
EUROGEN 2017 September 13-15, 2017, Madrid, Spain

On the Optimization of 2D Path Network Layouts in Engineering Designs
via Evolutionary Computation Techniques
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Summary
We describe an effective optimization strategy that is capable of discovering innovative cost-optimal designs of
complete ascent assembly structures. Our approach relies on a continuous 2D model abstraction, an application-inspired
multi-objective formulation of the optimal design task and an efficient coevolutionary solver. Results on both artificial
problems and an industrial test case empirically support the value of our contribution to the field of design automation.
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1 Introduction

The present work is primarily motivated from theoretical
and practical considerations from the field of engineering
design automation. Concretely, we describe initial
results concerning the automatic generation of cost-optimal
complete ascent assembly structures (CAA-Structures) –
external access structures for cranes, building facades,
over-sized industrial machines, etc. Figure 1b shows
an example of a CAA-Structure that is itself composed
from several types of ascent assembly modules (i.e.,
sub-assemblies) like rectangular or round platforms, stairs
and ladders.

The task of designing individual ascent assembly
modules, although important, is rather repetitive and time
consuming. In recent years, in light of strong financial
and operational incentives, there has been a consistent and
successful effort to standardize individual ascent assembly
modules and to automate their design process.1 As a

(a) (b)

Figure 1: An example of an offshore crane where
different ascent assembly modules highlighted in red (a) are
combined to form a fairly complex CAA-Structure (b).

result, the task of automating the design of cost-optimal
CAA-Structures has itself become a feasible undertaking
since it can be regarded as a search for a 3D “skeleton” that
indicates which ascent assembly modules are required and
where they should be placed in ordered to ensure that the
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CAA-Structure provides access with minimal costs.
In spite of the apparent simplicity suggested by a

3D “skeleton”, there is still a large set of particularities
and uncertainties associated with real-life CAA-Structure
design tasks in modern engineer-to-order environments. In
order to have a relevant but accessible formulation for
analyzing and comparing various proofs of concept, in
Section 2.1 we introduce a 2D model abstraction of the
optimal design task. The results we obtained for a real-life
industrial design scenario (described in Section 4.3) were
largely validated by domain experts (design engineers), thus
indicating that the cost-optimal and innovative solutions
obtained via the introduced 2D model abstraction and the
proposed optimization strategy (described in Section 3)
are a large step forward towards the final goal of fully
automating the design of cost-optimal CAA-Structures.

2 Modelling and formal problem statement

2.1 Description of model abstraction

A user that wishes to generate a cost-optimal
CAA-Structure is expected to provide at least three
inputs: a 3D model of the solid base / support object
to which the CAA-Structure is to be attached, a set of
desired points of access on this structure and information
regarding potential obstacles that are defined on the 3D
solid base object. The latter requirement is extremely
relevant as obstacles indicate severe restrictions regarding
the placement of ascent assembly modules in certain areas.

For example, in Figure 2a we illustrate a simplified
design case that involves a cuboid structure, five access
points and four obstacle areas that are spread across three
faces of the cuboid. A far clearer representation of this
academic automated design scenario can be obtained by
unfolding the 3D model. The result of the unfolding
procedure, shown in Figure 2b, is a 2D design surface that
is characterized by a left edge - right edge continuity – i.e.,
line segments exiting the left edge at a certain height and
orientation, should enter the right edge at the same height
and orientation in order to model the circular structure of the
facade. More importantly, as a result of the unfolding, the
task of finding a cost-optimal 3D “skeleton” of the ascent
assembly is transformed into that of discovering a simpler
2D design “skeleton”: a cost-optimal 2D path network
layout on the 2D design surface that links all the points of
interest while avoiding the obstacle areas.

Although an obvious simplification of the 3D case, we
shall see in the next section that the resulting 2D path
network layout problem is not trivial.

2.2 Formal definition of the path network layout problem

When considering a set of n user defined access points /
definition vertices {p1, . . . , pn}, the goal of the 2D optimal
path network layout problem is to discover a (graph)
structure T of minimal cost that links all these points.
T must obviously span all the access points but it may
also contain up to k well-placed extra points (2D vertices)

(a) (b)

Figure 2: A 3D model and the corresponding 2D design
plane obtained after unfolding. Access points are marked
with blue circles and obstacles are marked with red.

{s1, . . . ,sk} that help minimize the total cost of T . Thus,
E, the set of possible edges that contains all the segments
that can be used to construct T , is defined over the union
{p1, . . . , pn} ∪ {s1, . . . ,sk}. When considering a positive
cost for connecting any two points, it is obvious that T
is in fact a tree. Formally, the resulting minimal path
optimization task can be defined as: “Determine k ∈
N and s1, . . . ,sk ∈ R×R in order to minimize

f1(p1, . . . , pn,s1, . . . ,sk) = ∑
(i j)∈E

c(i, j)x(i j), (1)

subject to:

x(i j) ∈ {0,1}, ∀(i j) ∈ E and

∑
(i j)∈E

xi j = (n+ k)−1 and

∑
(i j)∈E,i∈F, j∈F

xi j ≤ |F |−1, ∀F ⊆ {p1, . . . , pn,s1, . . . ,sk},

where G=({p1, . . . , pn,s1, . . . ,sk},E) is a complete graph.”
The function c(i, j) from Equation (1) denotes the

cost of linking vertices i and j. In the case of ascent
assemblies, this cost can be defined as the combined price
of individual modules (i.e., platform, stair, and ladder
segments) and of connecting them (e.g., welding) required
to construct a walkway between points i and j. While it
is expected that, in the general case, c(i, j) is proportional
to the Euclidean distance between the two vertices, in
more realistic scenarios, obstacles and other penalties do
influence the cost function.

For example, when considering a slightly more realistic
description of optimal layouts for CAA-Structures, one
would likely consider inside c(i, j) a large penalty Γ(i j)
for assembly modules that extend into obstacle areas when
connecting vertices i and j and another smaller penalty
for assembly modules that are not placed at a preset angle
requirement – e.g., platforms should be placed at an angle
of exactly 0◦ to the horizontal axis, stairs at 45◦, and ladders
at 90◦. All these "allowed/preferred" design angles should
be provided as a user defined set, e.g., U = {0,45,90}. The
resulting angle-aware cost function could be defined as:

c(i, j) = dist(i, j)
(

1+
minB(i j)

100
z
)
+Γ(i j) (2)
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where z is a parameter (0 ≤ z ≤ 4) that controls the
magnitude of the angle penalty and B(i j) is a set that
contains the absolute differences between α(i j) – the
horizontal angle of the segment (i j) – and the allowed
placement angles stored in U . For instance, given the
example in the previous paragraph , B(i j) = {|α(i j) −
0|, |α(i j)− 45|, |α(i j)− 90|}. For the set of tests we report
over in the present study, dist(i, j) marks the 2D Euclidean
distance between vertices i and j.

It is noteworthy to remark that when z = 0 in Equation
(2) and one does not consider obstacle areas and a left-right
continuity of the design plane, c(i, j) is reduced to the
Euclidean distance and Equation (1) gives the definition of
the well-known Euclidean Steiner Tree Problem (ESTP).2

Although they represent the simplest cases of the 2D path
network layout problems we aim to solve, ESTPs are
proven to be NP-hard.3 Nevertheless, ESTPs have also
been intensively studied by mathematicians and computer
scientists and this opens up the possibility to compare (in
part) our proposed solving strategy with other results from
literature on standard benchmarks. In the context of ESTPs,
the k points that help minimize the 2D path layout between
the access points are called Steiner points and throughout
this work we shall also maintain this naming in the context
of optimal path network layouts for CAA-Structures.
Furthermore, the NP-hard nature of ESTPs also motivates
our strong preference for a metaheuristic-based solver. As
such, we would like to inform the reader that the lexicon
throughout the remainder of this work is tailored for the
field of evolutionary computation4 – one of the most
(historically) successful global optimization paradigms for
tackling complicated optimization problems.

Finally, in the context of path network optimization
tasks for ascent assemblies, opting for a value of z = 0
in Equation (2) would result in a problem definition that
enables the optimizer to freely explore the design space and
quite possibly discover innovative designs (i.e., innovative
ways of connecting the desired access points). However, the
best results of such an “open” definition would (likely) only
be interpreted as optimal design “suggestions” as building
them to specification would be unfeasible. When opting
for a larger value of the penalty parameter z and a realistic
list of standard allowed angles, good results of the more
"restricted" path optimization problem are far more likely
to resemble “blueprints” of the ascent assembly.

3 Optimization procedure

3.1 Solution codification

A very important aspect of trying to solve the problem
described in Section 2.2 is represented by the encoding
of individuals / candidate solutions. First and foremost,
a good encoding should be simple (general) in order
to be compatible with many fitness assessment strategies
and in order to allow for an immediate extension to 3D
scenarios. Secondly, the encoding should also be flexible
as the number of Steiner points required by each problem

is unknown. Although the latter characteristic seems to hint
towards a variable-length encoding, we argue in favour of
a fixed-length variant in which the maximal number of the
Steiner points expected to be discovered (i.e., k∗) is preset
at a sufficiently large level. For example:

• in the case ESTPs, one can use the mathematically
proven2 upper bound k∗ = n−2

• in the case of all the ascent assembly optimization
problems presented in Section 4 we experimented with
several settings in the range n≤ k∗ ≤ 3n.

The task of “deciding” the exact number of Steiner
points required for solving the problem at hand is “passed”
to the fitness assessment method described in the next
section. Apart from the extra simplicity that enables
the usage of various standard genetic operators, our
choice for a fixed-length encoding is also motivated by
the desire to counteract potential solution bloating - a
well-known and harmful phenomenon in terms of both
solution quality and convergence speed that is associated in
the field of evolutionary computation (genetic programming
in particular) with combinations of strong (evolutionary)
selection pressure and variable-length encodings.5

After opting for fixed-length encodings, we adopted a
basic real-valued representation~x= (x1,x2, . . . ,x2k∗−1,x2k∗)
of potential Steiner points, with the understanding that,
given the encoded vertex v(i,~x), 1 ≤ i ≤ k∗, x2i−1 denotes
the horizontal coordinate of v(i,~x) and x2i the vertical one.

The minimum and maximum ranges for xi ∈ ~x are set
according to the design scenario definition limits in the case
of CAA-Structures and to the extreme coordinate values of
the definition points in the case of ESTPs.

3.2 Fitness assessment

Let o1(~x) denote the ability of the vertices encoded in a
given candidate solution ~x to minimize Equation (1). In
order to estimate o1(~x), we employ a two-step process:

• Firstly, we build the union between all the k∗

vertices encoded by ~x and the n definition points of
the optimization scenario: S~x = {v(1,~x), . . . ,v(k∗,~x)} ∪
{p1, . . . , pn}.

• Secondly, starting with p1, we apply Prim’s algorithm6

in order to construct MTn,~x – the partial minimum
spanning tree (MST) over the set S~x that contains all
n definition points. MTn,~x is a partial MST because
the construction process is interrupted once all the
definition points have been added to the tree.

Any vertex encoded in ~x that remains unlinked by MTn,~x
has the property that its placement is highly likely not to
improve in any way the formation of an optimal-cost path
between all the definition points {p1, . . . , pn} – i.e., this
vertex is deemed as having a low chance of being a potential
Steiner point. We mark with si,~x, i ∈ {1, . . . ,m}, m ≤ k∗

the vertices encoded in ~x that are part of MTn,~x. Compared
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with the unlinked vertices, any si,~x has a better chance of
being useful in constructing an optimal path between the
definition points and is thus deemed a potential Steiner
point. When considering previous notations, and denoting
with Φ(MTn,~x) the total cost associated with MTn,~x, we have
that Φ(MTn,~x) = f1(p1, . . . , pn,s1,~x, ...sm,~x) where function
f1 is defined in Equation (1).

We argue that o1(~x) can be well approximated by
Φ(MTn,~x) because the closer the set of potential Steiner
points in~x is to {s1, . . . ,sk}, i.e., to the actual Steiner point
set that represents the solution to Equation (1), the closer
f1(p1, . . . , pn,si,~x, ...sm,~x) is to f1(p1, . . . , pn,s1, . . .sk).

When considering the main motivation behind the
present work (i.e., optimizing real-life industrial designs),
it is highly likely that a more advanced future model
abstraction might yield secondary requirements regarding
optimality. For instance, these requirements might relate
to: 1. the complexity of the overall CAA-Structure design
(i.e., number of different module types that is required),
2. ensuring different levels of ease-of-access for different
definition points, 3. CAA-Structure building time given
present stocks of individual ascent assembly modules.
Such possible secondary requirements appear to be rather
conflicting with the currently identified primary one (i.e.,
cost minimization) and modeling them via penalties
and rewards is expected to be extremely cumbersome.
Alternatively, formalizing them as optimization objectives
in their own right would be more natural and should yield
better results from the perspective of a decision maker.

Motivated largely by the previous considerations but
also by initial attempts to optimize o1(~x) on benchmark
ESTPs using evolutionary algorithms that were less
successful than anticipated (showing signs of premature
convergence), we defined an artificial secondary objective
o2(~x). This second objective is designed to be (slightly)
conflicting with o1 and is defined as:

o2(~x) =
1

n−1

(
n

∑
r=2

imprMST (r) ∗2sizeMST (r)

)
−1.1m, (3)

where:

imprMST (r) = Φ(MTr,~x)−Φ(MSTr) and

sizeMST (r) = 3− 3Φ(MSTr)

Φ(MSTn)
.

Inside Equation (3), when considering that pr is the rth

user defined access point, in an analogous way to Φ(MTn,~x),
we have that:

• Φ(MSTr) is the cost of the minimum spanning tree
constructed over the set {p1, . . . , pr}, i.e., Φ(MSTr) =
f1(p1, . . . , pr);

• Φ(MTr,~x) is the total cost of the partial minimal
spanning tree constructed over the union S~x =
{v(1,~x), . . . ,v(k∗,~x)}∪{p1, . . . , pr}

This means that o2(~x) computes the average level to which
~x is able to solve Equation (1) for every incremental subset
of definition points that is obtained when constructing the
minimal spanning tree over {p1, . . . , pn}. The smaller the
subset the more important it is weighted inside the average
and there is a small bonus for candidate solutions that
achieve good results with a reduced number m of potential
Steiner points.

Finally we have chosen to solve a multi-objective
optimization problem that aims to simultaneously minimize
both o1(~x) and o2(~x). Although empirically validated by all
the results presented in Section 5, the inclusion of o2(~x)
alongside the main path minimization objective is highly
counter-intuitive. The reason for this decision is two-fold:

• o2(~x) is engineered to induce both some level of
niching during the evolutionary search as well as a
biasing of the multi-objective search towards robust
candidate solutions that encode potential Steiner
points which are generically well placed – i.e., able
to improve the total minimal path in key locations that
are common to many sub-paths.

• Having a multi-objective formulation enables us to
check whether our assumption that Φ(MTn,~x) is a good
enough approximation for o1(~x) also holds when faced
with a conflicting optimization objective that, to a
certain extent, steers the search towards path layouts
that are not necessarily cost-optimal.

3.3 The Multi-Objective Solver

In order to solve the previously introduced multi-objective
optimization (MOO) problem, we performed a limited set
of initial tests with NSGA-II7 – a classical multi-objective
evolutionary algorithm (MOEA) – and with DECMO2.8

The latter is a newer hybrid and adaptive evolutionary
approach specially designed for rapid convergence on
a wide class of problems. DECMO2 was designed
to capitalize on previous insights9 that a cooperative
coevolutionary strategy can deliver very competitive results
on a wide range of MOO problems. As DECMO2 exhibited
a better balance between convergence speed and final
solution quality, we adopted it as our default solver. The
DECMO2 evolutionary model is presented in Algorithm 1
and its main feature is that it effectively integrates three
different MOO search space exploration paradigms.

Firstly, P, one of the two equally-sized coevolved
subpopulations in DECMO2 implements a SPEA210

evolutionary model that is based on environmental selection
(notation Esel) — a selection for survival mechanism
based on Pareto dominance as a primary metric and
a crowding distance in objective space as a secondary
metric. Apart from Esel , this evolutionary paradigm
also relies on the simulated binary crossover (SBX)11

and polynomial mutation (PM)12 genetic operators. It
is noteworthy that inside Esel , DECMO2 uses a slightly

4
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Algorithm 1 The DECMO2 evolutionary model

1: function DECMO2(problem, asize, maxGen)
2: P,Q← /0
3: 〈psize,qsize,esize〉 ← COMPUTESIZES(asize)
4: A← INITIALIZEARCHIVE(problem, asize)
5: i← 1
6: while i≤ asize do
7: ~x← CREATEINDIVIDUAL(problem)
8: A← INSERTINTOARCHIVE(A,~x)
9: if i≤ psize then

10: P← P∪{~x}
11: else
12: if i≤ (psize +qsize) and i > psize then
13: Q← Q∪{~x}
14: end if
15: end if
16: i← i+1
17: end while
18: φ P,φ Q,φ A, t← 1
19: while t ≤ maxGen do
20: pbonus,qbonus,← 0
21: abonus← esize
22: if t ∈ {2k+1 : k ∈ Z} then
23: pbonus,qbonus,abonus← 0
24: if φ P > φ Q and φ P > φ A then
25: pbonus← esize ∧ abonus← 0
26: end if
27: if φ Q > φ P and φ Q > φ A then
28: qbonus← esize ∧ abonus← 0
29: end if
30: end if
31: 〈P,φ P〉 ← EVOGENSPEA2(P, psize + pbonus)
32: 〈Q,φ Q〉 ← EVOGENDE(Q, qsize +qbonus)
33: φ A← EVODIRARCHIVEIND(A, abonus)
34: E← Esel(P∪Q∪A,esize)
35: P← Esel(P∪E, psize)
36: Q← Esel(Q∪E,qsize)
37: t← t +1
38: end while
39: return Esel(P∪Q∪A,asize)
40: end function

modified version of environmental selection that filters
objective-wise duplicates from the returned solution set.

Secondly, Q – the other coevolved subpopulation –
implements a GDE3-like13 search behaviour that focuses
on exploiting the very good performance of the differential
evolution paradigm14 on continuous optimization problems.

Thirdly, the last MOO paradigm incorporated in
DECMO2 comes in the form of an archive of well-spaced
elite solutions, A, that is maintained according to
a decomposition-based principle similar to the one
popularized by MOEA/D-DE.15 Even though at certain
times a limited number of new individuals is evolved
directly from the archive, the main purpose of A is to

preserve an accurate approximation of the Pareto front.
DECMO2 is also designed to dynamically pivot towards

the evolutionary paradigm that was more successful during
the latest stage of the run by allowing the part of the
algorithm that implements this paradigm to generate a total
of esize =

2
9 |P| individuals more than usual. This means that

during the run, a performance bonus is awarded based on
perceived current space-exploration performance.

4 Experimental setup

4.1 DECMO2 parameterization

For all the numerical experiments that we report on, we
used a total population size of asize =400 for DECMO2 and
the standard (literature recommended) parameter settings
for the coevolved subpopulations of the solver. Thus, for
subpopulation P of size 180, we used a value of 0.9 for the
crossover probability and 20 for the crossover distribution
index of the SBX operator and a value of 1/|~x| for the
mutation probability and 20 for the mutation distribution
index of the PM operator. Subpopulation Q was evolved
according to a DE/rand/1/bin strategy14 in which the control
parameter F was set at 0.5 and the crossover factor CR was
set at 0.3. Spacing inside the archive A was maintained via
a weighted Tschebyscheff distance measure.

We evaluated 100.000 solution candidates during each
optimization run (i.e., maxGen = 250) and we report on the
best result out of 3 repeats for each numerical experiment.
Since the secondary objective of our MOOP is an artificial
placeholder that has no practical importance when assessing
the overall result of the optimization, we always only report
the best discovered solution with regard to o1(~x).

4.2 ESTP benchmark and academic test cases

In order to demonstrate the ability of our approach, we
compared the results obtained by DECMO2 on 15 problems
from a benchmark ESTP set16 with those of two reference
solvers: one based on a geometrically motivated heuristic17

and another one that uses artificial neural networks.18

For initial insight on how our method performs on
optimization scenarios that are more representative for
the ascent assembly domain, we applied DECMO2 on 4
academic test cases: the one illustrated at the beginning of
this paper (A1) in Section 2.1 and three more derivations
(A2, A3, and A4) based on the more challenging access
point placement from problem no. 12 of the ESTP
benchmark set. On all these tests we used the setting z = 0
to parameterize the cost function from Equation (2) and thus
optimize for the minimum Euclidean distance.

4.3 Industrial test case

The most realistic cost-optimal CAA-Structure design
scenario we investigated was proposed by Liebherr-Werk
Nenzing GmbH (LWN)19 – a manufacturer of a wide
range of products including various types of cranes. More
specifically, we investigated cost-optimal CAA-Structures
that allow access to user-specified regions of interest

5
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(a) (b)

(c)

Figure 3: A CAD model of the gantry of a Liebherr
mobile harbour crane with highlighted user-specified access
points (a) expert-designed ascent assembly solution (b) and
complementary 3D and unfolded 2D model abstraction (c).

on the gantry of a mobile harbour crane (please see
Figure 3a). Figure 3b presents an expert-designed
CAA-Structure attached to the gantry and we aim to use
the unfolding-based 2D model abstraction from Figure
3c (obtained by vertically stacking two cuboids) to
explore complementary optimal designs that might provide
interesting insights to LWN.

In order to provide a balance between innovative and
realistic cost-optimal solutions for CAA-Structures, we
considered two test case variations (TC1 and TC2) in which
the ground access point is placed at different positions along
the horizontal axis and four different cost settings:

• C1 — The first cost setting uses a value of z = 0
to parameterize the cost function from Equation (2).
Given the infinite degrees of freedom, optimal designs
discovered for this setting are expected to have the
smallest total path network (Euclidean) distance and
can be used as a generic structural reference when
assessing more constrained cost-optimal designs.

• C2 — The second cost setting uses a value of z= 4 and
a list of preferred design angles U = {0,45,90} and
aims to deliver ascent assembly designs that only use
the three standard assembly components: horizontal
platforms, stairs and vertical ladders.

• C3 — The third cost setting uses a softer angle-wise
constraint factor of z = 1 and a minimal list of
preferred design angles U = {0,90} and aims to
deliver ascent assembly designs that have a real-life
minimal cost as they only use horizontal platforms and
vertical ladders.

• C4 — The fourth cost setting uses a value of z = 4
and a minimal list of preferred design angles U =
{0,30,45} and aims to deliver CAA-Structures that

offer a higher degree of access (no mandatory use of
hands) by only using platform modules and two types
of staircase modules (mild and regular inclination).

5 Results

5.1 Performance on artificial problems

The comparative performance on benchmark ESTPs is
presented in Table 1 and indicates that our solving strategy
based on DECMO2 and a MOOP formulation is very
competitive for ESTP instances that have a low-to-medium
number of definition (access) points.

Table 1: Comparative performance of DECMO2 on ESTPs.
Best results are highlighted and ∗ marks problems with an
unknown optimum.

Prob.
Id.16 n

Minimum Euclidean Steiner Tree
Baseline16 Ref.17 Ref.18 DECMO2

1 5 1.6644 1.6644 1.6644 1.6644
2B 8 2.1387 2.1387 2.1393 2.1387
2D 12 2.2223 2.1842 2.2979 2.1842
2G∗ 7 1.5878 1.6018 1.7019 1.5594
3 6 1.6472 1.5988 1.6553 1.5988
6 9 1.2733 1.2862 1.3024 1.2733
11∗ 64 3.8513 3.8380 3.9707 3.8274
12∗ 14 1.7222 1.7222 1.7989 1.7067
15A 5 0.5130 0.5130 0.5236 0.5130
18∗ 12 1.0332 1.0421 1.0782 1.0241
19B∗ 19 2.8567 2.8408 2.9689 2.8286
26∗ 20 1.9767 2.2770 1.9785 1.9785
28∗ 16 2.3671 2.3446 2.4048 2.3309
29∗ 17 2.1974 2.1974 2.2076 2.1869
31∗ 16 1.4220 1.3999 1.4343 1.3660

The results for the four academic CAA-Structure design
scenarios are presented in Figure 4 and they indicate that the
DECMO2-based solving strategy is quite general and able
to both efficiently avoid obstacles as well as profit from the
left edge - right edge continuity.

5.2 Results for the LWN industrial test case

The best solutions discovered for the two test case variants
of the Liebherr mobile harbour crane scenario when
considering the four different cost settings are plotted in
Figures 5 and 6.

A visual inspection of the results for each test case
reveals that imposing angle-wise restrictions on the
overall design of the ascent assembly can be successfully
accommodated by the DECMO2-based optimization
strategy. Furthermore, while angle-wise restrictions
do influence the optimization outcome, the generic
(star-shaped) structure that characterizes the expert
CAA-Structure design is confirmed by all the cost-optimal
results obtained for this somewhat simplistic test case.

6
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Euclidean Steiner Tree (EST)
Access/Definition Points

(a) A1

Euclidean Steiner Tree (EST)
Access/Definition Points

(b) A2

Euclidean Steiner Tree (EST)
Access/Definition Points

(c) A3

Euclidean Steiner Tree (EST)
Access/Definition Points

(d) A4

Figure 4: Results for the four academic test cases.

As specific observations related to the discovered
optimal CAA-Structure designs, it is noteworthy that:

• The less restrictive setting z = 1 in C3 can results in
designs that apart from platforms and ladder segments
also feature ramps as shown in Figure 5c.

• The cost setting C4 seems to result in designs
(e.g., Figure 6d) that resemble more closely the
expert-designed CAA-Structure illustrated in Figure
3b. This indicates that accounting for ease-of-access
concerns should be enforced in future extensions of the
model abstraction.

• Shifting the bottom access point along the horizontal
axis induces a small and local effect when unlimited
degrees of freedom are allowed (Figures 5a and 6a) but
the effect on the overall design of assembly is larger
and global when considering angle-wise restrictions.
This indicates that using a continuous problem
formulation and a limited set of domain-dependent
restrictions can yield innovative optimal design
suggestions that an expert might overlook.

6 General conclusions and outlook

In the present work we have introduced an initial,
practical model abstraction for the task of automating
the cost-optimal design of complete ascent assembly
structures. In order to tackle in a domain-realistic manner
the 2D Path network layout problem that emerges from
the aforementioned model abstraction, we propose an
optimization procedure based on a multi-objective problem
formulation and an advanced coevolution-based solver –
DECMO2. As results obtained on benchmark and academic
test cases were very encouraging, we also applied our

approach on a real-life CAA-Structure design scenario
provided by an industrial partner.

The results for the real-life CAA-Structure optimization
scenario also empirically support the validity of our
approach. Thus, by employing appropriate cost functions,
formalizing the CAA-Structure optimization problem on a
continuous design space facilitates the discovery of a wide
range of innovative designs that provide design engineers
with valuable insight regarding the trade-offs between the
best theoretical CAA-Structure design (that requires infinite
degrees of freedom and new types of assembly modules)
and the best practical CAA-Structure design that only
requires traditionally used ascent assembly modules.

In the future we plan to investigate the hybridization
potential between our current approach and a
complementary design strategy20 that is based on a
discretization of the design surface and that delivers
competitive results on CAA-Structure optimization
scenarios with strong angle-wise restrictions.

Since the search logic of our DECMO2-based solving
strategy is very loosely bound to the 2D model
abstraction, future work will also revolve around solving
the cost-optimal design problems directly in 3D space.
The reason is that the simple 2D representation is rather
restrictive for several real world applications. For example,
it is not possible to model the crane from Figure 1a with it.
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