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Abstract—We present an effective optimization strategy for
industrial batch processes that is centered around two compu-
tational intelligence methods: linear and non-linear predictive
mappings (surrogate models) for quality control (QC) indica-
tors and state-of-the-art multi-objective evolutionary algorithms
(MOEAs). The proposed construction methodology of the linear
and neural network-based mappings integrates implicit expert-
based knowledge with a new data-driven sample selection strat-
egy that hybridizes several design of experiments paradigms.
Using a case study concerning the production of micro-fluidic
chips and 26 QC indicators, we demonstrate how incorporating
modeling decisions like cross-validation stability analyses and
objective clustering into our optimization strategy enables the
discovery of well-performing surrogate models that can guide
MOEAs towards high-quality Pareto non-dominated solutions.

Index Terms—process parameters, design of experiments, sur-
rogate modeling, evolutionary multi-objective optimization.

I. INTRODUCTION AND MOTIVATION

Optimized production processes and predictive maintenance
[1] are two of the most important topics in modern industrial
facilities and thus a key issue in several call-objectives within
Horizon 2020 work programmes, especially those under the
umbrella of the European FoF (Factories of the Future) Re-
search Association (http://www.effra.eu/). The basic strategy
is to take action when items or parts of the process show (in
advance) certain behaviors that may result (at a later stage)
in a machine failure, degraded performance or a downtrend in
product quality [2]. Therefore, a core component in production
optimization and predictive maintenance systems is the usage
of techniques from the fields of forecasting [3] and prognostics
[4] to early recognize non-optimal (machining) parameter
settings or dynamically arising problems during production
cycles [5] and, ideally, trigger an appropriate mechanism to
automatically balance out such unpleasant occurrences [6].

Throughout this work, we use the term “process parame-
ters” to refer to controllable (machine) settings that are kept
fixed over a longer time frame during a production process.
These parameters are usually adjusted manually (from time to
time) by operators / domain experts according to changing ex-
ternal factors like: new product variants, raw material quality,

supply chain disruptions, and others. Using the right settings is
of the utmost importance in nearly every industrial production
environment in order to maximize product quality and prevent
severe quality deterioration that can lead up to production
waste. This work is mainly motivated by the fact that, often,
the operators themselves do not know the truly ideal settings
of the process parameters – i.e., those settings that output
products with the best quality control (QC) indicators – as
humans tend to set and adjust the parameter values using
experience and rules of thumb. Moreover, there is also a strong
bias factor since settings that are conventionally used tend to
be accepted / adopted by the operators more easily.

Our main goal is to propose and demonstrate the benefits
of a generic strategy that combines expert insight and a novel
hybrid design of experiments strategy (DoE) with surrogate-
based search space exploration techniques in order to effi-
ciently and economically discover those parameter settings
that result in QC indicator values that are as close as possible
to the ideal ones. In [7], a model-based strategy has been
suggested for driving a dynamic process to a higher quality
but the approach relied on consecutive measurements within a
dynamic batch process while our presently proposed strategy
aims to provide suggestions on a process and machining pa-
rameter setting level fully in advance, before starting the main
production cycle. While the approach in [7] does not make
use of them, classic DoE strategies have long been used in
various process optimization applications [8] [9]. Nevertheless,
advanced DoE strategies (like our new hybrid proposal) that
are designed to guide the data acquisition process into an
ideal direction while considering multiple criteria remain quite
scarce in the filed of process optimization.

II. PROBLEM FORMALIZATION

Let us assume that a given production process can be
controlled using a total number of p process parameters
{x1, · · · ,xp}, xi ∈ [li,ui], · · · ,xp ∈ [lp,up] and that one wishes
to assess this process via q QC indicators. Since the process
parameters are expected to directly impact each member
from the set of QC indicators, we can define the indicators



as { f1(~x), · · · , fq(~x)}, where ~x = {x1, · · ·xp} ∈ [l1,u1]× ·· · ×
[lp,up] denotes the parameter combination (which is in essence
a multi-dimensional point).

Theoretically, one aims to find the optimal parameter com-
bination (not., ~x∗ = {x∗1, · · ·x∗p}) that simultaneously yields the
ideal value for each QC indicator. Assuming a minimization
formulation for each of these ideal QC values, ~x∗ has the
property that it is a solution to:

fi(~x) = mini, 1≤ i≤ q (1)
subject to x j ∈ [l j,u j], 1≤ j ≤ p

where the optimal mini values and variation intervals of
process parameters (i.e., [l j,u j]) are defined by domain experts.

Nevertheless, in many practical cases there are usually
intrinsic conflicts between the various QC indicators meaning
that Equation (1) defines a nontrivial multi-objective optimiza-
tion problem (MOOP) for which there is no single solution
(i.e., @~x∗) as it is impossible to synchronously achieve all
the ideal indicator values. In the case of nontrivial MOOPs,
the solution comes in the form of a Pareto optimal set (PS)
with the property that ∀~x,~y∈ PS there is at least one objective
k,1 ≤ k ≤ q such that fk(~x) < fk(~y) and there is at least one
objective l,1≤ l ≤ q such that fl(~y)< fl(~x). In other words no
point in PS is better than another point in PS with regard to
all the considered objectives. The projection of PS in objective
space is called the Pareto Front (PF) and it illustrates the
trade-offs between the achievable optimal values of individual
objectives. Since for most MOOPs, the PS is infinite and/or
unknown, one generally settles for discovering a Pareto non-
dominated set (PN) that provides a (very) good approximation
of the PS using a fixed number of points.

In light of the above, the goal of the present work can
be refined to introducing a strategy for discovering PNs that
provide process operators with an accurate image of the trade-
offs between the best achievable QC values.

III. OUR APPROACH

In the past two decades, multi-objective evolutionary algo-
rithms (MOEAs) have emerged as one of the most successful
computational intelligence techniques for solving challeng-
ing MOOPs [10]. Their popularity is motivated by robust
performance on problems stemming from various fields [11]
and by the ability to produce accurate Pareto non-dominated
sets after single runs. The main drawback of MOEAs lies
in the prerequisite to evaluate a large number of individuals
/ solution candidates (i.e., parameter settings in our case)
during the optimization run. This is especially problematic
for QC indicators of batch processes as they are determined
after the termination of a production cycle (that can last from
a few hours to several days). This means that there is a
significant time delay between setting the process parameters
and observing their impact on product quality. This makes an
on-line evaluation of individuals generated during optimization
runs unrealistic. Furthermore, no analytical simulation models
are available, thus the actual mathematical formulae that define
fi(~x),1≤ i≤ q are unknown and difficult to model explicitly.

Moreover, the reported values of the QC indicators can be
noisy as they are susceptible to measurement and (to a lesser
extent) human error.

In order to alleviate the aforementioned problems, one
possible strategy [12] [13] is to construct regression models
(i.e., predictive mappings) between the process parameters
(inputs) and the QC indicator values (outputs) and to use these
regression models as surrogate quality assessment mappings
that steer the evaluation-intensive MOEAs towards promising
regions of the search space. Nevertheless, the particularities of
many production environments (micro-fluidic chips included)
impose serious challenges regarding (i) the availability of
training data for building reliable surrogate mappings with
good generalization capability and (ii) the inherent complex-
ity of the multi-objective optimization task. Therefor, our
knowledge-based strategy for improving the performance of
production processes is divided in two major parts:

1 In Section IV we propose several modeling decisions that
can alleviate the insufficient data problem and help to
deliver reliable surrogate models. These include a novel
hybrid design of experiments approach which is able to
operate in a fully unsupervised manner by combining
optimality criteria based on the Fisher information matrix
with space filling design aspects.

2 In Section V, we describe a new effective surrogate-based
optimization strategy for simultaneously improving many
QC parameters beyond the levels achieved using expert
based settings. The focus is on ideas for meaningful
objective reduction and robust MOEAs that incorporate
proven multi-objective optimization principles.

IV. CONSTRUCTION OF PREDICTIVE MAPPINGS

Taking into account the significant delay between changes in
process parameter settings and the (QC-measured) effect onto
the production process, typically only a very limited number
of (training) samples can be obtained within a reasonable
time frame. In our case study scenario, the delay can last
from several hours up to one day. Therefore, it is of utmost
importance to carefully select process parameter combinations
that are (i) known to have an essential effect on the quality
of the chips and (ii) expected to induce a high generalization
capacity of the predictive mappings, especially by decreasing
their uncertainty / parameter instability. Thus, we propose
a knowledge-based construction strategy for QC predictive
mappings that aims to combine:

1) operator / domain expert knowledge;
2) purely data-driven insights based on a flexible design of

experiments (DoE) methodology;
3) linear and non-linear modeling techniques;

A. Expert Knowledge Initialization and Hybrid Design of
Experiments (DoE)

Expert knowledge is mainly integrated in the mappings con-
struction process during the initial data collection / generation
stage. First, based on expert input, a so-called Cause-Effect
(CE) diagram can be established in order to elicit the process



parameters that are most likely to influence QC indicators.
Such a diagram, concerning our case study from Section VI-A,
is presented in Figure 1 and the relevant process parameters
(X1 to X11) are highlighted in blue and explicitly mentioned
in the right lower corner.

Fig. 1. A cause-effect diagram as constructed for the micro-fluidic chip
production process at the bondingliner machine.

After the identification phase, the first few process param-
eter settings (i.e., data samples) to be tested are the ones
recommended by the production process operators. Apart from
this, expert (domain) knowledge is also used to restrict the
domain of each parameter and to filter invalid parameter
combinations. Computer-aided design selection strategies such
as the Taguchi L12 method or Full Factorial [14] may support
the experts when choosing appropriate combinations based on
these limitations. This initial expert-based step is a prerequisite
for a reliable design of experiments procedure.

The second step of our proposed data collection stage is
based on a domain-independent DOE-based strategy and aims
to obtain samples that are well distributed in parameter space
in order to reduce the uncertainty of predictive mappings.
Because of the severe restriction of having only a couple of
expert-based data samples, we applied various optimal design
criteria, such as A-optimality, D-optimality and E-optimality
[15], under the (plausible [16]) assumption of having linear
dependencies between process parameters and QC values (in
the expert-based samples). We combined the optimal design
criteria with pure space filling techniques based on Latin
hypercube (LH) sampling and min-max optimization [17].

In particular, M + 2p samples are to be drawn from the
parameter space, with p the dimensionality of the space and
M >> 2p. M samples are generated via LH sampling and the
remaining 2p are the corner-points of the parameter space as
we aim to reduce the likelihood of extrapolation as much as
possible. In each odd iteration of sample selection, each of the

remaining M+2p−|S| generated samples – with S and |S| the
set and number of samples selected so far – is evaluated based
on how much it improves one of the following criteria:
• A-optimality (variant 1): ability to minimize the trace of

the inverse of the Fisher information matrix [18].
• D-optimality (variant 2): ability to maximize the determi-

nant of the Fisher information matrix.
• E-optimality (variant 3): ability to maximize the minimum

eigenvalue of the Fisher information matrix.
As we apply linear model-based DoE, the Fisher infor-

mation matrix is equivalent to the Hessian matrix XT
extXext ,

with Xext containing the initial expert-based samples plus all
the samples selected so far over the DoE iterations and the
new sample to be checked for improvement of the optimality
criteria. In each even sample selection iteration, we compute
the minimal distances between each of the the remaining
M + 2p − |S| generated samples and the already selected
samples (including the initial expert-based ones). The sample
with the maximal minimal distance is selected as it embeds
the highest novelty content.

In light of the mixed selection strategy, we consider that
our design of experiments technique (shown in Algorithm 1)
displays a strong hybrid flavor. It is also noteworthy that
Algorithm 1 describes a completely unsupervised strategy that
only relies on the input data matrix and does not require
associated output measurements (i.e., QC values). This can
have a great advantage whenever sample outputs are costly or
time-intensive to obtain.

B. Predictive Mapping Models

Like in most data-driven modeling tasks, a basic pre-
processing step should be performed in order to at least detect
and remove those process parameters that are expected to have
a minor influence on the QC indicators. This helps to reduce
the input dimensionality and thus to increase the generalization
capabilities of the models. In our case, process parameters
can be seen as factors, which, based on expert knowledge
input, can be divided into low, medium and high importance
groups. By applying a multi-way ANOVA analysis [19] on the
data collected through the proposed hybrid DoE approach, one
can detect significant influences (on the QC values) of various
factors and groups of factors. Factors that don’t appear to have
any influence can be deleted.

Given the limited number (i.e., low tens) of data samples
one is likely to have gathered after the two-stage data col-
lection phase and their high dimensionality, linear regression
models between process parameter settings (inputs) and QC
values (targets) are likely to deliver the best (generalization)
performance [16]. Thus, training linear models is an intuitive
first step. Non-linear regression modeling paradigms like ar-
tificial neural networks (ANNs), support vector machines or
genetic programming should also be tested – particularly for
those QC indicators that are problematic for the linear models.

In order to avoid overfitting (especially for the non-linear
models), we always apply an n-fold cross-validation strategy
for assessing model performance (i.e., R2) during training.



Algorithm 1 Hybrid DoE for Sample Selection
1: function HYBRIDDOE(X , M, N, optCrit)
2: S← /0, G← GENERATELHSAMPLES(size = M)
3: G← G∪ GENERATECORNERSAMPLES(size = 2p)
4: for j = 1 to N do
5: for i = 1 to M+2p such that ~xi← Gi∧~xi /∈ S do
6: A,D,E,Dst← /0
7: Xext ← [X ;S;~xi]
8: if ODD( j) then . iteration no. is odd
9: Ai← 〈key =TRACE([XT

extXext ]), val =~xi〉
10: Di← 〈key =DET([XT

extXext ]), val =~xi〉
11: Ei← 〈key =MINEIG([XT

extXext ]), val =~xi〉
12: else . iteration no. is even
13: L~xi ← EUCLIDEANDISTANCES(~xi, [X ;S])
14: Dsti← 〈key =SELECTMIN(L~xi ), val =~xi〉
15: end if
16: end for
17: if ODD( j) then . iteration no. is odd
18: if optCrit=“A-optimality” then
19: ~xsel ← GETVALFORMINKEY(set = A)
20: end if
21: if optCrit=“D-optimality” then
22: ~xsel ← GETVALFORMAXKEY(set = D)
23: end if
24: if optCrit=“E-optimality” then
25: ~xsel ← GETVALFORMAXKEY(set = E)
26: end if
27: else . iteration no. is even
28: ~xsel ← GETVALFORMAXKEY(set = Dst)
29: end if
30: S j←~xsel
31: end for
32: return S
33: end function

Furthermore, since the low sample count limits the number
of cross-validation folds (i.e., 3 ≤ n ≤ 5), we also perform
a stability assessment of the most promising non-linear re-
gression models. The idea is to compare if, for a given QC
indicator, the non-linear model is able to generally deliver a
superior modeling performance (vs. its linear counterpart) over
several different cross-validation partitions. If the non-linear
model significantly outperforms (e.g., when using statistical
hypothesis tests on the residuals), one should use it as the
predictive mapping for the QC indicator in question. Other-
wise, the simpler linear regression model should be preferred.

V. PROCESS OPTIMIZATION

When considering processes (i.e., real-life MOOPs) that
have more than 5-6 QC indicators to be optimized (i.e., objec-
tives), one is said to deal with a many-objective optimization
problem. Specialized algorithms that deal with such types
of problems have been recently proposed (e.g., NSGA-III
adaptations [20]) but, given the serious inherent difficulty of
trying to solve (surrogate-based) many-objective optimization

problems, a natural first step is to reduce the number of
objectives to be simultaneously optimized.

A. Reducing the Number of Objectives

There are numerous ways of reducing the number of ob-
jectives in a many-objective optimization problem but most
of these basic objective reduction strategies can be broadly
classified as explicit or implicit.

Explicit objective reduction strategies are based on dis-
cussing the relative importance of each objective with the
decision maker (DM) – i.e., process operator in our case.
Apart from the obvious approach of simply removing the very
low priority objectives from the problem formulation, one can
also opt for the replacement of these objectives with a newly
defined synthetic objective that aggregates them. The synthetic
objective can be obtained using any of classical objective
reduction techniques [21] that require no articulation of pref-
erence on behalf of the DM (e.g., Tschebyscheff min-max and
global-criterion) or an a priori articulation of preference (e.g.,
weighted sum, lexicographic ordering, goal programming).

Implicit objective reduction is data-driven and can be
achieved by clustering objectives that are cross-correlated.
Depending on the strength of intra-cluster cross-correlation,
one could choose to reduce the entire cluster of objectives to:
• one of its members that shall act as a “cluster represen-

tative” (very strong intra-cluster cross-correlation);
• a new synthetic objective that aggregates all the members

of the cluster (mild intra-cluster cross-correlation).
Depending on the complexity of the objective reduction

tasks, implicit and explicit strategies can be combined in order
to achieve a suitable and useful MOOP formulation.

B. Multi-Objective Optimization Algorithms

The Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [22] has become in the 15 years since its proposal one
of the default go-to (metaheuristic) multi-objective solvers. Its
main feature is a highly elitist evolutionary model underpinned
by a two-tier selection for survival operator that features
a primary non-dominated sorting criterion and a secondary
(tie-breaking) objective-space crowding measure. The non-
dominated sorting operator, although simple (when compared
to newer MOEAs), is highly robust and enables NSGA-II to
discover high-quality PNs in many application domains [23].
NSGA-II has also popularized two genetic operators in the
multi-objective optimization field: simulated binary crossover
(SBX) and polynomial mutation (PM) [24].

DECMO2 [25] is a coevolutionary MOEA that was de-
signed to deliver fast average convergence and well-spaced
PNs on a wide class of problems. The key feature of DECMO2
is that it tries to combine (and dynamically pivot between)
three multi-objective search space exploration paradigms:
• P - one of the two equally sized sub-populations evolved

in DECMO2 uses a SPEA2 [26] evolutionary model cen-
tered around the environmental selection operator which
implements a two-tier selection for survival strategy that



is very similar to the one of NSGA-II. Population P is
also evolved using the SBX and PM operators.

• Sub-population Q adopts the GDE3 [27] search behavior
that aims to benefit from the very good performance of
differential evolution operators (e.g., DE/rand/1/bin) [28]
on continuous optimization problems.

• The third multi-objective optimization paradigm is incor-
porated in DECMO2 via an archive A of well-spaced elite
solutions that are maintained according to a (weighted
Tschebyscheff) decomposition-based strategy similar to
the one popularized by MOEA/D-DE [29]. Although A
largely acts as a passive sub-population, from time to
time (especially if the other search paradigms under-
perform), a few individuals are evolved directly from A
using differential evolution.

DECMO2 actively rewards the currently best performing
strategy by allowing the sub-population that implements it to
generate a total of m = 2

9‖P| more individuals than usual. A
schematic overview of the search strategy proposed by the
coevolutionary solver is presented in Figure 2.

Fig. 2. The DECMO2 evolutionary model

VI. EXPERIMENTAL SETUP

A. Application Scenario
We demonstrate the proposed multi-objective process pa-

rameter optimization strategy on a batch production process
of micro-fluidic chips used for sample preparation in DNA
(deoxyribonucleic acid) sequencing. Currently, q = 26 QC
indicators are supervised at the end of a production cycle
(batch) via a diagnostic procedure based on closed loop surface
inspection using machine learning classifiers [30]. The a poste-
riori nature of this inspection process means that faulty chips
may be disregarded after having been produced. While this
does indeed improve customer satisfaction, it does not reduce
the waste and the extra costs associated with the production
of low-quality chips because of unlucky parameter settings.
Therefore, there is a strong case for optimizing the parameters
that control the micro-fluidic chip production process.

The 26 QC indicators that characterize the quality of a given
process parameter setting belong to there main groups (RMSE,
skew and void defects) and were obtained as follows:
• for the two indicators (i.e., f1 and f2) in the RMSE

group only a single value was computed for the whole
production plate by averaging the individual QC values
of every micro-chip in the plate;

• for the indicators regarding skew, the compliance of each
of the 6 micro-chips in a production box was measured
at two different time intervals, resulting in a total of 12
QC indicators ( f3 to f14);

• the 12 QC indicators ( f15 to f26) regarding void defects
were obtained in the same manner as in case of skew.

B. Data Characteristics

Based on discussions with the experts, the cause-effect
diagram shown in Figure 1 has been established. It lists
comprising p = 11 essential process parameters that are ex-
pected to influence the quality criteria of micro-fluidic chips.
Furthermore, experts also defined the relevant domain ranges
of each parameter as this information is required by both our
hybrid DoE approach from Algorithm 1 and the MOEAs.

During the initial step of the data collection procedure, the
experts proposed 12 parameter combinations that are expected
to have a positive impact on the quality of the chips. The expert
samples were further used as input for the hybrid DoE strategy
that aims to improve the generalization capability of predictive
mappings by reducing model uncertainty.

In order to detect the best performing setting for our hybrid
DoE strategy (i.e., optimality Criterion + value of N) given
the 12 expert parameter combinations we performed numerical
experiments aimed to measure the evolution of model uncer-
tainty. Figure 3 shows the trend lines of the condition of the
parameter covariance matrix for different DoE criteria (y-axis)
when selecting more and more samples (x-axis) up to N = 100.
It is defined by cond(X) = max(eig(XT X))

min(eig(XT X))
, a well-known and

widely-applied measure for parameter and model uncertainty
in case of regression/mapping problems [19]. A-optimality

Fig. 3. Trace of parameter stability for various DoE-based sample selection
criteria when incrementally (step-wise) adding up to 100 samples.

can significantly outperform the other variants, either when



being used stand-alone (which is state-of-the-art [15]) or in
the hybrid combination with a space filling approach. The
latter also can significantly outperform the classical SoA A-
optimality criterion, as the hybrid combination reduces model
uncertainty faster, especially during the first 10-12 samples.
The grey dashed line shows the case when only Latin hyper-
cube samples are considered for space filling. Even though this
strategy delivers slightly better performance after generating
the first 7,8 samples when comparing with hybrid DoE (that
also uses corner points), the former is not able to ensure the
stability of the expected model certainty further on.

Based on the above observations, 11 additional process
parameter combinations have been (i) generated via the hybrid
DoE strategy and (ii) tested at the production site in order to
elicit QC values. Considering the 12 expert-based suggestions,
the total input for our predictive mapping construction phase
(from Section VII-A) is a data set with 23 samples.

C. Evaluation Strategy

For each of the 26 QC indicators, apart from linear model-
ing, we also tried to obtain high quality non-linear predictive
mappings based on multi-layer perceptrons (MLPs) with a
single hidden layer – i.e., shallow ANNs [31]. In an effort
to avoid overfitting the MLPs, we combined a best-training-
parameter grid search with a selection process based on 5-fold
cross-validation performance. Thus, we varied the number of
hidden units between 2 and 28 and we also varied the two
control parameters of the back-propagation [32] algorithm:
• the learning rate (between 0.05 and 0.5, step size of 0.05)
• the momentum (between 0 and 0.9, step size of 0.1)
Finally, when considering all the combinations tested during

the best-traning-parameter grid searches, the best-performing
MLP model for each QC target function was selected from
2700 candidates by opting for a strategy aimed to balance
predictive accuracy – estimated by imposing a 5-fold cross-
validation R2 performance higher than the average perfor-
mance of the best 2% of all trained MLP models – and model
simplicity (i.e.,a lower number of hidden units) [33].

In the case of the two MOEAs, we used their respective
literature recommended settings to parameterize the genetic
operators, a (total) population size of 200 and each optimiza-
tion run was stopped after evaluating 100,000 individuals.

VII. RESULTS

A. Predictive Mapping Construction

In Table I, we present the comparative performance be-
tween linear and best-performing MLP (non-linear) predictive
mappings when considering a given 5-fold cross-validation
partition. Although, the tabulated data seems to suggest that
non-linear modeling brings obvious benefits since it improves
results for 19 out of the 26 QC indicators, the scarcity of
training data does warrant a more in depth (stability) analysis.

In Figure 4 we plot the average R2 values obtained by
the linear and best-performing MLP regression models for
3 expertly-selected QC indicators – f1, f12 and f18 – when
considering 25 different random partitions of the training data

TABLE I
COMPARATIVE PERFORMANCE OF LINEAR AND BEST-PERFORMING MLP

PREDICTIVE MAPPINGS. SUPERIOR RESULTS ARE HIGHLIGHTED.

QC Indicator
5-fold cross-validation R2

Lin. reg. MLP
µ σ µ σ

f1 0.581 0.317 0.795 0.092
f2 0.517 0.114 0.759 0.177
f3 0.863 0.080 0.879 0.061
f4 0.882 0.060 0.913 0.080
f5 0.786 0.118 0.742 0.336
f6 0.922 0.065 0.874 0.093
f7 0.887 0.061 0.829 0.100
f8 0.920 0.038 0.896 0.089
f9 0.645 0.062 0.744 0.184
f10 0.926 0.043 0.938 0.031
f11 0.895 0.066 0.841 0.097
f12 0.947 0.046 0.923 0.111
f13 0.870 0.079 0.827 0.094
f14 0.888 0.059 0.901 0.091
f15 0.580 0.284 0.793 0.124
f16 0.727 0.247 0.850 0.056
f17 0.732 0.115 0.854 0.086
f18 0.847 0.152 0.905 0.057
f19 0.656 0.227 0.845 0.121
f20 0.781 0.108 0.831 0.058
f21 0.371 0.633 0.863 0.100
f22 0.783 0.157 0.875 0.080
f23 0.620 0.368 0.817 0.070
f24 0.801 0.210 0.880 0.054
f25 0.618 0.415 0.849 0.137
f26 0.814 0.145 0.878 0.120

into 5 cross-validation folds. The plotted results offer a slightly
clearer picture, indicating that:
• some QC indicators (e.g., f1) are generally difficult to

model as R2 values depend more on the cross-validation
partition than on the used modeling method;

• some QC indicators (e.g., f12 and f18) appear far easier
to model but using advanced non-linear methods does not
seem to bring a consistent / stable advantage and can even
deliver slightly worse results (e.g., f12).

B. Process Optimization

Based on the available 23 data samples, we obtained the
cross-correlation matrix shown in Figure 5 for the 26 QC
indicators that are of interest to the industrial partner.

The cross-correlation results clearly indicate that the origi-
nal measurement-based classification of the QC indicators into
three main groups is relevant as:
• QC indicators f1 and f2 are strongly intercorrelated and,

from an optimization perspective, can be reunited in a
RMSE cluster;

• QC indicators f3 to f14 can form the skew cluster;
• QC indicators f15 to f26 can form the void defects cluster.
It also noteworthy that there is (i) a small postive correlation

between the indicators in the RMSE and skew clusters, (ii) a
small negative correlation between the QC indicators in the
RMSE cluster and those in the void defects cluster, (iii) no
apparent correlation between skew and void defects indicators.
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Fig. 4. Comparative performance of linear and best-performing MLP models
for three QC indicators over 25 different cross-validation partitions.

Fig. 5. Cross-correlation between the 26 QC indicators; note the block-type
structure with three clusters.

Based on the strong inter-correlation inside the identified
objective clusters we defined a surrogate-based MOOP that
contains one representative from each cluster with the rea-
soning that, by simultaneously aiming to minimize f1, f12,
and f18 (for example), we are in fact searching for process
parameter settings that deliver Pareto optimal solutions (i.e.,
QC values) related to all 26 RMSE, skew and void defects
indicators. When defining this surrogate-based MOOP, we
opted for linear predictive mappings and formulations where
optimizing an objective meant minimizing its value towards 0.

The 3D Pareto front obtained by DECMO2 for the 3-
objective surrogate-based MOOP are presented in Figure 6.
Given the fact that objective f1 has proven harder to model
(more unstable and lower R2 values) in our 5-fold cross-
validation experiments, considering the precise numerical va-
lues of this indicator in further analyses is not recommended.
Therefore, in Figure 7, which contains the final comparative

Fig. 6. 3D Pareto Front obtained using DECMO2.

optimization results obtained by NSGA-II and DECMO2, we
report performance regarding f1 by considering 4 broad quality
groups. The two Pareto non-dominated sets indicate that:
• the integration of the decomposition-based space explo-

ration paradigm enables DECMO2 to maintain a better
spread across the entire PF;

• NSGA-II also performs robustly as it is able to deliver
a large number of (albeit more poorly spread) solutions
in a key section of the PF where the harder to model f1
objective is also minimized.

The multi-objective optimization results have received very
positive appreciation from domain experts (i.e., process oper-
ators) and the industrial partner and several parameter settings
discovered using the presented methodology are currently
being tested / used on the production site. For example,
when comparing to the QC values obtained by one of the
best parameter combinations from those obtained from experts
and the hybrid DoE strategy, one very promissing DECMO2-
discovered parameter setting is estimated to deliver a simulta-
neous improvement of 9.3% over f1 and 2.1% over f12 while
obtaining perfect QC values for f18.

VIII. CONCLUSIONS AND FUTURE WORK

In the present work we propose an efficient strategy for
optimizing process parameters with respect to multiple quality
control indicators. As the application domain consists of indus-
trial batch production processes that are characterized by very
time and cost-intensive evaluations of parameter settings, our
strategy is centered on creating linear and non-linear predictive
mappings that can be used as surrogate fitness estimators by
state-of-the-art multi-objective evolutionary algorithms. Re-
sults on a micro-fluidic chip production case study support
the proposed methodology and underline that one key part
of obtaining useful predictive mappings (and, in turn, very
good optimization results) is a two-stage data collection phase
that combines expert knowledge with a novel hybrid design
of experiments strategy.

We plan to further refine our optimization strategy by using
surrogate-based MOEA runs to augment the current hybrid
DoE strategy by suggesting a handful of parameter combina-
tions that can simultaneously fill multiple blank spaces in the
objective-wise histograms, thus further improving predictive
mapping quality and optimization performance.
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Fig. 7. Comparative f12 vs. f18 2D PFs obtained using NSGA-II and
DECMO2 (best result out of 5 runs for each algorithm).
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