
can be easily obtained. The volume of the stator core and rotor

core can be similarly derived. However, when considering

the waste during manufacturing, the required volume vcore
is usually defined using a quadratic cross section with side

length of the stator outer diameter dso:

vcore = d 2

so lstack . (1)

Thus, the cost for the core material are constant for all possible

design candidates. Using the mass density of the considered

components, the masses can be obtained. This finally allows to

calculate the material costs, as usually the prices are given per

kilogram. Here, the defined price of the magnets is 50 e/kg,

while 8 e/kg and 2 e/kg are defined for copper and laminated

steel of grade M400-50A, respectively.

Typically, the material cost and the efficiency are conflicting

objectives. Thus, when analyzing the design space, no unique

assembly featuring superior characteristics can be identified.

Instead, the solution of the optimization problem comes in the

form of a set of Pareto non-dominated designs (notation: PN ).

Each element (i.e., design) from the PN has the property that

it is not worse than any other element in the set with respect

to all four objectives under considerations – i.e., no element

in this set is fully Pareto dominated by another element from

the set. The projection of the PN in objective space is called

the Pareto front (notation: PF ).

Finally, the decision maker chooses (subjectively) a design

from the PN by deciding what is the suitable trade-off

between the objectives for the goal at hand. The general task

of the optimization strategy is to present the decision maker

with an accurate PN that (objectively) models all the existing

trade-off as close to perfection as possible.

III. COMMON OPTIMIZATION STRATEGY

In order to derive accurate results for the objectives for

any machine design under consideration, the analysis of the

machine performance is done by applying two-dimensional

nonlinear magnetostatic finite element (FE-) calculations.

The machine designs under consideration feature a rotor

with buried magnets (see Fig. 3). Thus, a considerable torque

due to the rotor saliency can be generated. From this it follows

that the optimal current angle must be separately derived

for any design under consideration. To allow for deriving

this parameter for maximum motor efficiency and to further

compute the torque ripple for the respective current vector,

a nonlinear modeling of the machine characteristics must

be considered. The data required for modeling is obtained

by running multiple FE-simulations with different current

vectors per machine design under consideration. Successfully

implemented techniques can be found in different articles, e.g.,

[26]–[32].

As a single machine design thus requires a considerable

time for the analysis of its performance (i.e. several minutes

when using a computer cluster and analyzing FE-simulations

in parallel) and the total number of possible machine designs

is very high, a grid search cannot be completed within

satisfying computation time. Thus, many researchers started

to experiment with advanced search/optimization techniques

from the field of soft computing that are able to explore the

design space more efficiently. Suitable choices include, e.g.,

genetic algorithms [1], [2], particle swarm optimization [3] or

differential evolution [4].

Multi-objective evolutionary algorithms (MOEAs) [33] have

proven especially successful because of their inherent ability to

discover sets of nearly Pareto-optimal machine designs during

single runs. Thus, it is possible to obtain high-quality designs

without the need to evaluate all possible parameter combina-

tions. Nevertheless, since all the aforementioned optimization

techniques are population-based (see Fig. 4), they still require

a relatively large number of designs to be evaluated during

a single optimization run. Usually, several hundred to a few

thousand designs need to be explored during a single MOEA

run. When also factoring the dependency on FE-simulations,

one can argue that simply applying MOEAs makes the optimal

design problem viable but by no means fast to solve – e.g., a

complex MOEA-based optimization of an electrical machine

design distributed over a computer cluster can still take nearly

a week [5].

Because of the complex interactions involved (CAD-

systems, FE-based simulations, various optimization tech-

niques/MOEAs, etc.), solving optimization problems concern-

ing electrical machine design usually necessitates an appropri-

ate software framework. For this analysis, MagOpt [34], [35]

is used. This software allows for automatically analyzing and

solving multi-objective optimization problems and features a

flexible analysis structure. Usually it is applied when dealing

with scenarios where the evaluation of design candidates

requires high computational cost. A particular optimization

problem solved with MagOpt was for instance presented in

[7]. Many different techniques for minimizing the runtime of
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optimization problems were developed and implemented to

MagOpt in the past. Among others, evolutionary algorithms

[1], [2] and surrogate modeling techniques [20], [36] were

considered.

MagOpt is developed at both, the Linz Center of Mechatron-

ics [37] and the Department of Electrical Drives and Power

Electronics at the Johannes Kepler University Linz, in Linz,

Austria.

IV. SURROGATE-BASED OPTIMIZATION

As we wish to improve the very long run times required by

MOEA-based optimizations, we adopt a hybrid optimization

strategy (initially outlined in [20]) that uses global surrogate

models automatically created on the fly (i.e., during each

optimization run).

These surrogates are (ensembles of) linear and nonlinear

regression models that are trained to predict target (i.e., objec-

tive and constraint) values based on given inputs (i.e., arrays

of design parameters). Speed improvements are obtained by

switching the MOEA to a surrogate-based fitness assessment

function – that has no CAD and FE dependencies – during the

middle part of the optimization runs. After evaluating several

candidates, multi-layer perceptrons [38] (MLPs) – a specific

type of artificial neural networks – have proven to display

the best accuracy vs. training time trade-off for the nonlinear

targets we want to predict.

Further improvements of the total run time can be ob-

tained by using ensemble-based surrogates trained over Pareto-

trimmed training sets [21]. Specifically, for each optimization

target, the ensemble surrogates simply average the predic-

tions of the 10 best individual MLP models obtained after

a predefined limited best parameter grid search. These fast-

to-train predictors also allow for the integration of multiple

Fig. 4. Conventional optimization strategy - for instance, the multi-objective
minimization problem is solved by applying NSGA-II, a very well-known
multi-objective evolutionary algorithm that relies on a strategy intended to
generation-wise move its population towards the Pareto-optimal set.

surrogate-based optimization blocks inside an optimization run

with the hope of exploring a bigger part of the search space.

An overview of the resulting surrogate-assisted optimization

procedure is presented in Fig. 5.

One important aim of the present work is to show how the

global surrogate models created to speed up the MOEA-based

optimization runs can also be used to perform a very fast but

accurate tolerance analysis of the resulting optimized electrical

drive designs.

V. SENSITIVITY ANALYSIS

In [39], Creveling describes in depth several tolerance

analysis techniques. In the present work we focus on the

most common off-line sensitivity/tolerance analysis strategy:

the min-max approach. Given a design parameter vector

x = {x1, x2, . . . , xn} and m objectives and constraints (i.e.,

targets) to analyze y(x) = {y1(x), y2(x), . . . , ym(x)}, we:

• supply the allowed deviation/tolerance intervals for each

of the n variables either using a relative formulation (e.g.,

±pc% of the nominal value of variable xc) or a nominal-

value formulation (e.g., a lower-bound and upper-bound

interval [lc, uc] with lc ≤ 0, uc ≥ 0 and lc 6= uc that is

centered around xc);

• determine for i ∈ 1, . . . ,m an accurate estimation for

ymin
i and ymax

i – the expected min and max values of

target yi when the n variables can take any value within

their allowed deviation intervals;

• compute informative metrics that show the magnitude of

the expected target changes;

In order to evaluate the precision of our surrogate-based

tolerance/sensitivity analysis approach, we double-checked the

obtained results with FE simulations. Thus, because of the

limited number of evaluations that can be performed during

a (time-constrained) FE-based tolerance analysis, the general

strategy we propose has two distinct stages:

• a primary estimation of sensitivity concerning local

changes that affect a single design variable, i.e., the

standard one-factor-at-a-time (OFAT) [40] approach;

• a secondary estimation of sensitivity concerning global

interactions between all the considered design variables.

The purpose of the (optimistic) OFAT approach is to pro-

vide an accurate picture of the individual impact induced

by each design variable on each elicited target. The more

computationally-intensive and more imprecise (stochastic)

global sensitivity estimation aims to discover if interactions

between the influences exhibited by different design variables

are likely to amplify the min-max estimates obtained via

OFAT.

A. Estimation of Local Sensitivity

For a design variable vector x of size n, the local sensitivity

of target yi(x) due to the sole variation of the design variable

xc, c ∈ {1, . . . , n} inside the interval [xc+ lc, xc+uc], where

lc ≤ 0, uc ≥ 0 and lc 6= uc, is estimated by:
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Fig. 5. An overview of the surrogate-based optimization process used in the present research. There are three hypothetical targets that must be considered:
two optimization objectives (o1 and o2) and one constraint (c1).

• evaluating 11 different design variations, x0,x1, . . . ,x10

where:

xk
j =

{

xj + lc + 0.1 · (uc − lc) · k, if j = c

xj , if j 6= c
, (2)

with k ∈ {0, 1, . . . , 10} and 1 ≤ j ≤ n;

• selecting the two extreme target values ymin
i and ymax

i

observed in the aforementioned 11 design variations;

• computing the relative (elasticity) indicator:

∆loc(yi, xc, lc, uc) =
xc · (y

max
i − ymin

i )

yi · (uc − lc)
. (3)

Eq. (2) means that, in order to obtain the 11 design variations

associated with the design variable xc, we assign to xc 11

uniformly sampled values from its predefined variation interval

[xc + lc, xc + uc] while fixing the values of all other variables

from the design vector we wish to analyze. If a relative

formulation is preferred, lc and uc can be determined instantly

as lc = −xc·pc

100
and uc = xc·pc

100
when one considers a design

tolerance range of ±pc% of the nominal value of variable xc.

Since this design vector is of size n, and each variable needs

to be varied separately, a total of 11 ·n design variations must

be analyzed during the OFAT local sensitivity analysis of each

target.

Eq. (3) provides a good estimation of the relative influence

of variable xc on target yi (when assuming local linearity).

∆loc should be interpreted as follows: for a change of pc%
in xc, one should expect a change of pc ·∆loc(yi, xc, lc, uc)%
in yi. The relative formulation allows for an easy comparison

between the OFAT sensitivities induced by a variable across

several targets or between the OFAT sensitivities induced by

all variables on a single target.

B. Estimation of Global Sensitivity

The global sensitivity of target value yi(x) with regard to

the simultaneous variation of all the design variables of x

inside predefined deviation intervals is estimated by analyzing

an extra 1000 “neighboring” designs. The procedure that

generates these 1000 design variations depends on n, the

number of design variables in x. Thus, if 1 < n ≤ 9:

• 2n individuals will be created by performing a grid com-

bination of extreme values. The reasoning is that under

the assumption of local linearity, extreme target values

correspond to extreme variable values (i.e., to xc + lc
or xc + uc). Accordingly, stronger interactions are also

expected between combinations of such variables (e.g., in

design vectors like x
∗ = (x1+ l1, x2+ l2, . . . , xn+un)).

• 1000 − 2n individuals will be created using a Latin

Hypercube sampling (LHS) procedure [41].

If n > 9, all 1000 individuals are generated via LHS, thus

yielding in a slightly more unstable (fully stochastic) global

sensitivity estimation.

After generating the required “neighboring” designs, the

global sensitivity of target value yi(x) is computed by:

• evaluating (i.e., estimating the target values of) the 1000

extra design variable vectors;

• selecting the two extreme target values ymin
i and ymax

i

among the 1000 + 11 · n total (global+local) number of

available design variations;

• computing

∆glob(yi) =
xspr · (y

max
i − ymin

i )

yi · [xmax
spr − xmin

spr ]
(4)

where xspr is the base value of the design variable that

displays the largest relative deviation when looking at the

variable vectors associated with ymin
i and ymax

i . xmax
spr

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMAG.2017.2694802

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MAGNETICS, 2017 6

and xmin
spr mark the min/max values of xspr inside the

variable vectors associated with ymin
i and ymax

i .

∆glob(yi) shows the relative expected change of target value

yi(x) when given the possible variation of all the design

variables of x inside their predefined tolerance intervals.

A small example is useful in order to better illustrate how

xspr , xmax
spr and xmin

spr are obtained. Let us consider:

• a base vector x = (0.4, 0.5, 6.8) for which we wish to

analyze the global sensitivity with regard to target yi;
• one “neighboring” (variation) vector x

min =
(0.42, 0.505, 6.766) which corresponds to smallest

observed value for the target of interest, i.e., it

corresponds to ymin
i ;

• another “neighboring” (variation) variation vector

x
max = x = (0.38, 0.49, 6.834) which corresponds to

the largest observed value for the target of interest, i.e.,

it corresponds to ymax
i ;

Based on the above two “neighboring” design vectors, the

relative variable deviations are |0.38−0.42|/0.4 = 0.1 for x1,

|0.49 − 0.505|/0.5 = 0.03 for x2 and |6.834− 6.766|/6.8 =
0.01 for x3. Since the largest deviation is observed for variable

x1, xspr = x1 = 0.4, xmax
spr = 0.42 and xmin

spr = 0.38.

The extreme target values (ymin
i and ymax

i ) found during

the global sensitivity estimation are very useful and can be

used to compute two more synthetic metrics:

• the relative loss that can be expected for given target yi:

ylossi =
(ymax

i − yi)

|yi|
. (5)

• the relative gain that can be expected for given target

yi (a large value of this indicator signals that there

is significant potential for local optimization centered

around the design parameter vector that is analyzed):

ygaini =
(yi − ymin

i )

|yi|
. (6)

VI. OPTIMIZATION RESULTS AND TOLERANCE-ANALYSIS

OF THE PARETO FRONT

A. Optimization Procedure and Results

In order to optimize the electrical machine topology de-

scribed in Section III we applied the MagOpt implementation

of the surrogate-based optimization process sketched in Fig. 5

using SPEA2 [1] as the base MOEA. Inside SPEA2 we used

an equal population and archive size of 100 individuals as this

setting has generally delivered good results on similar problem

types in the past. The parameterization of SPEA2 was standard

(i.e., literature-recommended):

• for the SBX crossover operator [42] we choose a

crossover probability of 0.9 and a crossover distribution

index of 20;

• for the polynomial mutation operator [43] we choose a

a mutation probability of 1/6 – where 6 is the size of

our design variable vector – and a mutation distribution

index of 20.

The optimization run was allowed to evaluate 10000 indi-

viduals using FE simulations. We also applied a total of 5

surrogate-based optimization blocks: after 1000, 2000, 3000,

4000 and 5000 FE-based evaluations. During each of these

surrogate-based cycles, after training the regression models

(i.e., MLP-ensembles), we ran SPEA2 with the resulting

surrogate-based fitness function for 50 generations (i.e., 5000

individuals). At the end of each surrogate-based cycle, we

extracted the best 600 individuals out of the 5000 surrogate-

based models, re-evaluated them using FE simulations and

added the competitive ones to the archive and population of the

FE-based optimization run. All in all, when also considering

the surrogate-based designs, each final PN was obtained

after considering 32000 possible designs: 10000 FE-validated

designs out of which 3000 represent the best individuals from

the 25000 surrogate-discovered individuals.

Out of all the individuals discovered during the SPEA2

run, 1004 are Pareto non-dominated when considering the

four optimization objectives and thus form the PN . The two-

dimensional projections of the corresponding PF is presented

in Fig. 7. This projection can be seen a general state-of-the-art

result one could expect from successfully running an efficient

multi-objective optimization method on a given electrical drive

design scenario. In order to speed-up the discovery of this

general optimization result, we employed the surrogate-based

strategy mentioned in Section IV and introduced in [20] as

well as other enhancements presented in [44]. From this point

on, the decision maker (electrical engineer) is usually tasked

with finding a particular design that exhibits advantageous

trade-offs. The decision maker’s decision is subjective as it

is often influenced by experience and/or personal beliefs. The

one point that we wish to highlight in the next sections is

that by reusing the already-built surrogates to also perform a

very fast sensitivity analyses of the optimized designs, one can

provide the decision maker with important extra information

regarding expected design robustness at virtually no extra cost.

In section VI-C, we show how having this information might,

for example, influence a selection process that is primarily

focused on cost and efficiency but also aims for a low cogging

torque.

B. Design-wise Local and Global Sensitivities

In order to illustrate how the proposed local and global

sensitivity estimation strategies work, after the end of the

optimization procedure, we applied them on one optimized

design selected by the decision maker from the high-efficiency

/ medium-cost section of the Pareto front. We first performed

very fast surrogate-based analyses and then we re-evaluated

them using FE simulations. We evaluated a total of 1066

neighboring designs: 66 neighboring designs were required for

estimating the local sensitivity and 1000 neighboring designs

were required by the global sensitivity part. The very fast

surrogate-based analysis based on these 1066 designs took ≈
7 seconds of local computation while the re-evaluation of all

the neighboring designs using FE simulations took ≈ 6 hours

when distributing over 50 HTCondor™ [25] nodes.

The resulting surrogate-based and FE-based local sensitiv-

ity maps (matrices) are presented in Fig. 6. Although, the

maximum ∆loc value estimated using the ensemble surrogate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMAG.2017.2694802

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MAGNETICS, 2017 7

Fig. 6. Surrogate-based and FE-based local sensitivity maps

models is slightly optimistic (≈ 5), the overall structure of the

two local sensitivity maps is very similar: two targets are more

sensitive (y2 = Tcogpp and y4 = Trippp) and three variables

influence these local sensitivities (x2 = αm, x5 = dsi and, to

a lesser extent, x4 = er).

The results concerning global sensitivities are displayed in

Table IV. The first row in the table shows the training R2

achieved by each surrogate during 10-fold cross-validation.

The magnitudes of both the surrogate and the FE-based results

indicate that targets y2 and y4 are highly sensitive and target

y1 = cmat is slightly sensitive. Target y3 = η displays virtually

no local or global sensitivity. Surrogate and FE-based ∆glob

values are similar, but the FE-based analysis estimates losses

for y2 and y4 that are nearly twice as large. Nevertheless, the

surrogate-based global sensitivity analysis seems appropriate

for at least making target-related inferences at a broad level

– i.e., highly sensitive, sensitive, slightly sensitive, etc. Fur-

thermore, since surrogate-based ymin
i and ymax

i estimations

are quite accurate, this robustness-related information can be

used to complement the Pareto non-domination quality-related

information when opting for a particular electrical machine

design.

C. Pareto Front Extension

Based on the general multi-objective optimization results

we obtained (see Fig. 7), let us consider an academic test

case where a decision maker is tasked with finding a rela-

tively cheap (price ≤ 5 euros) and relatively highly-efficiency

(η ≥ 90%) design that also exhibits very good operational

characteristics – e.g., the lowest cogging torque given the price

and efficiency constraints.

Starting from the initial requirement to have a value-for-

money design, the decision maker will begin the search (final

design selection) process by filtering out all the solutions

with a total cost higher than 5 Euros or an efficiency smaller

than 90%. The remaining designs are highlighted in all two-

dimensional PF projections from Fig. 7. Afterwards, the

TABLE IV
GLOBAL SENSITIVITY INDICATORS FOR THE SELECTED DESIGN

Indicator
Tolerance analysis targets

y1 y2 y3 y4

Surrogate R2 0.9941 0.9664 0.9938 0.9822

Base value 6.9719 0.1062 -0.9169 0.1104

Surrogate-based ymin
i

6.8968 0.0989 -0.9171 0.1002

Surrogate-based ymax
i

7.0588 0.1140 -0.9165 0.1189

Surrogate-based yloss
i

1.25% 7.34% 0.00% 7.70%

Surrogate-based ∆glob 1.1863 8.4553 0.0306 8.5650

FE-based ymin
i

6.8776 0.0998 -0.9171 0.1034

FE-based ymax
i

7.0824 0.1207 -0.9142 0.1254

FE-based yloss
i

1.58% 13.65% 0.03% 13.59%

FE-based ∆glob 1.4688 9.8396 0.1617 9.9678

decision maker is likely to look for a design that also features

a good value for the cogging torque. In other words, he can

focus his search on the designs that define the left-side contour

of the highlighted PF sector from the bottom-left subplot

(i.e., efficiency vs. cogging torque) from Fig. 7. There are

nine designs of interest and variable and objective-wise details

regarding these designs are presented in Table V. In Fig. 8 we

illustrate how the assessed sensitivity of these nine designs

can affect the (expected) trade-off between cogging torque and

efficiency.

The transparent rectangles associated to each Pareto non-

dominated point/design from Fig. 8 mark the global surrogate-

estimated sensitivity, i.e., they are obtained by plotting the

min-max estimates for each of the two targets. For perform-

ing each point-wise sensitivity estimation we used the same

surrogate models as in the previous section.

Fig. 8 contains compelling evidence that augmenting a basic

Pareto plot with sensitivity information is highly worthwhile.
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Fig. 7. Two-dimensional objective space projections of the 1004 Pareto non-dominated designs that were discovered after performing the multi-objective
optimization phase. The highlighted designs simultaneously have an efficiency higher than 90% and a cost lower than 5 Euros.

First and foremost, it enables one to rapidly identify solutions

that are relatively robust (e.g., the designs corresponding to

points 4, 5 and 7) or, in contrast, rather sensitive (e.g., the

designs corresponding to points 1, 8 and 9). The comparative

sensitivity estimates corresponding to neighboring points 1 and

2 (or 7 and 8) show that there is great potential to improve

the overall optimization process by treating design robustness

as a target (or at least constraint) in its own right.

Secondly, using individual sensitivity values, one can easily

create a min-max (worst case - best case) estimation for the

entire Pareto front. This Pareto estimation can be interpreted as

a rudimentary “confidence band” for the general result of the

initial multi-objective optimization problem. It is very impor-

tant to underline that the precision of the Pareto confidence

band is highly dependent on the quality of the estimations

provided by the surrogate regression models.

Thirdly, one can gain valuable insight into the overlap

degree between different solutions (e.g., designs correspond-

ing to points 7 and 8). The overlap degree can be subse-

quently used (as an objective-space metric) to filter candidate

solutions, either during or at the end of the optimization

run. Additionally, some designs that are “slightly Pareto-

dominated” (i.e., they are not in the first Pareto front) might

prove very robust with min-max sensitivity estimates that are

completely encompassed by the far larger sensitivities of the

Pareto-optimal designs. In this case, a choice for the slightly

dominated designs is well-worth considering. In our case, this

means that the design corresponding to point 8 would likely

be preferred to the one corresponding to point 7 even if the

former also exhibited a slightly worse cogging torque measure

than the latter (and thus be Pareto-dominated). Likewise, based

on robustness with regard to cogging torque estimation, design

no. 2 is to be preferred to design no. 1 when aiming for the

highest possible efficiency (≈ 91%) among the reduced set of

optimized designs.

All in all, by using information provided by the sensitivity

analysis strategy that we propose, the decision maker can

further filter the number of suitable designs by removing those

that appear to be less robust than their neighbors (i.e., designs

corresponding to points number 1, 8, and 9 in the current
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Fig. 8. The extension of our surrogate-based sensitivity analysis approach to an FE-based Pareto front. The transparent min-max sensitivity box associated
with point 8 is also hashed in order to better distinguish it from the larger encompassing box associated with point 7.

TABLE V
THE DESIGN PARAMETER VECTORS AND COMPLEMENTARY OBJECTIVE VALUES FOR THE NINE DESIGNS PLOTTED IN FIG. 8.

Design no.
Design variables Design objectives

hm [mm] αm [1] hr [mm] er [mm] dsi [mm] bst [mm] cmat [Euro] Tcogpp [Nm] η [%] Trippp [Nm]

1 1.0 0.90 2.0 0.0 45.0 4.0 4.920 0.0305 91.126 0.0534

2 1.0 0.85 1.9 0.0 46.0 3.7 4.886 0.0269 91.041 0.0747

3 1.0 0.85 1.8 0.0 45.5 4.0 4.874 0.0186 90.978 0.0640

4 1.0 0.80 1.5 0.0 46.0 3.5 4.832 0.0156 90.866 0.0694

5 1.0 0.85 1.9 0.3 45.0 3.8 4.823 0.0098 90.641 0.0416

6 1.0 0.80 1.5 0.3 46.0 4.5 4.810 0.0090 90.336 0.0416

7 1.2 0.80 1.5 0.5 45.0 4.8 5.000 0.0084 90.152 0.0280

8 1.0 0.75 1.0 0.2 45.5 4.6 4.750 0.0081 90.141 0.0542

9 1.0 0.75 0.6 0.3 45.0 3.8 4.754 0.0055 90.005 0.0476

study) and have some degree of confidence that the trade-

offs indicated for the other designs will hold in the face

of (manufacturing) deviations within pre-established tolerance

intervals. Of course, given a real-life design task, one could

and should proceed to also look at the sensitivity-related

information for torque ripple and total costs for the nine

designs.

VII. CONCLUSION

In the present work we have introduced a practical two-

stage tolerance analysis strategy based on the min-max ap-

proach. The industrial case study shows that global surrogate

(i.e., nonlinear regression) models constructed for speeding-up

multi-objective optimization runs can be easily reused for the

proposed tolerance analysis method. This results in the ability

to deliver very insightful (and to a certain degree accurate)

estimations of expected target deviations induced by given

(local) changes in the inputs of the optimized electrical motor

designs.

Extending the new surrogate-based sensitivity analysis ap-

proach to the entire Pareto front generated by the multi-

objective optimization enables the creation of a rudimentary

Pareto confidence band. Analyzing the sensitivity of every

solution from the current Pareto-front would take around 20

minutes of local computation when using the surrogate models.

The complementary FE-based analysis of all the candidate
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solutions would be nearly impossible (i.e., last longer than

20 days) even when using a computer cluster given the ≈ 6

hours required for each design. In turn, the Pareto confidence

band would enable researchers and practitioners to better

frame their expectations with regard to the result of the

optimization run. Another view on the matter is that these

preliminary tolerance results combined with the ability to

produce them very fast using surrogate models give weight to a

future research direction that considers the tolerance/sensitivity

associated with a certain design as an optimization objective

in its own right. This allows for considering the trade-off

between rated performance vs. sensitivity. In addition, the

search direction of the applied optimization algorithm can be

adapted if constraints on maximum permissible sensitivities or

on maximum feasible deviations due to tolerances are set.

VIII. OUTLOOK

This work was about possibilities for incorporating tolerance

or sensitivity analyses to typical multi-objective optimization

scenarios considered for electric machine design. The sensi-

tiveness of the objectives of the optimization problem with

regard to all design parameters was analyzed. In order to

speed up the evaluation, surrogate models were used that were

initially derived for speeding up the optimization process.

Engineers dealing with electric machine design need to

consider further tolerances associated with parameters that

usually are not subject of optimization. For instance, a static or

dynamic eccentricity of the rotor, unequal stator tooth widths,

or permanent magnets with different material properties need

to be taken into account. If those nonidealities need to be ana-

lyzed during optimization, computational effort for evaluating

designs will increase dramatically.

Investigating the sensitivity of Pareto optimal points after

completing an optimization run is one possible option in

order to minimize the computational effort. However, if the

sensitivity is not already considered during optimization, this

might cause the optimizer to steer the search to more sensitive

regions where good rated performance can be obtained. Thus,

focus should be on deriving additional surrogate models or

equivalent techniques to facilitate considering the reliability

of designs under consideration as early as possible.
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