
On the Performance of Master-Slave Parallelization
Methods for Multi-Objective Evolutionary Algorithms ?

Alexandru-Ciprian Zăvoianu1,3, Edwin Lughofer1, Werner Koppelstätter3,4,
Günther Weidenholzer3,4, Wolfgang Amrhein2,3, Erich Peter Klement1,3

1 Department of Knowledge-based Mathematical Systems/Fuzzy Logic Laboratory
Linz-Hagenberg, Johannes Kepler University of Linz, Austria

2 Institute for Electrical Drives and Power Electronics, Johannes Kepler University of Linz,
Austria

3 ACCM, Austrian Center of Competence in Mechatronics, Linz, Austria
4 LCM, Linz Center of Mechatronics, Linz, Austria

Abstract. This paper is focused on a comparative analysis of the performance
of two master-slave parallelization methods, the basic generational scheme and
the steady-state asynchronous scheme. Both can be used to improve the conver-
gence speed of multi-objective evolutionary algorithms (MOEAs) that rely on
time-intensive fitness evaluation functions. The importance of this work stems
from the fact that a correct choice for one or the other parallelization method can
lead to considerable speed improvements with regards to the overall duration of
the optimization. Our main aim is to provide practitioners of MOEAs with a sim-
ple but effective method of deciding which master-slave parallelization option is
better when dealing with a time-constrained optimization process.
Keywords: evolutionary computation, multi-objective optimization, performance
comparison, master-slave parallelization, steady-state evolution

1 Introduction and State-of-the-art

Many real-world optimization problems are multi-criteria by nature and usually involve
several conflicting objectives (e.g. cost vs. quality, risk vs. return on investment). Prob-
lems falling within this class are referred to as multi-objective optimization problems
(MOOPs in short) and, generally, such problems do not have a single solution. Solving
them requires finding a set of non-dominated solutions called the Pareto-optimal set.
Each solution in this set is better than any other solution in the set with regards to at
least one optimization objective (i.e., it is not fully dominated by another solution). The
objective space representation of the Pareto-optimal set is called the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) have proven to be one of the
most successful soft computing techniques for solving MOOPs [2]. This is because of
their inherent ability to produce complete Pareto-optimal sets over single runs. As most

? This work was conducted in the realm of the research program at the Austrian Center of Com-
petence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian
government. The work-related projects are kindly supported by the Austrian government, the
Upper Austrian government and the Johannes Kepler University Linz. The authors thank all
involved partners for their support. This publication reflects only the authors’ views.

2 Alexandru-Ciprian Zăvoianu et al.

stochastic methods, MOEAs are approximate methods that cannot guarantee finding
the strictly optimal solution set (i.e., the true Pareto front of the problem), but they are
fairly flexible and robust and can find high quality non-dominated solution sets in a
reasonable amount of time.

The main drawback of MOEAs is the fact that they require a large number of so-
lutions to be evaluated during an optimization run. The issue can become particularly
problematic for optimization problems that require very time intensive fitness evalu-
ation functions in order to compute objective or constraint values. In such cases, op-
timization runs can last for several days, see for instance the approach in [13] where
MOEAs are used for the optimization of combustion in a diesel engine and the ap-
proach in [17] applied for optimizing design parameters of electrical drives.

This problem of very lengthy optimization runs is usually alleviated by the paral-
lelization and distribution of the MOEA over a computer cluster or grid environment.
There are several paradigms (architectural and/or conceptual models) of parallelizing
a MOEA: master-slave, island, diffusion, hierarchical and hybrid models (please see
Chapter 8 of [1]). The most straight forward and easiest to implement parallelization
method for evolutionary algorithms is the master-slave model: fitness evaluations are
distributed between several slave nodes, while all the evolutionary operations (selection,
crossover, mutation) are performed on a master node. The master-slave parallelization
is suitable both for a classic, generational approach, as well as for an asynchronous
parallelization approach similar to the steady-state selection scheme [10].

In several real-world master-slave parallelization setups for MOEAs, the duration of
the sequential computation tasks is also very important. This usually happens because
of some rather lengthy pre-evaluation steps that must be performed locally on the master
node for each generated individual, before dispatching the individual for remote fitness
evaluation on the slave nodes. The reasons for performing these pre-evaluation steps
on the master node may include security concerns, software licensing issues, network
configuration settings, etc. It is fairly intuitive that whenever the average duration of the
sequential task carried out on the master node is significant with regards to the average
duration of the fitness evaluation task, the speed-up that can be achieved by using a
parallel / distributed hardware architecture is affected (q.v. Amdahl’s law).

A recent study indicates that, for optimization problems with a heterogeneous (non-
constant) time-wise fitness distribution, the steady state asynchronous parallelization is
somewhat better in terms of convergence (Pareto quality and global run-time) than the
generational approach [13]. In [8], Durillo et al. also show evidence that applying a
steady state approach can bring improvements in terms of Pareto quality. The present
research builds on these earlier findings and tries to determine the reasons that might
influence the average performance of the two master-slave parallelization schemes in
the context of MOEAs. Our main intention is to help practitioners in this field to decide
what is the most efficient parallelization option based on the particularities of their
concrete optimization scenarios. The comparison is especially focused on the practical
aspect of Pareto quality / run-time performance: which parallelization method is more
likely to deliver the highest quality solution in a pre-defined global run-time interval.

The tests we report on were performed taking into consideration two of the most
widely used MOEAs: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4]

On the Performance of Master-Slave Parallelization Methods for MOEAs 3

and the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [15]. At a high level of ab-
straction, NSGA-II and SPEA2 are in fact different MOOP orientated implementations
of the same concept - the (µ +λ) evolutionary strategy (where µ denotes the archive
size and λ the population size). The two main features of both algorithms are a) a highly
elitist approach that is based on an archive population that stores the best individuals
found during the run; b) a two-tier selection for survival function that uses a primary
Pareto non-dominance metric and a secondary solution density estimation metric.

2 The Considered Master-Slave Parallelization Schemes

The diagram in Figure 1 provides a general explanation of the computation cycles used
in both master-slave parallelization schemes. The basic principles of the two paralleliza-

Fig. 1. Diagram of the GEN-MSPS and SSA-MSPS computation cycle

tion schemes for a generic (µ +λ)-archiving based MOEA are:

1. The Generational Master-Slave Parallelization Scheme (GEN-MSPS) - In this
case, the computation cycle is regulated by a synchronization step. This step oc-
curs at the integration of individuals from the Insertion pool into the archive. The
master node must block until all the λ individuals of the current population have
been evaluated on the slave nodes. After this requirement is satisfied, the specific
(µ +λ)-archiving algorithm is used in order to update the MOEA archive on the
master node. Afterwards, all the λ individuals of the next generation are created
sequentially on the master node using the specific genetic operators (selection, re-
combination and mutation) and inserted into the Evaluation pool. Each slave node
asynchronously selects an individual from this pool, evaluates it and afterwards
places the results in the Insertion pool. The procedure described above repeats it-
self until the optimization stopping criterion is met. From an algorithmic point of
view, this parallelization scheme is identical to a sequential implementation.

2. The Steady-State Asynchronous Master-Slave Parallelization Scheme (SSA-
MSPS) - In this case, the computation cycle is regulated only by the interplay
between the computation time requirements of the different parts of the algorithm
(i.e. fitness evaluation, generation of new individuals, archive update, etc.). The
slave nodes operate in the same way as in the generational parallelization scheme.
The master node operates based on a very simple loop. While the stopping criterion
is not met, the master node first checks if there is an evaluated individual in the

4 Alexandru-Ciprian Zăvoianu et al.

insertion pool and if such an individual exists, it collects it and updates the MOEA
archive. This is the main difference to GEN-MSPS, which in each cycle has to
wait for the evaluation of all individuals before new individuals can be generated.
Secondly, the master node creates one new individual and inserts it immediately
into the Evaluation pool. The above computation cycle resembles classical steady-
state selection as, at a given time, one new individual is created and one evaluated
individual is collected and, if fit enough, inserted into the archive. It is noteworthy
that the SSA-parallelization scheme changes the algorithmic behavior of the given
MOEA to that of an asynchronous (µ +1)-evolutionary strategy.

Fig. 2. The comparative computation steps of GEN-MSPS and SSA-MSPS for 3 generations of
size 4 in a distributed computing environment with one master node and 4 slave nodes

Figure 2 provides an example of how individuals are processed by the two par-
allelization methods. The lack of a synchronization step in SSA-MSPS enables this

On the Performance of Master-Slave Parallelization Methods for MOEAs 5

method to evaluate more individuals per time interval than GEN-MSPS. We shall in-
vestigate this quantitative aspect in Section 3. The negative side to using SSA-MSPS
is that the same lack of generational synchronization is expected to make SSA-MSPS
achieve worse results than GEN-MSPS in terms of Pareto front quality after evaluating
a fixed number of individuals. This qualitative aspect is treated in Section 4. The last
part of Section 4 contains an interpretation of the interplay between the quantitative and
qualitative observations.

3 Examining the Quantitative Performance

3.1 The Basic Model

As mentioned in the previous section, it makes sense to presume that, given the same
hardware architecture and specific MOEA settings, SSA-MSPS is able to compute
faster than GEN-MSPS a given number of individuals (please see Figure 2). Another
way of looking at this is that, by using the SSA-MSPS, one will be able to create and
evaluate more individuals in the same time interval. We shall now attempt to quantify
this improvement and to evaluate how the interplay between the duration of the parallel
fitness evaluations and the duration of the synchronous tasks affects it.

Our theoretical model consists of a (µ + λ)-archiving MOEA that is distributed
over a computing environment with λ slave nodes. We mark with tp > 0 the duration
(in time units) of distributing and performing the fitness evaluation of any individual
on any slave node. We also mark with ts > 0 the cumulative duration of the sequential
computation tasks (i.e., genetic operations + possible pre-evaluation tasks) that are per-
formed on the master node in order to create one individual. In this section we assume
that ts and tp are constant. We define the parallelization ratio as:

r = d
tp

ts
e (1)

When considering the GEN-MSPS approach, it is quite straightforward that when it is
using more than r+ 1 slave nodes simultaneously, the computation time is not further
improved. As such, the following reasoning is made under the restriction r+1≥ λ .

Assuming that other miscellaneous computation times are negligible with regards
to (or integrated in) ts and tp, the total time required to compute any generation of λ

individuals using the GEN-MSPS is (λ × ts)+ tp. In case of the SSA-MSPS, the time
required to compute the first λ individuals is also (λ × ts)+ tp, but the time required to
compute any of the next batches of λ individuals is (ts + tp), as sketched in Figure 2.

As such, under the assumptions of our theoretical model, when wishing to compute
N generations, the overall computation time is a) (λ × ts + tp)×N in case of the GEN-
MSPS scheme; b) (λ × ts + tp)+(ts + tp)× (N−1) in case of the SSA-MSPS scheme.
After equalizing these computation times and performing the necessary calculations,
we obtain that in the time interval required by the GEN-parallelization to compute N
generations of λ individuals, the SSA-parallelization can compute ∆struct% more indi-
viduals, where ∆struct is given by:

∆struct =
(N−1)(λ −1)× ts

N× (ts + tp)
×100 (2)

6 Alexandru-Ciprian Zăvoianu et al.

We shall refer to this measure as the structural improvement that SSA-MSPS has over
GEN-MSPS in terms of computed individuals per given time interval.

It is important to note that while ∆struct does depend on the number of generations,
the population size and also on the order of size between these two variables and ts, the
dominant factor that influences ∆struct is the ratio between ts and tp, or in other words,
the parallelization ratio r. As we fix λ = 100, N = 500, and ts = 1, by varying the
value of tp, we obtain the dependency of ∆struct on r. The plot is presented in Figure
3 - basic model curve. Unsurprisingly, it shows that the quantitative improvement that
SSA-MSPS brings, decreases exponentially with regards to the parallelization ratio.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125

 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

G
ai

n
in

 c
om

pu
te

d
in

di
vi

du
al

s
- Δ

st
ru
ct

 [
%

]

Parallelization ratio - r [-]

Structural improvement of SSA-MSPS
basic model

cv=0.20
cv=0.10
cv=0.02

cv=0

Fig. 3. ∆struct curves for different parallelization ratios and different degrees of variance (i.e. cv)
in the time-wise distribution of the fitness evaluation function

Although valuable in establishing a baseline for the comparison between the GEN-
parallelization and the SSA-parallelization schemes, the above described comparison
has one severe limitation: it is strongly influenced by the idealistic assumption that the
duration of the fitness evaluation task is constant (i.e. there is zero variance in the time-
wise distribution of the fitness evaluation function). In the next subsection, we proceed
to address this issue in order to enhance our quantitative performance model.

3.2 The Effect of Variance on the Quantitative Performance

Initially, we tested the theoretical model proposed in the previous section. Using a con-
stant (i.e. variance free) time-wise fitness distribution, we simulated the time required
by GEN-MSPS and SSA-MSPS runs when having various values of the coefficient of
parallelization (1). The obtained results (Figure 3 - the cv = 0 data points) confirm the
∆struct behavior indicated by the theoretical model from (2).

Next, we evaluated the influence of having various degrees of variance in the time-
wise distribution. In these tests, the fitness evaluation of each individual took tp millisec-

On the Performance of Master-Slave Parallelization Methods for MOEAs 7

onds where tp ∼N (m,σ). As we fixed ts = 1, in this case, r ∼m and, when scaling up
m we also modified σ in order to keep the coefficient of variation, cv =

σ

m , constant at a
preset value. The maximum amount of variance that we could consider, under a normal
distribution assumption, was given by cv = 0.2. Because of the induced stochasticity,
for each value of r we performed 100 tests and we report averaged results.

The plot in Figure 3 shows how ∆struct behaves when using four different cv values.
The curves clearly show that the logarithmic decrease of ∆struct is less intense with
increased variance. Further experiments have also shown that, with variance in the time-
wise fitness distribution function, after reaching a lower threshold, the value of ∆struct
tends to stabilize. We have run simulations up to r = 107 with a step size of 10000 and,
in Table 1, we report the discovered lower thresholds of ∆struct for different variance
levels. We mention that, in the absence of variance, for r = 107, ∆struct = 0.000988%.

The conclusion of the above tests is that the theoretical model (2) gives an accurate
lower limit for ∆struct but the value of ∆struct for a given parallelization ratio r is signif-
icantly higher when having variance in the time-wise fitness distribution. Furthermore,
in the presence of variance, ∆struct is lower bounded by variance-specific thresholds that
display a remarkable stability even at very high values of r.

Table 1. The observed variance-specific lower thresholds of ∆struct

cv [-] Lower threshold for ∆struct [%] ∆struct for r = 107 [%]

0.20 50.0822 50.2134
0.10 25.0858 25.1224
0.05 12.5940 12.6135
0.02 5.0969 5.1017

4 Examining the Qualitative Performance - Empirical Results

4.1 Evaluation Framework Setup

The qualitative performance of the two considered master-slave parallelization schemes
depends on the concrete MOOP to be solved, on the used MOEA and on the parame-
terization of the algorithm. In the following paragraphs we describe the details of the
performance evaluation framework we used.

Test Problems We have chosen for benchmarking purposes four standard, artificial,
test problems from evolutionary multi-objective literature. Our choice of artificial prob-
lems is self-evident as it is very helpful to know the ground truth (i.e., the true Pareto
front) in order to compare between parallelization results. The problems have been spe-
cially selected as they propose different degrees of difficulty and different convergence
behaviors for the two MOEA algorithms that we experiment with. The MOOPs we

8 Alexandru-Ciprian Zăvoianu et al.

consider are a) KSW - a classic optimization problem with 10 variables and two ob-
jectives based on Kursawe’s function [11]; b) DTLZ7 - a problem with 22 variables
and 3 objectives that is aimed at testing the performance of a MOEA on discontinuous
Pareto fronts [5]; c) ZDT6 - a problem with 10 variables and 2 objectives that proposes
difficulties regarding the non-uniformity of the search space [14]; d) LZ09-F1 - a prob-
lem with 30 variables and two objectives part of the LZ09 problem set [12] which is
particularly difficult for classic MOEAs like NSGA-II and SPEA2.

The computation of the fitness values for all four problems is very fast on any mod-
ern processor. In order to make the MOEAs exhibit the desired test behavior, the fitness
computation times were artificially increased (as described in Section 3.2).

MOEA Parameterization Our implementation of the NSGA-II and SPEA2 algo-
rithms is loosely based on the one provided by the jMetal package [7]. Because our
main goal is to compare the performance of two different parallelization models on the
same algorithm, we use, more or less, standard parameterization options.

As such, for all the performed tests, we used a population size of 100 individuals and
an archive size of 100. In the case of SSA-MSPS the term “generation” is used to de-
note a batch of 100 individuals. We used three standard genetic operators from MOEA
literature: binary tournament selection, simulated binary crossover [3] and polynomial
mutation. We used standard values to parameterize these genetic operators: 0.9 for the
crossover probability, 20 for the crossover distribution index, 1/L for the mutation prob-
ability (where L is the number of variables) and 20 for the mutation distribution index.

We make our comparisons based on rather short runs of 500 generations (50.000 in-
dividuals). This is because after 500 generations we reach generally good solutions for
all the considered test problems and because we are particularly interested in studying
the middle-stage convergence behavior of GEN-MSPS and SSA-MSPS. We consider
that the behavior of the two parallelization schemes in the late-stage of convergence
is of less practical importance for us. This is because time constraints are very impor-
tant in many real-world industrial optimization scenarios and practitioners rarely run an
optimization for more than a few hundred generations. If one particular method is con-
stantly outperforming the other in a late-stage of convergence, given the descriptions
from Section 2, one can easily switch during the optimization to the best performing
parallelization method by enabling or disabling the mentioned synchronization step.

Quality Indicators For a given solution set S, the hypervolume associated with this
solution set, H (S), has the advantage that it is the only Pareto front quality estimation
metric for which there is a theoretical proof [9] of a monotonic behavior. This means
that the maximization of the hypervolume constitutes the necessary and sufficient con-
dition for the set of solutions to be maximally diverse Pareto optimal solutions of a
discrete, multi-objective, optimization problem [9]. In light of this, for any optimization
problem, the true Pareto front has the highest achievable hypervolume value.

In our case, for a given MOOP, the monotonic property of the hypervolume metric
makes it ideal for assessing the relative quality of an arbitrary solution set S∗. Let us
mark with Strue the true Pareto front of our MOOP. As we deal with artificial problems
where Strue is known, we can present the quality of the given solution set as a percentile

On the Performance of Master-Slave Parallelization Methods for MOEAs 9

obtained by reporting the hypervolume measure of this solution set to the hypervolume
value associated with the true Pareto front of the given MOOP:

qual(S∗) =
H (S∗)

H (Strue)
×100 (3)

Expressing the quality of a solution set as a true hypervolume percent also enables
us to define more accurately what we mean by the syntagms early, middle and late-stage
of convergence. For the purpose of this research, in light of the motivations presented in
the last paragraph of the previous section, we define a MOEA as being in the early stage
of convergence if qual(A∗)≤ 15 where A∗ denotes the current archive of the MOEA. If
qual(A∗)∈ (15,85] we consider the algorithm to be in the middle-stage of convergence,
while qual(A∗)> 85 is associated with a late-stage of convergence.

Consider we wish to solve our MOOP with a certain MOEA. Let: a) p = 1,100
be an integer value; b) CGEN(p) be the minimal number of individuals that must be
computed when using GEN-MSPS in order to reach a solution set S1 with the prop-
erty that qual(S1) ≥ p; c) CSSA(p) be the minimal number of individuals that must be
computed when using SSA-MSPS in order to reach a solution set S2 with the property
that qual(S2) ≥ p. For our MOOP-MOEA combination, we define the SSA qualitative
deficit at the true hypervolume percentile p as:

∆qual(p) =
(

CSSA(p)
CGEN(p)

−1
)
×100 (4)

This H -derived measure shows the difference in the minimum number of individu-
als that must be computed when using the two parallelization schemes in order to reach
a solution set Sp with the property that qual(Sp)≥ p.

In each series of tests that we have performed, we made 50 runs for each param-
eter configuration and we always report over averaged results. The authors are aware
that a balanced comparison of non-dominated solution sets often takes into considera-
tion more than a single performance metric [16], but we consider that, on its own, the
hypervolume metric is sufficient for expressing major qualitative differences between
solutions sets, especially when reporting over averaged results.

4.2 Basic Qualitative Performance Tests

In the first series of performed tests, using a constant fitness distribution (i.e. cv = 0),
we measured the quality of the MOEA archive (in terms of hyper-volume) after the
completion of each generation (i.e. batch of 100 individuals in the case of SSA-MSPS).
These results are presented in the subplots in Figure 4 marked with (a). We consider
that a more useful perspective for presenting the same comparative convergence behav-
ior information can be constructed by plotting the ∆qual values of the MOEA archive
(subplots marked with (b) from Figure 4).

The results of these initial tests confirm some of the findings in [6], in the sense that
the GEN-MSPS is able to achieve a higher quality Pareto front than SSA-MSPS after
the same number of evolved individuals in the early and middle stages of convergence
for all the considered problems. Furthermore, when abstracting the behavioral shifts

10 Alexandru-Ciprian Zăvoianu et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500T
ru

e
hy

pe
rv

ol
um

e
[%

]

Generations [-]

KSW10 (a)

GEN-MSPS
SSA-MSPS (cv=0)

-30
-24
-18
-12

-6
 0
 6

 12
 18
 24
 30

 0 10 20 30 40 50 60 70 80 90 100

Δ
qu
al

 [
%

]

p [-]

KSW10 (b)

used for Δreq computation

cv=0
cv=0.1
cv=0.2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500T
ru

e
hy

pe
rv

ol
um

e
[%

]

Generations [-]

DTLZ7 (a)

GEN-MSPS
SSA-MSPS (cv=0)

-30
-24
-18
-12

-6
 0
 6

 12
 18
 24
 30

 0 10 20 30 40 50 60 70 80 90 100

Δ
qu
al

 [
%

]

p [-]

DTLZ7 (b)

used for Δreq computation

cv=0
cv=0.1
cv=0.2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500T
ru

e
hy

pe
rv

ol
um

e
[%

]

Generations [-]

ZDT6 (a)

GEN-MSPS
SSA-MSPS (cv=0)

-30
-24
-18
-12

-6
 0
 6

 12
 18
 24
 30

 0 10 20 30 40 50 60 70 80 90 100

Δ
qu
al

 [
%

]

p [-]

ZDT6 (b)

used for Δreq computation

cv=0
cv=0.1
cv=0.2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500T
ru

e
hy

pe
rv

ol
um

e
[%

]

Generations [-]

LZ09-F1 (a)

GEN-MSPS
SSA-MSPS (cv=0)

-30
-24
-18
-12

-6
 0
 6

 12
 18
 24
 30

 0 10 20 30 40 50 60 70 80 90 100

Δ
qu
al

 [
%

]

p [-]

LZ09-F1 (b)

used for Δreq computation

cv=0
cv=0.1
cv=0.2

Fig. 4. SPEA2 generation-wise qualitative performance plots averaged over 50 runs

that characterize the early and late stages of convergence, we notice that ∆qual values are
quite constant for each test problem. By averaging the individual ∆qual values associated
with the middle stage of convergence (i.e., p = 16,85), we obtain the average required
SSA improvement for each MOOP-MOEA combination:

∆req =
1
70
∗

85

∑
p=16

∆qual(p) (5)

4.3 The Effect of Variance on the Qualitative Performance

The second series of tests that we have performed in order to gain more insight into
the qualitative performance of the two parallelization schemes is again related to the
influence of having variance in the time-wise fitness distribution function.

On the Performance of Master-Slave Parallelization Methods for MOEAs 11

The results obtained using SPEA2 are presented in the subplots marked with (b)
from Figure 4. The values of ∆req for both SPEA2 and NSGA-II are shown in Table
2. It is easy to observe that, in the case of the qualitative performance, variance in the
time-wise distribution of the fitness evaluation function has a negligible effect: ∆req is
not directly proportional to the amount of variance and, in half of the cases, the observed
average changes induced on ∆req by having some level of variance are not statistically
significant. This creates a stark contrast when comparing with the effect that variance
has on the quantitative performance (Section 3.2) and provides a solid indicator that
SSA-MSPS should be favored in the presence of significant variance.

Table 2. Averaged values of the ∆req metric over 50 runs for different levels of variance in the
time-wise distribution of the fitness evaluation function. For each MOEA - MOOP combination,
the highest value is highlighted and marked with “+” if the difference between it and the lowest
∆req value of the combination is statistically significant (one-sided Mann-Whitney-Wilcoxon test
with a considered significance level of 0.05).

∆req for SPEA2 [%] ∆req for NSGA-II [%]
Problem cv = 0 cv = 0.02 cv = 0.10 cv = 0.20 cv = 0 cv = 0.02 cv = 0.10 cv = 0.20
KSW10 11.06 11.59 11.77 11.64 12.65 11.41 12.25 12.62
DTLZ7 12.13 16.16+ 14.10 14.21 18.46 20.43+ 16.58 17.79
ZDT6 21.55+ 20.22 21.39 18.75 21.91 22.33 22.67 23.32

LZ09-F1 11.49 14.02+ 11.47 10.04 12.71 13.73 12.86 14.04

4.4 The Interplay between the Quantitative and the Qualitative Aspects

This stable behavior of the qualitative deficit exhibited by SSA-MSPS allows for a
simple reasoning regarding the comparative performance of GEN-MSPS and SSA-
MSPS: if, for a given optimization setup, the quantitative improvement of SSA-MSPS
(∆struct) can overcompensate the qualitative deficit of SSA-MSPS (∆req), we can say
that, on average, SSA-MSPS is the better parallelization choice. This is because when
(∆struct > ∆req) we have good reasons to believe that, in any middle-stage convergence
time interval, SSA-MSPS can produce Pareto fronts that are better or at least as good as
those that might have been obtained by using GEN-MSPS for the same time interval.

Graphically, we can combine the quantitative performance and the qualitative per-
formance by simply plotting ∆req as a constant value (please see Figure 5). The in-
tersection between the ∆req constant line and the ∆struct curve is the problem specific
parallelization equilibrium point. If the equilibrium point lies to the right of the par-
allelization ratio, on average, SSA-MSPS is the better option, while if the equilibrium
point lies to the left of the parallelization ratio, GEN-MSPS should be preferred. Figure
5 contains two charts that show the best parallelization decisions for our four test prob-
lems, under the assumptions of a constant time-wise distribution of the fitness function
and of a parallelization ratio r = 650. SSA-MSPS is the better parallelization choice
for KSW10, DTLZ7 and LZ09-F1 when using SPEA2. In the case of NSGA-II, SSA-
MSPS performs better only in the case of KSW10 and LZ09-F1.

12 Alexandru-Ciprian Zăvoianu et al.

 7.5

 10

 12.5

 15

 17.5

 20

 22.5

 25

 27.5

 400 450 500 550 600 650 700 750 800 850 900

Parallelization ratio - r [-]

SPEA2 parallelization decision for r = 650

GEN-MSPS is better SSA-MSPS is better

 400 450 500 550 600 650 700 750 800 850 900

Parallelization ratio - r [-]

NSGA2 parallelization decision for r = 650

Δstruct (cv=0)
Δreq (cv=0) - KSW10

Δreq (cv=0) - DTLZ7
Δreq (cv=0) - ZDT6

Δreq (cv=0) - LZ09-F1
par. equilib. points

GEN-MSPS is better SSA-MSPS is better

Fig. 5. Graphical example of the best parallelization decisions for specific MOOP-MOEA com-
binations. The hypothetical parallelization ratio is set at r = 650.

Applying this quantitative and qualitative analysis of parallelization performance in
real world optimization scenarios is rather straightforward. Nevertheless, the posteriori
character of both ∆struct and ∆req means that a few initial, short, mock-up test runs are
required in order to estimate the concrete parallelization ratio and the problem specific
qualitative behavior. This short profiling phase is more than worthwhile when one has
to solve multiple MOOPs that fall within the same class (e.g., problems with roughly
similar parameter vectors and / or different parameter ranges). For the same MOOP
class, ∆req is expected to be quite robust while ∆struct can be generally estimated quite
quickly as it is solely dependent on the concrete parallelization setup.

5 Conclusions and Future Work

In this paper, we investigated two master-slave parallelization methods (generational
and steady state asynchronous) for MOEAs and tried to discover what are the decisive
factors that can make one method outperform the other in a time-constrained optimiza-
tion scenario that also requires very time-intensive fitness evaluation functions.

In order to achieve this, we performed a comparative quantitative and qualitative
analysis of the behavior of these two methods when applying them to parallelize NSGA-
II and SPEA2 optimization runs. The results indicate that 1) the parallelization ratio
and especially 2) the level of variance in the time-wise distribution of the fitness eval-
uation function are the key factors that influence the relative performance of the two
parallelization methods. The presence of variance is a key factor, as a rather heteroge-
neous fitness function can make the steady state asynchronous parallelization method
(SSA-MSPS) considerably outperform its generational counterpart (GEN-MSPS).

In the future, we plan to profile using ∆req more problems, including industry pro-
posed MOOPs, and we want to test the parallelization schemes on more modern MOEAs.

On the Performance of Master-Slave Parallelization Methods for MOEAs 13

References

1. Coello, C., Lamont, G., Van Veldhuisen, D.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Genetic and Evolutionary Computation Series, Springer (2007)

2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience
Series in Systems and Optimization, John Wiley & Sons, Chichester (2001)

3. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex
Systems 9, 115–148 (1995)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic al-
gorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182 –197 (2002)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test
problems. In: IEEE Congress on Evolutionary Computation (CEC 2002). pp. 825–830 (2002)

6. Durillo, J., Nebro, A., Luna, F., Alba, E.: On the effect of the steady-state selection scheme
in multi-objective genetic algorithms. In: International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2009). pp. 183–197. Springer (2009)

7. Durillo, J.J., Nebro, A.J.: JMETAL: A Java framework for multi-objective optimization. Ad-
vances in Engineering Software 42, 760–771 (2011)

8. Durillo, J., Nebro, A., Luna, F., Alba, E.: A study of master-slave approaches to parallelize
NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing (IPDPS
2008). pp. 1 –8 (2008)

9. Fleischer, M.: The measure of Pareto optima. applications to multi-objective metaheuristics.
In: International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003). pp.
519–533. Springer (2003)

10. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algo-
rithms. In: Foundations of Genetic Algorithms. pp. 69–93. Morgan Kaufmann (1991)

11. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Workshop on Par-
allel Problem Solving from Nature (PPSN I). Lecture Notes in Computer Science, vol. 496,
pp. 193–197. Springer (1991)

12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302
(2009)

13. Yagoubi, M., Thobois, L., Schoenauert, M.: Asynchronous evolutionary multi-objective al-
gorithms with heterogeneous evaluation costs. In: IEEE Congress on Evolutionary Compu-
tation (CEC 2011). pp. 21 –28 (2011)

14. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Em-
pirical results. Evolutionary computation 8(2), 173–195 (2000)

15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm for multiobjective optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary
Methods for Design, Optimisation and Control with Application to Industrial Problems (EU-
ROGEN 2001). pp. 95–100. International Center for Numerical Methods in Engineering
(CIMNE) (2002)

16. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions
on Evolutionary Computation 14(1), 58 –79 (2010)

17. Zăvoianu, A.C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.P.: A
hybrid soft computing approach for optimizing design parameters of electrical drives. In:
Snás̆el, V., et al. (eds.) International Conference on Soft Computing Models in Industrial and
Environmental Applications (SOCO 2012), Advances in Intelligent Systems and Computing,
vol. 188, pp. 347–358. Springer Berlin / Heidelberg (2013)

