
Towards Solution Parsimony in an Enhanced Genetic

Programming Process

MASTER’S THESIS

for obtaining the academic title

Master of Science

in

INTERNATIONALER UNIVERSITÄTSLEHRGANG

INFORMATICS: ENGINEERING & MANAGEMENT

composed at ISI-Hagenberg, Austria

Handed in by:

Alexandru-Ciprian Zăvoianu

Finished on:

15 July, 2010

Scientific Advisors:

Prof.(FH) Priv.-Doz. Dl. Dr. Michael Affenzeller

Prof. Univ. Dr. Daniela Zaharie

Hagenberg, July, 2010

Acknowledgment I

Acknowledgment

Doing the work presented in this thesis would not have been possible without the

support and guidance of a number of people.

First, I would like to thank my wonderful parents and my dear Diana for their love,

constant support and encouragements, all of which have formed the cornerstone of my

most important achievements in life.

Next, I am very grateful to my advisors, Prof. Dr. Michael Affenzeller and Prof. Dr.

Daniela Zaharie, for introducing me to the field of nature-inspired computing and for

their invaluable help in guiding my research.

I would also like to thank all the members of the Heuristic and Evolutionary Algo-

rithms Laboratory (HEAL), and Dipl.-Ing. Gabriel Kronberger and Dipl.-Ing. Michael

Kommenda in particular, for their patience, their valuable hints and a very enjoyable

cooperation in our research on genetic programming.

Last, but by no means least, I would like to express my sincere gratitude to Prof. Dr.

Bruno Buchberger and Prof. Dr. Dana Petcu for giving me the opportunity to conduct

my Master studies within the ISI Hagenberg program and for generally encouraging me

to grow, both as a student and as a young researcher.

My one-year stay in Austria has been partially supported by the EU through the

SPRERS project (FP7 reference number 246839).

Abstract II

Abstract

In recent years, data based modeling methods have emerged as a significant aid in many

fields of modern science and industry. The result of such a modeling method is usually

a mathematical description of the analyzed system (e.g., a regression formula).

Genetic programming (GP) offers a means of automatically producing mathematical

expressions from data by using concepts inspired by natural evolution. The main ad-

vantage of using GP for data based modeling consists in the generally high level of

interpretability of the resulting solution models. Nevertheless, the parsimony of GP

solution models is extremely important as very large and/or highly complex models

are quite hard to interpret. GP solution size is negatively affected by the well studied

phenomenon of code bloating: a rapid overall growth in the size of evolved GP models

without any corresponding benefits in terms of accuracy.

In our work, we first focus on analyzing the impact of bloat on GP solution size when

considering a modified GP process used for solving symbolic regression problems. This

GP process contains several enhancements aimed at improving solution accuracy (e.g.,

an offspring selection strategy [2], a linear scaled error measure [26] and a gender specific

parent selection mechanism [56]).

Secondly, based on the above mentioned analysis and on a review of several bloat control

methods, we design and integrate in the enhanced GP process a bloat control strategy

based on dynamic depth limiting (DDL) and iterated tournament pruning (ITP) that

performs extremely well. Our method is able to achieve an average decrease of 40% in

GP solution size without having any negative impact on solution quality.

Contents III

Contents

1 Introduction 1

1.1 Background . 1

1.2 Goal and Approach . 2

1.3 Original Contribution . 2

1.4 Outline of the Thesis . 3

2 Genetic programming 5

2.1 What is Genetic Programming? . 5

2.2 Historical Background . 6

2.3 The GP Process . 7

2.3.1 Representation . 8

2.3.2 Evaluation . 10

2.3.3 Initialization . 10

2.3.4 Selection . 11

2.3.5 Genetic Operators: Crossover and Mutation 13

2.3.6 Termination and Solution Designation 15

2.4 Applications of Genetic Programming 16

3 Symbolic Regression and Data Based Modeling 18

3.1 Data Based Modeling in Scientific Discovery 18

3.1.1 Model Performance Criteria . 19

3.1.2 Model Interpretability in GP . 20

3.2 Regression and Symbolic Regression . 21

3.2.1 Formalization and Standard Solving Methods 22

3.2.2 Symbolic Regression Using Genetic Programming 23

3.3 Obstacles in Data Based Modeling . 27

4 Modeling Scenarios and Testing Environment 30

4.1 Modeling Scenarios . 30

4.1.1 The Blast Furnace Problem . 30

4.1.2 The EvoCompetitions 2010 Symbolic Regression Problem 33

4.2 Testing Environment . 34

4.2.1 The GP Process in HeuristicLab 34

4.2.2 The WEKA Platform . 37

Contents IV

5 Bloat - The major problem in GP 39

5.1 Bloat - Background . 39

5.2 Theoretical Aspects . 40

5.2.1 Bloat and Introns . 40

5.2.2 Five Theories of Bloat . 41

5.2.3 Discussion . 43

5.3 Classic Bloat Control Methods . 44

5.3.1 Size and Depth Limits . 44

5.3.2 Anti-bloat Genetic Operators . 45

5.3.3 Anti-bloat Selection . 45

5.4 Bloat and GP Solution Size - The Result Orientated Perspective 46

5.4.1 Bloat - The Training Set Perspective 47

5.4.2 Bloat - The Validation Set Perspective 48

6 Methodology and Initial Test Results - The Performance Baseline 51

6.1 Methodology . 51

6.1.1 Input Data Preparation . 51

6.1.2 Comparing GP with other regression methods 52

6.1.3 Comparing two different GP configurations 53

6.2 Initial Tests . 54

6.2.1 Weka Test Configurations . 54

6.2.2 HeuristicLab Test Configuration 55

6.2.3 Performance Baseline . 56

6.2.4 Bloat - A Concrete Example . 58

7 Reducing Solution Size in HeuristicLab GP 62

7.1 The Impact of the Offspring Selection Enhancement on Solution Size . . 62

7.1.1 Offspring Selection Experiments 63

7.1.2 Comparison with Standard GP 63

7.1.3 The effect of parent selection pressure 65

7.1.4 Discussion . 68

7.2 Possible Bloat Control Strategies for HeuristicLab 69

7.2.1 Static Depth Limits . 70

7.2.2 Dynamic Depth Limits . 71

7.2.3 Pruning . 73

7.2.4 Discussion . 77

7.3 The Resulting HeuristicLab Bloat Control System 78

8 Conclusion 84

8.1 Achievements . 84

8.2 Future Perspectives . 85

Bibliography 87

List of Figures V

List of Figures

2.1 GP syntax tree representing the program min(x− 6, x+ y ∗ 2) 9

2.2 Example of subtree crossover . 13

2.3 Example of subtree and point mutation 15

3.1 GP crossover of example regression formulae 25

3.2 Plot of regression formulae used as an example 26

4.1 Schematic diagram of the blast furnace 31

4.2 Offspring selection model . 35

5.1 A Venn diagram of the various kinds of code in GP 41

5.2 The GP validation perspective on bloat structure 50

6.1 InitialHL-GP run that produced a parsimonious model 60

6.2 InitialHL-GP run that produced a large-sized model 61

7.1 Accuracy density estimation - StandardHL-GP & InitialHL-GP 64

7.2 Size density estimation - StandardHL-GP & InitialHL-GP 65

7.3 Accuracy density estimation - different parent selection strategies 66

7.4 Size density estimation - different parent selection strategies 66

7.5 Accuracy density estimation - DDL-HL-GP & InitialHL-GP 73

7.6 Size density estimation - DDL-HL-GP & InitialHL-GP 73

7.7 Accuracy density estimation - ITP-HL-GP & InitialHL-GP 76

7.8 Size density estimation - ITP-HL-GP & InitialHL-GP 77

7.9 Accuracy density estimation - BSC-HL-GP & InitialHL-GP 82

7.10 Size density estimation - BSC-HL-GP & InitialHL-GP 83

List of Tables VI

List of Tables

3.1 Input data for example experiment . 24

3.2 Estimations produced by GP models for example experiment 25

4.1 Measured and calculated variables for the blast furnace process 32

6.1 Common GP parameter settings used in all configurations 56

6.2 Accuracy information regarding four regression methods 57

6.3 InitialHL-GP: information regarding solution accuracy 57

6.4 InitialHL-GP: information regarding solution size 58

6.5 Population dynamics indicators for the two considered GP runs 60

6.6 InitialHL-GP population dynamics indicators 61

7.1 StandardHL-GP configuration performance - A6 scenario 64

7.2 Parent selection strategies: information regarding solution accuracy . . . 67

7.3 Parent selection strategies: information regarding solution size 67

7.4 DDL-HL-GP configuration performance - A6 scenario 72

7.5 ITP-HL-GP best found parameter settings - A6 scenario 76

7.6 ITP-HL-GP configuration performance - A6 scenario 77

7.7 BCS-HL-GP: information regarding solution accuracy 79

7.8 BCS-HL-GP: information regarding solution size 79

7.9 BCS-HL-GP population dynamics indicators 80

List of Algorithms VII

List of Algorithms

2.1 Basic Genetic Programming . 8

7.1 The dynamic depth limiting module (DDL module) 72

7.2 The iterated tournament pruning module (ITP module) 75

Introduction 1

Chapter 1

Introduction

1.1 Background

Data based modeling methods have emerged as a significant aid in many fields of

modern science and industry. When the goal of data based modeling is to determine

a mathematical description of the behavior of a given phenomenon by analyzing a set

of measurement data, we must solve a regression problem. Although the process of

creating equations from data is automated, the human scientist still has the leading

role of interpreting, analyzing and embedding or rejecting the proposed models. Whilst

the need for model accuracy is self evident, interpretability is also a very important

performance criteria: the more interpretable a given model is, the more easily its validity

can be verified by a human expert.

Genetic programming (GP) offers a means of producing mathematical expressions from

data by using concepts inspired by natural evolution. The main advantage of using GP

for data based modeling consists in the generally high level of interpretability of the

resulting models.

A real threat to GP model interpretability comes in the form of a well studied phe-

nomenon known as bloat : a rapid growth in the size of evolved models without any

corresponding benefits in terms of accuracy and interpretability. By contrary, when af-

fected by bloat, models usually become so large that trying to interpret them becomes

a tedious task.

At its core, this thesis is motivated by an industrial modeling problem proposed by the

steel industry. The overall goal of this problem is to construct highly interpretable,

parsimonious (i.e. small sized) models of high quality that can offer new insight into

some of the phenomena associated with the blast furnace process.

Introduction 2

Further motivation also steams from the desire to generally help improve the inter-

pretabily and also the quality of the GP regression models by studying which bloat

control techniques are more successful when using validation based solution designa-

tion.

1.2 Goal and Approach

HeuristicLab[55] is an optimization framework developed by the Heuristic and Evolu-

tionary Algorithms Laboratory (HEAL) of the Upper Austrian University of Applied

Sciences. The HeuristicLab implementation of GP has proven very successful on several

occasions so far, as described in [57] and [32].

The main goal of this thesis is to help enhance the general interpretability of GP based

symbolic regression models within the frame of HeuristicLab. Our approach for achiev-

ing this objective focused on understanding and combating/controlling the bloating

phenomenon that affects the enhanced GP process implemented in HeuristicLab.

Two symbolic regression problems were used for testing: the blast furnace problem

we introduced above and a problem originating from the chemical sector that was

proposed as a benchmark problem in the 2010 EvoCompetitions challenge [17]. Over

the course of the paper, the regression models obtained using genetic programming are

compared, in terms of accuracy (and interpretability), with the results obtained using

standard regression techniques like linear regression, artificial neural networks (ANNs)

and support vector machines (SVM) based regression.

1.3 Original Contribution

Our original contribution consists in developing a result orientated bloat control system

that further enhances the GP process implemented in HeuristicLab, a process that

revolves around an offspring selection strategy [2], such as to generally enable GP to

find small-sized solutions for symbolic regression problems.

In order to achieve this goal, we have first studied the nature of the bloat phenomenon

in the context of HeuristicLab GP and then we have experimented various solutions

to control its unwanted effects on solution size. A certain flavor of originality is also

related to the result orientated perspective we have adopted in combating bloat.

Introduction 3

According to the above approach, our work is split into two main stages:

• Firstly, we focused on analyzing and understanding the impact of using the strict

GP offspring selection method on overall solution performance and bloat.

• Secondly, three methods of bloat control were combined and tested in order to

determine which one (or which combination of methods) could lead to an ultimate

improvement in solution interpretability without negatively impacting model ac-

curacy. The analyzed bloat control methods include static depth limitation, dy-

namic depth limitation and pruning strategies.

Finally, after having designed and implemented a bloat control system, the general in-

terpretability (parsimony) of the resulting HeurisiticLab GP solution regression models

was dramatically improved without any negative impact on general prediction accuracy.

Furthermore, in some cases, the bloat control strategies also seemed to drive an increase

in overall GP prediction accuracy, making GP based regression a noteworthy candidate

when comparing with the other standard linear and non-linear regression methods.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 introduces the technique of genetic programming as part of the wider

field of evolutionary computation. The focus in this part of the thesis falls on

describing all the major parts of the GP process. The last section of the chapter

contains a brief overview of the applications of genetic programming in various

scientific fields.

• Chapter 3 starts with a presentation of the importance of white box data based

modeling in the context of modern scientific discovery. Afterwards, the problem

of symbolic regression is described along with some standard solving methods.

Next, the concept of GP based regression is thoroughly explained. In the end,

the major obstacles in data based modeling are presented along with general and

GP specific methods that can help in overcoming them.

• Chapter 4 contains a description of the two symbolic regression test problems we

are using as well as an overview of the testing environment we used for experi-

menting.

Introduction 4

• Chapter 5 is dedicated to describing the bloating phenomenon outlining pre-

sumed causes and popular methods of bloat control. This chapter also presents

an overview of how we define bloat control from a HeuristicLab GP solution size

perspective - the so called result orientated perspective on bloat.

• Chapter 6 presents details regarding the methodology we used and the initial tests

we performed. The results of these initial tests define our performance baseline

in terms of GP solution accuracy and size. The chapter ends with an example of

how bloating affects solution size within HeuristicLab.

• Chapter 7 is the central chapter of this thesis as it contains most of the original

contribution previously described in Section 1.3.

• Chapter 8 contains the conclusions, a summary of the obtained results and also

an overview on future perspectives.

The thesis is finally completed by a bibliography.

Genetic programming 5

Chapter 2

Genetic programming

2.1 What is Genetic Programming?

Genetic programming (GP) is a programming technique inspired by biological evolution

that can automatically solve problems without requiring the user to specify the form or

structure of the solution in advance. Viewed at the highest level of abstraction, genetic

programming is a systematic, domain-independent method for getting computers to

solve problems automatically starting from a high-level statement of what needs to be

done[46].

GP belongs to the larger class of nature inspired problem solving methods called evo-

lutionary algorithms. As the name might suggest, the theoretical foundation of evo-

lutionary algorithms is represented by Charles Darwin’s theories. Darwin (1809-1882)

was a revolutionary English botanist, naturalist and zoologist who laid the foundation

for the modern theory of evolution and identified natural selection as its main driving

force.

His most famous work is the 1859 book “On the Origin of Species by Means of Natural

Selection, or the Preservation of Favoured Races in the Struggle for Life” [12] . Darwin’s

main theories state that evolution surely occurs, that it is a gradual process requiring

thousands to millions of years and that the primary mechanism of evolution is a process

called natural selection (described in Chapter 4 of his book: “Natural selection; Or the

Survival of the Fittest”). The process of natural selection, as identified by Darwin, is

based on two principles:

1. In sexually reproducing species no two individuals are completely identical, and

this variation is heritable (heredity principle).

Genetic programming 6

2. In populations with a relatively stable number of individuals, where each in-

dividual must struggle for survival, those members that show the “best” (most

desirable) characteristics are more likely to survive whilst individuals that exhibit

“undesirable” characteristics are not so likely to survive. (survival of the fittest

principle)

Taking the above into account, Darwin concluded that desirable characteristics are

very likely to survive as they are passed on to offspring and thus preserved in future

generations. Also, on the other hand, “undesirable” characteristics are not so likely

to survive in future generations. As evolution goes on, generation after generation,

desirable characteristics will become dominant among the entire population.

Genetic programming is one method of applying the principles of evolutionary biology to

computer science. The idea is to evolve over the course of time a population of computer

programs1 with the goal of eventually obtaining one or more individuals (i.e. programs)

that are capable of solving a given problem. As such, generation after generation, GP

transforms the current population of programs, through a largely stochastic method,

into a new, and hopefully better, population of programs. Like in nature, the stochastic

character of evolution means that GPs cannot guarantee results. On the other hand, the

same built-in randomness allows GPs to escape traps which may capture deterministic

methods.

2.2 Historical Background

The first research activities in the field of GP have started in the early 1980s. Forsyth

created BEAGLE [20] in 1981, a computer package that can create decision-rules by

induction from a database. The principle of natural selection stands at the core of the

approach as rules that fit the data badly are killed off and replaced by mutations of

better rules or by new rules created by combining two better adapted rules. The rules

are Boolean expressions represented by tree structures.

Cramer’s paper from 1985 describes an adaptive system for generating short sequential

computer functions [10]. It is widely accepted that this article is the first to describe

the tree-like representation and the operators that can be used in order to genetically

manipulate programs.

Even though there were several important achievements regarding GP in the 1980s,

it still took some time until the method was widely received by the computer science

1Please note that we here define a computer program as an entity that can receive inputs, perform
computations and produce output.

Genetic programming 7

community. This was due to the fact that GP is a very computationally intensive

technique and the available hardware at that time imposed severe restraints on the size

and type of problems that could be tackled. But this was soon to change thanks to the

enormous growth in CPU power that started in the late 1980s.

One of the most important publications in the field appeared in 1992. It was “Genetic

Programming: On the Programming of Computers by Means of Natural Selection”[29]

by John R. Koza, professor for computer science and medical informatics at Stanford

University. Containing a thorough theoretical background as well as test results from

various problem domains, his work has proven GP’s ability to serve as an automated

invention machine producing human competitive results for various kinds of problems.

By now, there have been three more books on GP by Koza and his team.

Even though GP began to be successfully applied for solving ever more complicated

problems in various fields, the development of a comprehensive GP theory lagged behind

even in the 1990. Major advancements were made in the early 2000s and an exact GP

schema analysis was first presented in “Foundations of Genetic Programming”[35] by

Langdon and Poli.

2.3 The GP Process

The major stages of a GP system are shown in Algorithm 2.1. The first step is to

randomly create an initial population of programs. In order to determine how good a

given program (i.e. a solution candidate) is, GP must run it and compare its behavior

to some ideal (line 3). Regardless of the specific problem at hand, this comparison must

be quantified in order to give a numeric value called fitness. The programs that are

promising (i.e. have a good fitness value) are chosen to breed (line 4) and produce new

programs for the next generation (line 5). The main genetic operators that are used to

create new programs from old ones are:

• crossover : creates a child program by combining randomly chosen parts from two

selected parent programs

• mutation: creates a child program by randomly altering a randomly chosen part

of a selected parent program

The above described steps are the means through which GP implements the darwinistic

principles of biological evolution driven by natural selection. The selection stage is

a means of implementing the survival of the fittest principle, as it makes sure that

Genetic programming 8

individuals with desirable characteristics are more likely to reproduce. The crossover

genetic operator helps to implement the heredity principle as it ensures that an offspring

inherits the characteristics of both of its parents.

Another very important aspect one needs to take into consideration when simulating

biological evolution is the concept of genetic diversity. Genetic diversity refers to the

total number of genetic characteristics present in the entire population at a given time.

During the run of a GP process, one must be careful not to decrease genetic diversity

to such an extent that basically all the individuals in the population become almost ge-

netically similar (before a suitable solution has been found). In this case, the evolutive

process cannot take place anymore as all future offspring, created through crossover

will in fact be nothing more than copies of their respective parents (premature conver-

gence).

Maintaining genetic diversity can be a serious challenge as the principles of heredity and

survival of the fittest are working against it by removing from future generations the

genetic material of those individuals that are considered unfit at a given time, although

this genetic information might prove important at a later stage. An important force

that is working in favor of genetic diversity is mutation. Even if mutation is only

applied to a small part of the population, it has an important diversifying effect that

helps prevent premature convergence.

Algorithm 2.1 Basic Genetic Programming

1: randomly create an initial population of programs
2: repeat
3: execute each program and assess its fitness
4: select, with a probability based on respective fitness value, one or two programs

from the population
5: create new individual programs, from the above selected individuals by applying

genetic operators with specific probabilities
6: until an acceptable solution is found or some other stopping condition is met
7: return the best individual found

In the next sections of this chapter a more detailed description of each of the above

mentioned GP stages will be provided.

2.3.1 Representation

The representation of solution candidates is one of the key elements in any evolutionary

based problem solving technique. This is because on the one hand, the representation

scheme should be flexible enough to store suitable solutions for the given problem, but

Genetic programming 9

on the other hand, it should also be relatively simple as to allow for the design of good

genetic operators. In the context of GP the solution candidates are in fact hierarchical

computer programs of variable size [29] and the representation that is most common in

literature is the syntax tree [29] [35].

If we consider the program min(x − 6, x + y ∗ 2) , its syntax tree representation is

presented in Figure 2.1. We shall use this example in order to highlight some key

aspects that need to be taken into consideration in the context of syntax-tree based

genetic programming.

Figure 2.1: GP syntax tree representing the program min(x− 6, x+ y ∗ 2)

• All leaf nodes are either variables (x and y) or constants (6 and 2). In GP they

are called terminals and they are evaluated directly (i.e. their return values can

be calculated and returned immediately).

• All function nodes (min, −, + and ∗) have child nodes that must be evaluated

before using their values as input for their respective parents.

• The most convenient string representation for syntax trees is the prefix notation,

also called the Polish2 notation: (min (− x 6) (+ x (∗ y 2)))

• in the case of fixed function arities (i.e. the number of inputs for each function

is fixed and known), brackets can be dropped without causing any ambiguity:

min − x 6 + x ∗ y 2

The syntax tree is favored as a means of solution representation in GP because it

presents the important advantage of allowing for the representation of programs which

2Named in honor of its inventor, the Polish mathematician Jan Lukasiewicz (1878-1956).

Genetic programming 10

have sizes and shapes that change dynamically (which is to be expected in an evolu-

tionary process). Also, it is important to take into consideration that structure trees

are in fact the very model in which most programming language compilers internally

convert programs.

2.3.2 Evaluation

The evaluation / execution of solutions (programs) is a very important stage in GP

as it is a key part in assessing the quality of a given solution candidate. This is only

natural as one needs information about the results (and possibly side effects) of running

a given program in order to have an idea how on well that respective program is at

solving the problem at hand.

The evaluation of hierarchical computer programs represented as structure trees is done

recursively, using a depth-first traversal starting from the left. We shall illustrate this

by simulating the evaluation of the program in Figure 2.1.

Internal state before execution: x = 4, y = −1

Execution:

(min (− x 6) (+ x (∗ y 2)))

⇒ (min (− 4 6) (+ x (∗ y 2)))

⇒ (min (−2) (+ x (∗ y 2)))

⇒ (min (−2) (+ 4 (∗ y 2)))

⇒ (min (−2) (+ 4 (∗ − 1 2)))

⇒ (min (−2) (+ 4 (−2)))

⇒ (min (−2) (2))

⇒ −2

Return value: 2; internal states after execution: x = 4, y = −1

The very simple method of evaluation presented above is another major advantage

provided by the structure tree representation of solution candidates in GP.

2.3.3 Initialization

The initial stage of every evolutionary algorithm consists in initializing the population.

In the case of GP, the initialization is usually done completely randomly but, in special

cases, problem specific construction heuristics may be employed. There are a number

of different approaches that can be used to randomly generate the initial population in

Genetic programming 11

the case of syntax-tree based GP. Two of the most widely used methods for creating

random initial programs are the full method and the grow method.

In both methods, the individuals are generated so that they do not exceed a user

specified maximum depth Dmax. The depth of a node in a tree is the number of edges

that need to be transversed to reach that node when starting from the tree’s root node

(which is considered to have a depth of 0). The depth of a tree is the depth of its

deepest leaf.

In the full method all the leaves of the generated trees are at the same depth (i.e. the

method generates full trees of size Dmax). During the generation process, nodes are

taken at random from the function set until the depth Dmax − 1 is reached. At depth

Dmax only terminals can be chosen. The range of program sizes (i.e. measured as

the total number of nodes in a tree) and shapes this method can produce is rather

limited.

In the grow method, nodes are selected from the whole primitive set (i.e. functions and

terminals) until the depth limit is reached. Just like in the full method, once the depth

limit is reached only terminals can be chosen. This method allows for the construction

of trees with more varied sizes and shapes as the growth of any subtree can be stopped

at a depth smaller than Dmax−1 by simply choosing terminals for all the leaf nodes.

Koza proposed in [29] a method called the ramped half-half method that aimed to

combine the two GP initialization methods described above. Half the initial population

is created using the full method and the other half is created using the grow method.

The process uses a range of depth limits in order to ensure the creation of programs

with various sizes and shapes. During the years, this method has become one of the

most frequently used GP initialization techniques [15].

2.3.4 Selection

As previously mentioned, the role of selection in GP is to provide the mechanism which

ensures that the survival of the fittest principle is respected. This means that, typically,

the probability of an individual to have offspring which inherit its genetic information

(i.e. traits or characteristics) is proportional to its fitness (i.e. its respective level of

desirable characteristics): the better an individual’s fitness value, the higher the prob-

ability its genetic material will survive within the individuals of the next generation.

There are various ways of performing selection in the context of GP. We will present

just some of the most widely used selection strategies:

Genetic programming 12

• Proportional selection. In this case each individual in the population is selected

with a probability that is proportional to its fitness. The probability of selecting

individual i is pi = fi/f where fi is the fitness of individual i and f is the average

fitness of the population. One can imagine this selection strategy as having a

roulette wheel on which each individual gets assigned a certain sector; the fitter

the individual the bigger the sector on the wheel it receives. When the wheel is

rotated, that individual, in whose sector the ball stops in the end, is selected.

The problem with this selection method is that it is prone to perform badly in

the presence of extremely good solution candidates (super-individuals). This is

because proportional selection assures that an individual that is extremely fit

with respect to the rest of the population has very high chances of being selected

each turn, and, as a result, have a lot of offspring in the future generation. As a

result, in the presence of superindividuals, proportional selection leads to a rapid

loss of genetic diversity in the population after only a couple of generations.

• Linear-rank selection. In the context of this type of selection, each individual

receives a rank based on its fitness value. Taking into consideration a population

of n individuals, the most fit individual is assigned the rank n while the least

fit individual is assigned the rank 1. The probability of selecting individual i is

pi = ranki/
∑n

j=1 j.

Rank selection reduces the dominating effects of supper individuals but at the

same time it virtually eliminates the difference in selection probability between

individuals with close fitness values. Many variations of linear-rank selection are

presented in literature but the central idea is that, whenever selection occurs

during the evolution process, the probability to select the best individual must

be a predetermined multiple of the probability to select the worst individual. In

other words, one must limit the highest and lowest selection probabilities while

all other probabilities are proportional to individual fitness and, as such, must

lay in between the two extremes.

• Tournament selection. There are a lot of versions of this selection method. The

most common variant is called k-tournament. Each time selection must be per-

formed, k individuals are randomly drawn from the population and the fittest one

among them is chosen as the selected individual.

• Random selection. An individual is selected from the population completely ran-

domly without taking into consideration its fitness.

Genetic programming 13

2.3.5 Genetic Operators: Crossover and Mutation

The main mechanism through which GP explores the search space (i.e. produces new

solution candidates) consists of two main operators, namely crossover and mutation.

Crossover, the most important reproduction operator, produces new offspring by taking

two parent individuals and swapping parts from them. In the case of syntax-tree based

GP, firstly, randomly and independently, the method selects a crossover point (node)

in each parent tree. Then, it creates an offspring by replacing the subtree rooted

at the crossover point in the first parent with the subtree rooted at the crossover

point in the second parent. Figure 2.2 illustrates subtree crossover using the programs

min(x − 6, x + y ∗ 2) (parent 1) and 3 ∗ x + y/2 (parent 2). The resulting offspring

program is min(x − 6, 3 ∗ x). The other offspring program that can be obtained by

using the above parent formulae and the crossover points indicated in Figure 2.2 is

x+ y ∗ 2 + y/2.

Usually the crossover operation is done using copies of the two parents in order to avoid

disrupting the original individuals. Crossover points are not selected with uniform

probability as, depending on the problem at hand, it might be reasonable to choose

either small, medium or fairly big subtrees for crossover.

Figure 2.2: Example of subtree crossover

Genetic programming 14

Generally, in the field of evolutionary computation, mutation is regarded as a means

of preventing premature convergence by randomly sampling new points in the search

space. In the case of genetic programming, there are two main forms of mutation:

• subtree mutation: in which a mutation point (node) is randomly selected and the

subtree rooted in that node is either replaced by a terminal or by a randomly

generated subtree

• point mutation: in which the function stored in a randomly selected function

node (mutation point) is replaced by a different randomly chosen function with

the same arity (if no other function with the same arity exists, the function node

can be turned into a terminal node, or the mutation operation on that node can

be canceled)

When subtree mutation is applied, exactly one subtree per selected individual must be

modified. Point mutation however is applied on a per-node basis, which means that

during one application of point mutation on a selected individual, each node in the tree

is considered for mutation with a given probability.

In Figure 2.3 the offspring program named mutant 1 illustrates subtree mutation.

This program was obtained by replacing the subtree rooted in the mutation point of

the program parent with a randomly generated subtree. The program mutant 2 is the

result of point mutation as it was generated by replacing the subtraction function from

the program parent with the multiplication function.

In the case of the classic GP algorithm described in 2.1 the choice of which genetic

operator should be used to create an offspring is probabilistic. Also, in this case,

genetic operators are mutually exclusive (unlike in most evolutionary techniques where

offspring are obtained via a composition of operators). Their probabilities of application

are called operator rates. Usually, crossover is applied with a very high rate of 90% or

above, whilst the mutation rate is rather small, typically in the region of 5%.

When the rates of crossover and mutation add up to a rate of p which is smaller than

100% another genetic operator called reproduction must be used with a rate of 1 − p.
Reproduction consists of simply selecting an individual based on fitness and inserting

a copy of it in the next generation.

The usage of crossover and mutation in the context of GP can easily lead to the creation

of syntactically incorrect programs. This aspect has to be taken into consideration when

designing a GP system. Thus, depending on the specific problem at hand, one may

choose to:

Genetic programming 15

• define certain constraints that must be considered when applying crossover and

mutation, constraints that prevent the creation of incorrect offspring

• implement some sort of repair strategies aimed at transforming syntactically in-

correct offspring into correct ones

• simply ignore incorrect offspring and just try to derive new, and hopefully correct,

offspring

Figure 2.3: Example of subtree (mutant 1) and point mutation (mutant 2) in the con-
text of GP

2.3.6 Termination and Solution Designation

A general, domain independent, termination criterion for a GP processes is to monitor

the number of generations and terminate the algorithm as soon as a given limit is

reached. Another widely used termination criterion is to stop the algorithm after the

fitness values of several successive best-of-generation individuals appear to have reached

a plateau (i.e. evolution has reached a phase where no new progress seems possible)

[31].

Domain specific termination criteria are also very frequently used. The algorithm is

terminated as soon as a problem specific success predicate is fulfilled. In practice it is

Genetic programming 16

quite common to use a combination of both domain independent and domain specific

termination criteria.

After the algorithm terminates, it is time to choose the result the algorithm will return.

Typically, the single best-so-far individual is harvested and designate as the result of the

run [31]. In some cases though, it might be necessary to return additional individuals

or data depending on the problem domain.

There are some applications, like data based structure identification, in which returning

the best-so-far individual produced by the GP process during training is not the optimal

strategy. A far better approach is to have two disjoint data sets; one that is used for

GP training, and another that is used for validation [57]. The programs produced by

the GP process are eventually tested on the validation data set and the best performing

individual on validation data is returned as the result of the run.

2.4 Applications of Genetic Programming

As GP is a domain-independent method, there is an enormous number of applications

for which it has been used either as an automatic programming tool, a machine learning

tool or an automatic problem solving engine. Based on the experience of numerous

researchers over many years, Poli [46] summarized some of the main properties displayed

by areas in which GP has been especially productive in:

• interrelationship between relevant variables is unknown or poorly understood

• size and shape of the solution is unknown

• availability of significant amounts of data in computer readable form

• presence of good simulators to test the performance of tentative solutions to a

problem but a lack of methods to directly obtain good solutions

• conventional mathematical analysis does not, or cannot, provide analytic solutions

• an approximate solution is acceptable (or is the only result that is ever likely to

be obtained)

• small improvements in performance are routinely measured (or easily measurable)

and highly prized

Genetic programming 17

Obtaining machines able to produce human-like results is the very reason behind the

existence of the fields of artificial intelligence and machine learning. With respects to

this goal, GP has demonstrated an undisputed ability to produce human competitive

results in the fields of algorithm synthesis [37] [19] [53] and electronics (synthesis of

analogue circuits [30] and of controller topology [31]).

Poli [46] constructed an overview of several fields in which genetic programming has

been used to produce high quality results over the years. Here are just some examples

of such results from five different areas:

• image and signal processing : evolution of algorithms that can detect military

equipment in photo recconaissance [23], analysis of stress detection in spoken

language [60]

• financial trading and time series analysis: modeling of agents in stock market [9],

forecasting of real estate prices [24]

• medicine biology and bioinformatics: biomedical data mining [6], enhancement of

bioinformatics techniques used for detecting gene interactions [47]

• entertainment and computer industry : evolution of competitive AI players [36]

• compression: programmatic compression [44] and lossless image compression [21]

One of the earliest general applications where genetic programming has been success-

fully used for is symbolic regression or, more generally, data based modeling (i.e. learning

from data). More details on this topic shall be provided in Chapter 3.

Symbolic Regression and Data Based Modeling 18

Chapter 3

Symbolic Regression and Data

Based Modeling

3.1 Data Based Modeling in Scientific Discovery

Modern science was formed in the period between the late 15th and the late 18th

century. Keijzer [25] summarizes that before this period, scientific work primarily

consisted of “collecting the observables”, or recording the “readings of the book of

nature itself”. The new foundations of science were based on the usage of physical

experiments and the application of a mathematical apparatus that tried to describe

those experiments. This approach is best depicted by the works of Kepler, Newton,

Leibniz, Euler and Lagrange.

This, somewhat traditional view of modern science, identifies two distinct stages: in the

first one a set of observations of the physical system are collected and in the second one

an inductive assertion about the behavior of the system (i.e. a hypothesis) is generated.

Observations represent specific knowledge about the given system whilst hypothesis are

attempts to generalize these observations. As hypothesis imply or describe observations,

one can argue that they represent a means of “economizing thought” by providing a

more compact way of representing data [7].

Although based on simplistic concepts, the process of scientific discovery is not at all

trivial. This is due to the fact that the process of formulating scientific law or theory

takes place in the context of a mental model of the phenomenon under study. If the

presumed model of a given phenomenon is wrong, then any hypothesis based on this

model, although mathematically correct, has a very high chance of also being faulty

with regards to the studied phenomenon. As such, finding a proper conceptualization

(model) of the studied problem (phenomenon) is as much a feat of scientific discovery

Symbolic Regression and Data Based Modeling 19

as the formulation and proof of the mathematical description or explanation of the

phenomenon.

The beginning of the 21st century has brought an important change in the previously

described scientific method. This is because of the employment of information technol-

ogy in the process of hypothesis generation. The huge processing power provided by

modern computers has made it possible to efficiently analyze large multi-dimensional

data sets and automatically produce a large quantity of hypothesis based on these data.

Aiding of scientific discovery by extracting hypothesis from data sets by means of infor-

mation technology is one of the attributes of the process of data mining and knowledge

discovery. The discipline is aimed at providing tools for converting data into a number

of forms that convey a better understanding of the process that generated or produced

these data.

3.1.1 Model Performance Criteria

One particular subfield of data mining is inductive learning or machine learning or data

based modeling. Inferring models from data is the activity of deducing a closed-form

explanation based only on observations [25]. As these observations usually represent

only a limited source of information about parts of the studied phenomenon, the goal

of inferring models that are complete, in the sense that they can explain data that are

outside the range of previously encountered observations, is not at all trivial. Further-

more, one must also allow for the fact that available data usually incorporate some

type of noise (e.g. they can be affected by measurement errors). When assessing the

performance of a constructed model, one has to take into consideration two criteria of

equal importance:

• The first criterion is related to the capacity of the model to “explain” current and

future data related to the studied phenomenon. We shall generally name this

performance factor as model quality, with the understanding that it combines the

features of accuracy/fitness (i.e. have small error rates) and generality (i.e. be

able to explain a wide range of data related to the studied phenomenon). A good

model is a model that exhibits a low generalization error. The generalization

error is the error of the model when it tries to explain future (unseen) data.

• The second criterion revolves around the interpretability of the model. Many

scientists argue that confidence in a model can not be based on model quality

performance alone, but must also take into account the semantic content of the

model and the way this can be interpreted when taking into consideration the

domain of the problem to be solved.

Symbolic Regression and Data Based Modeling 20

Model quality will be covered in more detail in Section 3.3 when we will take a look

at some of the obstacles related to producing good quality models, obstacles that are

general to all data based modeling techniques. The same section also contains a short

overview of the most widely used techniques for ensuring model quality in data based

modeling problems.

3.1.2 Model Interpretability in GP

Let us now focus on the importance of model interpretability and how it can be inte-

grated in the process of scientific discovery.

When regarding scientific discovery as a cycle of observation, imagination, formaliza-

tion and testing, one can easily see the benefits of adding an automated modeling step

between observation and imagination. Automated modeling provides scientists with

tentative formalizations inducted from the available data, formalizations that can in-

spire them to create new conceptualizations of the studied phenomenon. Furthermore,

as such an automated method is biased only to the available data, it is free to propose

approximate solutions to the problem, solutions that can be extremely different from

contemporary thought. Analyzing such automatically generated models may lead to

a better understanding and an enhanced or even different approach to describing the

studied phenomenon.

Naturally, in order to be able to enhance the scientific discovery cycle in the way

previously described, we need model induction techniques that are able to produce

models that not only fit (have a high quality) data but that are also interpretable

by scientists. This very ability to interpret an automatically generated model should

provide the additional justification needed to use the model with more than just statistical

confidence. As each model has its own syntax, the question is how can one evaluate the

level to which a given syntax can capture the semantics of the phenomenon one tries

to model. There is no standard answer to this question, but the attempt to coarsely

classify models as being:

• black box - little or no semantic information

• gray box - some semantic information that might offer limited insight into the

studied phenomenon

• white box - large amount of semantic information that provides the scientist with

additional information about the studied phenomenon

Symbolic Regression and Data Based Modeling 21

seems to have gained support within the scientific community.

Two comments regarding the above taxonomy need to be made. Firstly, the category

for a given automated model induction technique may vary drastically from problem to

problem. Secondly, due to the rather elastic classification criterion, completely white

box or black box models seldom exist whilst the gray box model area is well populated

but quite polarized.

As we will see in the next sections, in the context of symbolic regression, genetic pro-

gramming (GP) can be used as an automated white box induction technique that can

produce models of comparable quality with standard best performing gray box / black

box machine learning techniques like artificial neural networks (ANNs) or support vec-

tor machines (SVMs). As expected, the advantage of using GP derives from the high

degree of semantic information available in the provided models. The ease of interpre-

tation and the flexibility of the method makes GP based models very well suited for

industrial modeling contexts related to structure identification problems.

However, the interpretability of a GP model is highly influenced (especially in the

context of data based modeling) by the overall size of the model. A model that is

much larger or far more complex than required for the modeling task at hand is of

little practical use as trying to interpet it and extract meaningful information is a very

intensive task that is seldomly matched by the actual information gain. Furthermore,

we shall later see that oversized GP models usually also contain a high amount of

intricate but largely meaningless information (see Chapter 5).

In order to take full advantage of the white-box modeling characteristic of GP we must

strive to evolve high quality GP models that are as parsimonious as possible.

3.2 Regression and Symbolic Regression

As stated in Section 2.3.2, one of the key elements in solving a problem using genetic

programming is finding an appropriate fitness function. In some problems, only the

side effects (lateral effects) of executing the programs present interest and as such, the

role of the fitness function is to compare the lateral effects of the execution of different

programs in a given environment.

In many other problems though, the side effects of running programs present no interest.

The goal is just to find a program whose output has some desired property (i.e. the

output must match some target values). In this case the fitness function is usually

Symbolic Regression and Data Based Modeling 22

a measure of the difference between the output of the program and the ideal (i.e.

the desired output values). When taking into account the fact that when using an

appropriate function base 3, the programs produced by GP are in fact mathematical

formulae, the main task becomes that of inducing accurate mathematical expressions

from given data. These resulting mathematical expressions are nothing more than

models that try to explain the given data. This is generally known as a symbolic

regression problem.

Regression is a familiar notion for a lot of people and it can be considered as one

of the simplest forms of inductive learning. Regression means finding the coefficients

of a predefined function (i.e. finding a model based on that function) such that the

resulting expression best fits some given data. Poli [46] presents some of the issues

related with the classical approach to regression analysis. Firstly, if the fit is not good,

the experimenter has to keep trying different types of functions by hand until a good

model can be found. This is very laborious and the results depend very much on the

skill and inventiveness of the experimenter. Another problem Poli describes is related

to the fact that even expert users tend to have a strong mental bias when choosing the

type of functions used for regression (e.g. linear, quadratic, exponential, etc).

Symbolic regression is an attempt to go beyond the limitations imposed by classical

regression. The idea is to find both the function and its suitable parameters such that

the resulting model fits the given data points without making any a priori assump-

tions about the structure of the function. In other words, the goal of the regression

process is to discover both the symbolic description of the model and a set of suitable

coefficients.

3.2.1 Formalization and Standard Solving Methods

Regression tries to determine the relationship between a dependent (target) variable y

and a set of specified independent (input) variables x. Formally, the goal is to find a

model consisting from a function f of x and a set of suitable coefficients w such that

y = f(x,w) + ε (3.1)

where ε represents the error (noise) term.

3For example one may restrict the function base to the basic arithmetic operators +, −, ∗ and /

Symbolic Regression and Data Based Modeling 23

The form of f from (3.1) is usually pre-defined in standard regression techniques like

linear regression fLinR, artificial neural networks (fANN - a network with one hidden

layer) and support vector machines (fSVM):

fLinR(x,w) = w0 + w1x1 + w2x2 + · · ·+ wnxn (3.2)

fANN (x,w) = wo · g(whx) (3.3)

fSVM (x,w) = w0 + w1Φ1(x1) + w2Φ2(x2) + · · ·+ wnΦn(xn) (3.4)

In linear regression w is the set of coefficients w0, w1, w2, . . . , wn and they are usually

determined using least square regression.

In the case of ANNs we have to use an auxiliary transfer function g which is usually

a sigmoid function (e.g. the logistic function P (t) = 1
1+e−t). Here the coefficients w

represent the weights from one layer of the neural network to the other. For example

in (3.3) wh are the weights from the input nodes to the hidden nodes and wo are the

wights from the hidden nodes to the output nodes [57].

SVMs-based regression is a very powerful inductive learning technique as it is generally

able to produce very good quality solutions for nonlinear regression problems. In SVMs-

based regression, the first step is to map the input onto an n-dimensional feature space

using some fixed, nonlinear, transformations like Φ1,Φ2, . . . ,Φn. Hopefully, in the

new feature space the problem becomes linear and, as such, a linear model can be

constructed in the feature space (see (3.4)) by using the principle of structural risk

minimization [54]. The last step is to remap the obtained linear model back onto the

original input space. The transformation to and from feature space (i.e. the “kernel

trick”) allows SVMs to use a linear regression technique to solve non-linear regression

problems. A downside of the method is the fact that the intermediate linear model is

not explicitly defined (and accessible) and as such, the interpretability of the regression

models produced by SVMs lies majorly only in the interpretability of the used kernel

and of the used parameters.

3.2.2 Symbolic Regression Using Genetic Programming

In contrast to the techniques presented in the previous section, when applying genetic

programming to symbolic regression, the function f which is searched for is not pre-

sumed to be of any pre-specified form. In GP the idea is to use low-level functions that

are combined to more complex formulae during the run of the evolutionary process.

Considering an initial set of primitive functions f1, f2, . . . , fn, the overall functional

form induced by GP can take a variety of forms. Usually this set of primitives contains

standard arithmetic functions like addition, subtraction, multiplication and division.

Symbolic Regression and Data Based Modeling 24

X -4 -3 -2 -1 0 1 2 3 4

Y 15.8 6.7 0.2 -3.7 -5 -3.7 0.2 6.7 15.8

Table 3.1: Input data for example experiment

Need be the case, trigonometric, logical, and more complex functions can also be in-

cluded. The flexibility of GP based regression comes from the fact that no assumptions

are made regarding the form of the searched function and that evolution is used to

guide the search towards the functional form that best explains the given data. This

also means that the search process is free whether or not to consider certain input vari-

ables. As such, GP based regression is also able to perform variables selection (leading

to dimensionality reduction) [25].

For instance, a functional form induced by GP could be:

f(x,w) = f6(f1(f3(x1, w2), f4(f2(x2), x3), f5(x3, w1)), w3) (3.5)

When using concrete primitives for the set low-level functions abstractly marked by

f1, f2, . . . , fn as well as concrete values for the coefficients w1, w2, . . . , wn we could

get:

f1(x,w) = −(∗(1.6, x), 4)) ≡ 1.6 ∗ x− 4 (3.6)

f2(x,w) = +(−8, ∗(x, x)) ≡ x2 − 8 (3.7)

For a better understanding of how GP works in the context of symbolic regression, we

shall now provide a small example.

Let us assume that we have made 9 observations of a certain phenomenon. For sim-

plicity we shall also assume that the gathered data are error free. Each observation

focused on recording only two variables pertinent to the experiment: X and Y (see

table 3.1). May Y be the dependent variable and X the independent one. As such the

goal is to find a model that attempts to explain the data of Y based on the data of

X. This example is based on synthetic data meaning that the values of the set Y have

been obtained from the values of the set X by simply using the formula:

y = ftarget(x) = 1.3 ∗ x2 − 5 (3.8)

which thus is also the target of our symbolic regression problem.

In GP based symbolic regression solution candidates are evaluated by applying them

to X, thus obtaining the estimated values E. Finally, in order to asses the fitness of

the candidate, the estimated values are compared to the known original (target) values

Y . We shall consider formulae (3.6) and (3.7) as solution candidates in a GP process

Symbolic Regression and Data Based Modeling 25

E1 -10.4 -8.8 -7.2 -5.6 -4.0 -2.4 -0.8 0.8 2.4

E2 8 1 -4 -7 -8 -7 -4 1 8

E3 21.6 10.4 2.4 -2.4 -4 -2.4 2.4 10.4 21.6

Table 3.2: Estimations produced by GP models for example experiment

that is aimed at solving our example regression problem. Furthermore, by considering

these two formulae as parents and performing crossover (as shown in Figure 3.1), we

will obtain the offspring formulae:

f3(x) = 1.6 ∗ x2 − 4 (3.9)

When applying f1, f2 and f3 on X each will generate a set of estimations: E1, E2

and respectively E3. These estimated values are shown in Table 3.2. The graphical

representations of the functions f1 (parent 1), f2 (parent 2), and f3 (offspring) as well

as that of the goal function ftarget (target formula) are shown in Figure 3.2.

Figure 3.1: GP crossover of example regression formulae

The task of genetic programming in symbolic regression is to find the combination of

primitives, input variables and coefficients that can provide estimation values that are

as close as possible to the desired target values.

There are several ways in which one can measure the error between estimated and

target values in a regression problem. One of the simplest and the most frequently

Symbolic Regression and Data Based Modeling 26

Figure 3.2: Plot of regression formulae used as an example

used methods is the mean squared error (MSE) function. The mean squared error of

two vectors Y and E, each containing n values is:

MSE(Y,E) =
1

n

n∑
i=1

(Yi − Ei)
2 (3.10)

Obviously, when using MSE as a fitness estimator in GP symbolic regression, the goal is

to find a solution candidate with a fitness value as small as possible. When calculating

the fitness of the previously considered solution candidates f1, f2 and f3 asMSE(Y,E1),

MSE(Y,E2) and respectively MSE(Y,E3) we obtain:

MSE(Y,E1) = 19.95 (3.11)

MSE(Y,E2) = 6.76 (3.12)

MSE(Y,E3) = 3.73 (3.13)

As one might have expected by analyzing the plot in Figure 3.2, from the three possible

candidates, function f3 (the offspring formulae) is the most precise estimator of the

target regression function.

The search for formulas that minimize a given error measure is the major goal of GP

based regression, but the shape and the size of the solution can also be integrated

into the fitness estimation function. For example in some cases, the focus on model

simplicity might be just as important as the one on model estimation quality, as simpler

models can be interpreted easier, thus offering more meaningful information about the

studied problem.

Symbolic Regression and Data Based Modeling 27

3.3 Obstacles in Data Based Modeling

There are two major general obstacles when considering data based modeling: noise

and overfitting. In this section we will provide a description of these problems as well

as some solutions that can aid in overcoming them.

The general regression formula (3.1) offers a very clear insight on what the impact

of noise on data is. In the context of data based modeling we observe that, because

of various reasons, additional unwanted values are added to the original data. This

disturbing additional data is called noise. For example, when considering a physical

system that we monitor using a sensor array, noise might be introduced by one or

more malfunctioning sensors, or from some sort of interference on the communication

channel(s).

If the level of noise is too high, it can be detected and dealt with in a data pre-processing

stage, but if the disturbance is of relatively low intensity, it is very hard to detect and

combat.

In the field of machine learning, overfitting is the phenomenon of excessively fitting

models to data. As previously mentioned, inductive learning is done using training

data: sets of records that have values for both input (independent) and the target

(dependent) variables. The problem is that it may happen that too complex models

might be trained, models that become adjusted to particular features or samples of

the training data. This becomes a huge inconvenience when taking into consideration

the previously presented problem of having some noise in the data, as an overfitting

model becomes more prone to modeling the noise (errors) in the training set rather then

trying to explain the whole studied phenomenon using the training data. The effect of

overfitting are models with low training errors and high generalization errors.

As mentioned in the first section of this Chapter, one of the two main goals of data based

modeling is to produce high quality, robust models that are both accurate and able to

generalize well on future data. In order to achieve this goal, we must be able to prevent

overfitting but as the complexity of the system to be modeled is usually unknown,

there is no rule how to generally avoid this unwanted phenomenon. However, several

techniques that can help avoid overfitting have been proposed.

One of the simplest ideas is the hold-out method. It is based on performing a split of

the initially available data into two disjoint data sets: a training data set and a test

data set. Model induction will be carried out using only the training data set. The fact

that the resulting model is constructed by only taking into consideration the training

set means that it is unbiased towards the test test and as such the test set can be used

Symbolic Regression and Data Based Modeling 28

in order to estimate the generalization capacity of the induced model. A clear sign of

overfitting, when using the hold-out method, is the fact that a model exhibits very good

fitness on the training data and poor fitness on the test data (i.e. high generalization

error).

When choosing the size of the training and testing data sets one must take into con-

sideration the following:

• The more training samples (and the less test samples), the better the training

accuracy, but the worse the ability to generalize well and fit test data (model is

more prone towards overfitting).

• The more test samples (and the less training samples), the lower the training

accuracy, but the better the ability to generalize although predictions on test

data will also suffer from a lack of accuracy (as the obtained model is too simple

to explain the studied phenomenon).

When confronted with rather small data sets, the requirement that the training and

testing sets must not overlap (must be disjoint) is extremely constricting.

A more advanced concept that tends to extend the hold-out principle is n-fold cross

validation. The basic idea is to partion the initial data set into n disjoint folds (intervals

or fractions). Model training will be performed n times, each time using n − 1 folds

as training data and one fold as test data. At the end, the n test accuracy results

(the results obtained by measuring each turn model accuracy on the left-out fold) are

averaged. This resulting average test accuracy is considered a good indicator of both

the overall fitness of the model as well as its ability to generalize well. One of the

downsides of the technique is the fact that it is rather time consuming (training must

be performed n times).

Another downside of cross-validation (far more important in the context of GP based

data modeling) is the fact that the method is usually suited only for modeling techniques

that presume an implicit functional form of the model (see Section 3.2.1) and only

try to find suitable parameters such that the resulting model best fits the data. By

systematically trying parameter settings and using n-fold cross validation with implicit

functional form techniques, an experimenter has a very high chance of finding the

parameters that define the model(s) with the best performance on the given data (both

in term of accuracy and generality).

When applying GP to data based modeling, n-fold cross validation is not a very ap-

propriate performance measure due to the fact that in each of the n training runs, the

Symbolic Regression and Data Based Modeling 29

method can induce n very different models based on very different functional forms.

Although by averaging test accuracies an image of the overall performance of using

GP based data modeling on the given problem can be presented, in this case, n-fold

cross validation does not present a means of detecting overfitting behavior in individual

models.

An approach that has proven to be very suitable for controlling overfitting in the case

of GP splits the data set into three partitions [57]:

• Training data that are the real basis of the algorithm and that are actively used

by the modeling process.

• Validation data that are available to the algorithm but that are usually not used

in order to assess the fitness of solution candidates during the evolutionary opti-

mization process. As such, trained models are unbiased towards it and validation

data can be used for detecting the overfitting phenomenon or for finally selecting

the model that is returned by the GP process (i.e. the process returns the model

that exhibits the best accuracy with regards to the validation data). When having

the policy to return the model with best validation accuracy one also needs to

take into consideration that the solution produced by the GP process has also be-

come biased towards the validation data set. The same holds, if during the run of

the process, model validation results are used to somehow steer the evolutionary

process in one direction or another.

• Test data that can not be considered by any part of the training algorithm. As

described in previous paragraphs they are treated as “new data”, unavailable for

training, that can only be used in order to determine whether or not the GP

process was able to generate robust, high performance models.

In short, in the case of GP data partitioning, the training set is used to create or train

models, the validation set is used for model selection and the test set is used to estimate

the actual generalization error on future data.

Modeling Scenarios and Testing Environment 30

Chapter 4

Modeling Scenarios and Testing

Environment

4.1 Modeling Scenarios

As mentioned in the introductory chapter of this thesis, for testing purposes we have

considered two symbolic regression problems. The first one comes from the steel indus-

try and it concerns the production of molten iron in the blast furnace process, whilst

the second one is a benchmark problem for genetic programming (GP) based on data

related to a chemical experiment.

The blast furnace problem proposes two different modeling scenarios for the same target

variable and the benchmark problem consists of a single modeling scenario.

4.1.1 The Blast Furnace Problem

In [32] Kronberger presents an overview of the blast furnace process, as well as the

results of early modeling attempts for some tasks related to the process. The au-

thor argues that although physical and chemical reactions in the blast furnace are well

understood on a high level of abstraction, many more subtle inter-relationships be-

tween injected reducing agents, burden composition, scaffolding, top gas composition

and their effect on the the produced molten iron or slag are not totally understood.

Knowledge about these inter-relationships can be used to improve various aspects of

the blast furnace process like iron quality, amount of consumed resources or overall

process stability.

Modeling Scenarios and Testing Environment 31

Input material enters the blast furnace at two locations. Raw materials (ferrous oxides

in the form of sinter or lump ore) and coke are charged in alternating layers at the top of

the blast furnace. In the lower area of the blast furnace, hot blast (air heated at around

1200 ◦ C) and reducing agents are inserted through a number of tuyeres. Reducing

agents include heavy oil, pulverized coal, natural gas, tar and plastic pallets.

Figure 4.1: Schematic diagram of the blast furnace

Inside the furnace, the inserted hot blast (containing oxygen) reacts with the carbon (in

the form of coke) to produce carbon monoxide and heat. Carbon monoxide then reacts

with the ferrous oxides to produce molten iron and carbon dioxide. Carbon monoxide

is also created in the Boudouard reaction from carbon dioxide and carbon. Hot carbon

dioxide, unreacted carbon monoxide and nitrogen (residue from the hot blast) pass

up through the furnace as fresh raw materials and coke travel down into the reaction

zone. The resulting metallic iron is melted and carburized. The carbon content of the

resulting iron is around 4− 5%.

The products of the process are molten iron and the liquid byproduct called slag (both

at the bottom of the furnace) and blast furnace gases at the top of the blast furnace.

Modeling Scenarios and Testing Environment 32

Process component Nature of variables

Sinter physical and chemical analysis

Coke physical analysis

Charging plan amount and weight distribution of in-
put materials and coke

Hot blast amount, pressure, temperature, frac-
tion of oxygen

Reducing agents amount of heavy oil, coal, gas, plastics

Hot metal weight and chemical analysis

Slag weight and chemical analysis

Blast furnace top gas pressure, temperature and composition

General blast furnace data temperature, melting rate, pressure

Temperature measuring rod core, middle and border temperatures

Cooling losses power consumption of wall and bottom
cooling elements

Table 4.1: Measured and calculated variables for the blast furnace process

The resulting molten iron (pig iron), which is used for the production of steel, and the

liquid slag, that is used in the construction industry, are removed by tapping. Figure

4.1 presents a schematic diagram of the blast furnace process.

In our case, the raw data set contains measured and computed values for a number

of 45 variables that describe various physical and chemical attributes of the input

material, reducing agents and produced output as well as some control parameters and

parameters that describe the internal state of the blast furnace. An overview of the

used variables in presented in Table 4.1

Based on the raw data, an hourly data set was prepared that contains around 5200

rows. This data set covers roughly one year of blast furnace activity. The initial hourly

data set also contained a number of missing or incorrect values that were the result

of periods of time when the furnace was in a faulty state or underwent maintenance.

The records containing erroneous data were removed during an initial preprocessing

stage.

The concrete problem revolves around the prediction of the amount of carbon monoxide

used during the blast furnace process. As expected from the description of the process,

the amount of used carbon monoxide is strongly related to the amount of raw material

and properties of the hot blast. As carbon monoxide is also involved in the Boudouard

reaction, which largely controls the gas atmosphere in the furnace, knowing more details

Modeling Scenarios and Testing Environment 33

regrading other factors that may influence carbon monoxide utilization is useful for

better controlling the blast furnace process.

On trying to solve this problem we shall employ two modeling scenarios created using

input from experts in the steel industry. The first one, named A5, contains a selection

of 14 variables, whilst the second one, named A6, uses 44 variables.

4.1.2 The EvoCompetitions 2010 Symbolic Regression Problem

EvoStar [17] is the name of Europe’s annual premier co-located events in the field

of Evolutionary computing. It is composed of a number of independent conferences

like EuroGP (specialized in genetic programming), EvoCOP (specialized in combinato-

rial optimization), EvoBIO (specialized in data mining for bioinformatics) and several

workshops collectively entitled EvoWorkshops.

Since 2010, EvoStar contains a new section called EvoCompetitions. This section pro-

poses a series of benchmark problems from different fields with the purpose of chal-

lenging participants to develop evolutionary inspired algorithms that can provide high

quality solutions. The second test problem that we use in this thesis is the symbolic

regression problem proposed in the 2010 edition of EvoCompetitions. As we shall later

see in Section 6.2.3, this is in fact a fairly linear regression problem that has proven to

be rather challenging for GP based regression methods (this is the main reason it was

chosen as a benchmark problem in EvoStar).

The modeling task for this problem consists in the prediction of expensive but noisy

laboratory data regarding a chemical composition (the output) to 57 cheap process

measurements, such as temperatures, pressures, and flows (inputs). The selected equa-

tion has to include the most sensitive inputs relative to the output. The case is based

on data from a real industrial application from an American company operating in the

chemical sector.

The initial dataset has around 1000 records. After a preprocessing stage, the first few

rows which contained suspicious values were dropped from dataset. The mean value of

the dependent variable across the entire data set is 2.980 and the standard deviation is

0.338.

Modeling Scenarios and Testing Environment 34

4.2 Testing Environment

In this section of the thesis we shall describe the two software environments that we have

used for the associated testing activity. Emphasis is put on the HeuristicLab implemen-

tation of the GP process and on the major enhancements it proposes with regards to the

standard GP process. We shall also give a brief presentation of the WEKA platform

which contains implementations for various regression methods (three of which have

been selected for comparison). The specific settings used for the HeuristicLab tests as

well as for the WEKA tests are presented in detail in Section 6.2.

All the HeuristicLab and WEKA tests have been carried out using the HEAL blade

system. The system is constructed on a Dell PowerEdge M1000e chassis with each

blade having 2 Intel Xeon E5420 QuadCore CPUs clocked at 2.50 Ghz, 32GB of RAM

and a 72 SAS GB. The operating system is a 64bit version of Microsoft Windows Server

2008 Enterprise Edition.

4.2.1 The GP Process in HeuristicLab

HeuristicLab[55] is an optimization framework developed by the Heuristic and Evolu-

tionary Algorithms Laboratory (HEAL) of the Upper Austria University of Applied

Sciences with the given goal of aiding the design, testing, implementation, application

and monitoring of various (and mostly evolutionary inspired) heuristic optimization

algorithms.

The HeuristicLab implementation of GP has proven very successful for solving data

based modeling tasks on several occasions so far [57] [32]. The GP process implemented

in HeuristicLab includes several enhancements/features aimed at improving the overall

quality of the generated symbolic regression models and the convergence time of the

algorithm.

Gender Specific Parent Selection

First off is the concept of gender specific parent selection [56]. It is based on the idea

of male vigor and female choice, as it is considered in the model of sexual selection

discussed in the field of population genetics. In GP, this idea was adapted and easily

implemented by considering two different selection schemata for the selection of the two

parents required for each crossover: the usage of random selection for one parent and

Modeling Scenarios and Testing Environment 35

of a selection strategy with far greater selection pressure (e.g. proportional or linear

rank selection) for the other parent.

The gender specific selection concept not only brings the GP process a little bit closer

to its biological archetype, but also presents relevant advantages in flexibility. By using

two different selection strategies, one can influence the selection pressure of a GP run

more precisely. It is thus possible to better control the interplay between genetic forces

supporting or reducing diversity in a more directed way, allowing for a better tuning of

the GP behavior.

The Offspring Selection Strategy

The second major enhancement of the standard GP process is the offspring selection

strategy [2]. The idea is to not only consider the fitness of the parents in order to

produce an offspring during the evolutionary process. As such, a given offspring is

accepted as a member of the population of the next generation if and only if it out-

performs the fitness of its own parents. Figure 4.2 schematically displays the main

Figure 4.2: Offspring selection model

aspects of the offspring selection model. When employing offspring selection, the same

as for conventional GP, offspring are generated by parent selection, crossover and muta-

tion. The difference consists in the introduction of a second (offspring) selection stage.

Modeling Scenarios and Testing Environment 36

A variable called success ratio (SuccRatio) indicates the ratio of the next generation

(POP i+1) members that must outperform their respective parents. As long as this ratio

is not fulfilled, offspring are created and the successful ones are inserted into the next

generation, while those that do not outperform their parents are stored in a rejection

pool (POOL). When the success ratio for the next generation is reached, the rest of

the members of the generation are randomly chosen from the rejection pool (“lucky

losers”).

Within the new selection model, selection pressure (SelPres) is a measure for the effort

that is necessary to produce a sufficient number of successful offspring. It is defined as

the ratio of generated offspring to the population size:

SelPres =
|POOL|+ |POP | ∗ SuccRatio

|POP |
(4.1)

Setting an upper limit for selection pressure, gives a quite intuitive termination crite-

rion: the algorithm terminates when it is no longer possible to find a sufficient number

of offspring that outperform their parents.

Linear Scaled Error Measure

Another GP enhancement in the HeuristicLab implementation that is worth mentioning

is the use of a linear scaled error measure (as described by Keijzer in [26] and [27]):

MSEscaled(Y,E) =
1

n

n∑
i=1

(Yi − (a+ bEi))
2 (4.2)

where the linear scaling coefficients a and b are defined by:

a = Ȳ − bĒ (4.3)

b =
cov(Y,E)

var(E)
(4.4)

The advantage of using a scaled error measure, as opposed to the traditional approach

(see Section 3.2.2), lies in “the change of the view” that the selection operator has

on the worth of an individual expression. As MSEscaled rescales the expression on the

optimal slope and intercept, selection will favor expressions that are close in shape with

the target, instead of demanding first that the scale is correct. Further discussions and

a comparison of solution qualities achieved using this principle can be found in [27].

Modeling Scenarios and Testing Environment 37

Highly Flexible Initialization Method

The initialization method used in HeuristicLab is based on the PTC2 algorithm pro-

posed by Luke [38]. This is because the PTC2 algorithm offers more flexibility than the

grow and full methods as it allows for the creation of populations that respect a given

size and depth distribution, as well as for the usage of likelihood weights for functions

and terminals.

Point Mutation Parametrization

The GP process in HeuristicLab relies on point mutation parameterization for the ter-

minal set. In our GP implementation, all variables in a given model are weighted by a

certain factor. These weights, as well as the used constants, can be either integral or

real valued and they are initialized and modified according to a uniform distribution

(based on a minimum and a maximum value) or to a Gaussian one (defined by average

µ and standard deviation σ). The point mutation operation (see Section 2.3.5) is re-

sponsible for modifying the associated values of constants and variable weights during

the run of the GP algorithm.

4.2.2 The WEKA Platform

WEKA [22] (Waikato Environment for Knowledge Analysis) is a freeware machine

learning platform written in Java and developed at The University of Waikato, New

Zealand.

WEKA contains a comprehensive collection of algorithms for data analysis and pre-

dictive modeling (i.e. classification and regression algorithms that in WEKA are in-

discriminately referred to as classifiers). Together with the preprocessing and visual-

ization techniques available in WEKA, the wide range of modeling techniques makes

the platform a very powerful candidate when it comes to analyzing and comparing the

performance of different data based modeling techniques for a given problem.

In section 3.2.1 we have listed three standard methods that are commonly used for solv-

ing linear and non-linear regression problems: linear regression, artificial neural net-

works and support vector regression. All the tests involving these methods, presented

in this thesis, have been carried out using their respective WEKA implementation:

• LinearRegression - WEKA implementation of linear regression

Modeling Scenarios and Testing Environment 38

• MultilayerPerceptron - WEKA implementation of artificial neural networks re-

gression (based on the back propagation algorithm)

• SMOreg - WEKA implementation of support vector regression (C-SVM regres-

sion)

Other implementations of the above mentioned regression methods exist in WEKA

(for example in the case of support vector regression we also have the option of using

a wrapping of the well known LibSVM implementation [8]). Our choice for the specific

WEKA classifiers listed above was influenced by the speed of the implementation, the

ease of configuration and the overall method performance after a round of preliminary

tests.

Bloat - The major problem in GP 39

Chapter 5

Bloat - The major problem in GP

5.1 Bloat - Background

Poli [46] notes that starting in the early 1990s, researchers began to notice that in addi-

tion to progressively increasing the average and best fitness values, genetic programming

(GP) populations also presented other, less favorable, dynamics. In particular, they ob-

served that the average size (in number of nodes) of the programs in the population

started growing at a rapid pace after a certain number of generations. Usually, this

increase in program size was not matched by any corresponding increase in fitness. This

phenomenon has come to be known as bloat.

Bloat has an immense negative impact on genetic programming as large programs are

computationally expensive to further evolve, are hard to interpret and usually generalize

very poorly. Because of this, in many cases, one can say that bloat effectively leads to

the stagnation of the evolutionary process.

It is important to make the distinction that code growth is a healthy result of the

evolutionary process when searching for better solutions. For example, GP runs usually

start with populations of small, randomly generated programs, and it is necessary for

these programs to grow in complexity (i.e. size) in order to be able to comply with the

given fitness criterium. So, program growth in size does not equal bloat. We should

define the bloating phenomenon as program growth without (significant) return in terms

of fitness [46].

Bloat - The major problem in GP 40

5.2 Theoretical Aspects

Code bloat in GP has been intensely studied and, over the years, several theories have

been proposed to explain various aspects related to it. However, to date, there is no

universally-accepted theory that can explain the wide range of empirical observations

regarding bloat. In the next sections we shall briefly present some of the most important

theoretical aspects regarding bloat.

5.2.1 Bloat and Introns

In their 2009 article [48] Silva and Costa present a well documented overview on the

history of the bloating phenomenon in GP. They remark that when Koza published

his first book [29], most of the evolved programs he presented contained pieces of

code that did not contribute to the solution and that if removed would not alter the

produced results. Koza’s solution was to impose fixed depth limits to the trees created

by crossover and to manually edit the solutions at the end of each GP run in order to

simplify expressions and remove redundant code.

In 1994, Angeline studied this phenomenon in more depth [4]. He noticed the ubiquity of

redundant code segments within GP individuals and, using a slight biological similarity,

named them introns. The most interesting part of the analysis presented the positive

aspects that introns might have on the GP process. Angeline remarked that introns

provided crossover with syntactically redundant constructions where splitting could be

performed without altering the semantics of the swapped subtrees. He argued that

introns emerge naturally from the dynamics of GP and that “it is important then to

not impede this emergent property as it may be crucial to the successful development

of genetic programs”.

According to Luke [39], introns are found under two distinct forms: inviable code and

unoptimized code (see Figure 5.1). Inviable code cannot influence the fitness of an

individual no matter how many changes it suffers, either because it is never executed

or because its return value is ignored. Unoptimized code is viable code that contains

redundant elements that can be removed from an individual without affecting its overall

fitness. Whilst inviable code also offers defense from crossover, unoptimized code is

highly susceptible to variations of its structure and, if altered by crossover, its return

value can greatly influence the fitness of the individual.

Bloat - The major problem in GP 41

For example, if we consider the two individuals:

M1 = +(y, ∗(0,−(4, 2))) ≡ y + 0 ∗ (4− 2) (5.1)

M2 = +(x,+(−2(−(4, 2)))) ≡ x+ ((−2) + (4− 2)) (5.2)

where x and y are some arbitrary chosen dependent variables, then the underlined

sections (subtrees) are superfluous and can be removed without affecting the fitness

of the individuals. We can modify any of the subtrees rooted at the nodes within

the fragment −(4, 2) without affecting the fitness of M1 (i.e. inviable code). However

an attempt to modify any of the subtrees rooted at the nodes within the fragment

+(−2(−(4, 2))) is very likely to also modify the fitness of M2 (i.e. unoptimized code).

Figure 5.1: A Venn diagram of Luke’s perspective on the various kinds of code in GP

Although the concepts of introns and bloat appear to be very similar, we shall now see

that there are some very important shades of difference into this matter.

5.2.2 Five Theories of Bloat

In spite of several studies ([3] [43] [49]) that largely confirmed Angeline’s initial

remark that introns might generally offer some sort of protection from crossover and

subtree mutation, the negative effects of intron proliferation are extremely serious as

computational power is wasted on manipulating code that has no contribution to the

quality of the solution, instead of being used for the effective search of better solutions.

Because of this, intron and bloat control has become a very active research area in GP

and several theories concerning why bloat occurs have been advanced. One should note

that these different explanations regarding bloat are not necessarily contradictory and,

whilst some appear to be generalizations or refinements of others, several theories seem

to complement each other very well. We shall now provide a short description of the

most important five theories regarding bloat:

1. The replication accuracy theory introduced by McPhee and Miller [42] states that,

especially in the later stages of evolution, the success of a GP individual depends

Bloat - The major problem in GP 42

on its ability to have offspring that are functionally similar to it. As such, in-

dividuals that contain introns (and thus are usually larger than the mean size

of the population) have a selective advantage as the introns provide destructive

crossover with genetic material where swapping can be performed without affect-

ing the effective code. Destructive crossover is nothing else but the classic subtree

crossover operator defined in Section 2.3.5. In the context of bloat theories, it

is called destructive because, in the more advanced stages of the run, it seldom

creates offspring that are better than their parents.

Soule studied the replication accuracy theory in the context of tree based GP and

confirmed it by observing that using a non-destructive crossover can reduce the

amount of introns in the GP population and, implicitly, the average population

size [50]. The non-destructive crossover Soule proposes retains an offspring only

if is better than its parents in terms of fitness and, if not, a parent is chosen to

replace it in the population of the next generation. Luke proved Soule’s findings

wrong [39], arguing based on the difference in behavior between inviable code

and unoptimized code. Luke showed that while non-destructive crossover helps

in reducing the inviable code, it also helps in the proliferation of other types

of bloated code to such an extent that, actually, the overall mean size of the

population is increased. He explained Soule’s initial results by the fact that

code growth was actually delayed by the amount of parent replication along the

generations.

2. The removal bias theory was proposed by Soule and Foster in [51] and is based

on the observation that when using a tree representation for GP, inviable code

usually resides low in the syntax tree, in smaller then average subtrees (called

inactive subtrees). Whenever crossover is applied inside such an inactive subtree,

it produces an offspring that has the same fitness as its parent, as code added

inside an inactive subtree also becomes inactive [51]. In order to obtain this effect,

there is an upper limit on the size of the excised code: it must be smaller than the

original size of the inactive subtree. As there is no limit on the size of the inserted

subtree, the obtained offspring retains the fitness of its parent, but is also usually

larger than it. This eventually leads to growth in the average program size.

3. In [39], Luke proposes the modification point depth theory. This can be viewed as

a generalization of the removal bias theory [52] as it is based on the fact that there

is a strong correlation between the depth of the node a genetic operator modifies

in a parent and the effect on the fitness of the resulting offspring: the further the

node is from the root of the tree (the deeper), the smaller the change in fitness

(regardless of the fact that the modification takes place in an inactive subtree or

not). Because of the destructive nature of regular crossover and subtree mutation,

Bloat - The major problem in GP 43

smaller changes (created by deeper modification points) will, over the course of

evolution, benefit from a selective advantage which will lead to larger and larger

individuals (the deeper the modification point, the smaller the excised subtree -

there is again a removal bias).

More importantly, Luke argues within this theory, that introns do not cause bloat

and that the growth in solution size is determined by the search for better fitness.

He states that the propagation of inviable code is a consequence and not a cause

of size growth.

4. Langdon and Poli [34] proposed the nature of search space theory as a possible

explanation of bloat in GP. This theory is based on the observation that when

using a variable length representation (like a syntax tree) there are a lot of ways

to represent the same program: some are shorter and some are longer. A regular

fitness evaluation function will attribute the same fitness to all, if their behavior

is the same. Given the destructiveness of regular crossover, when better solutions

become hard to find, there is a selection bias towards programs that have the same

fitness as their parents. Because there are many more longer ways to represent

a program than shorter ways, there is natural drift towards longer solutions and

thus bloating occurs.

5. The most recent theory regarding bloat is the crossover bias theory by Poli et

al. [45]. It explains code growth in tree-based GP by presenting the effect that

standard crossover has on the distribution of tree sizes within the GP popula-

tion. When applying subtree crossover, the genetic material removed from the

first parent is inserted into the second parent, and vice versa; consequently the

mean tree size remains unchanged. After repeated crossover operations, the pop-

ulation approaches a particular distribution of tree sizes where small individuals

are much more frequent than the larger ones (for example crossover generates a

very high amount of single node individuals). Because very small individuals are

usually unfit, the larger programs have a selective advantage and, thus, the mean

individual size within the GP polulation increases.

An overview of the strong theoretical and empirical evidence that supports the

crossover bias theory is presented in [48].

5.2.3 Discussion

In [48], Silva also argues that, when taking into consideration all these theories, there

is one thing that if removed would cause bloat to disappear: the search for fitness

Bloat - The major problem in GP 44

(e.g. experiments have shown the absence of bloat when selection is random [5] [34]).

Ironically, this is also the only thing that if removed would render the whole process

useless. As removing the main cause of bloat does not seem to be a real option, research

has also been focused on trying to control the magnitude of the phenomenon.

Another observation to be made when comparing the above presented theories, is that

they are primarily structured around the destructive behavior of standard genetic op-

erators. When switching to a protected crossover method, like the one proposed by

Soule [50], the most interesting theoretical aspects are the ones suggested by Luke [39]:

protected crossover virtually eliminates inviable code but also seems to increases the

amount of unoptimized code.

5.3 Classic Bloat Control Methods

Several practical approaches aimed at counteracting/controlling the bloat phenomenon

have been proposed over the years. We shall now present a short description of the

most important of them (based on an overview of the subject from [46]).

5.3.1 Size and Depth Limits

One of the simplest methods used to control code growth is to impose size or depth

limits on the generated offspring programs [29]. Usually, in implementing this concept,

after applying a genetic operator, one checks if the resulting offspring respects the size

and the depth limit. If the offspring exceeds one of these limits, it is disregarded and

one may choose either to return one of the parents or retry the genetic operation using

the same or different parents.

Tests have shown that when using depth thresholds, the population fills up with “bushy

programs” where most branches reach the depth limit (i.e. full trees) [41]. By contrast,

size limits produce populations of “stringy programs” that tend to all approach the size

limit [41]. A somewhat surprising recent finding is that the usage of size limits actually

speeds code growth in the early stages of the run [13]. The reason for this is that

imposing size limits biases the population towards a very uneven size distribution like

the one suggested in the crossover bias theory.

When using size or depth limits, programs must not be so tightly constrained that they

are not able to express accurate solutions. Poli [46] argues that as a rule of thumb, one

should try to estimate the size of the minimum possible solution (that can be achieved

Bloat - The major problem in GP 45

using the given terminal and function set) and add a percentage (e.g., 50-200%) as a

safety margin. Depending on the complexity of the problem, some trial and error may

also be required.

In [48] Silva and Costa propose a method for dynamically adjusting the depth and size

limits during runs. The tests they performed showed that dynamic depth limits behaved

very well, being able to produce results that were as accurate as the ones obtained using

fixed depth limits, while using significantly smaller trees. On the other hand, the size

limits were not so successful as they always produced results that were significantly less

accurate than the ones obtained using fixed or dynamic depth limiting.

5.3.2 Anti-bloat Genetic Operators

There have been several attempts to control bloat by using specially designed genetic

operators. Crawford et al. [11] proposed a size fair crossover method. The main

idea is to constraint the choices that can be made during the execution of the crossover

operation such as to prevent growth. Like in the classic crossover operation, a crossover

point is selected randomly in the first parent. The size of the subtree to be excised is

then calculated. This value is used to constrain the crossover point in the second parent,

such that the size of the second excised subtree isn’t “unfairly” large.

Several size fair subtree mutation operators have also been proposed. As far back as

1993 Kinnear [28] proposed a mutation operator that prevented an offspring of having

a size that was 15% larger than its parent. Langdon [33] also proposed two mutation

operators that ensured that a randomly created subtree has on average the same size

as the code it replaces.

5.3.3 Anti-bloat Selection

Parsimony pressure is another well known bloat control technique originally suggested

by Koza in [29]. The idea is to change the selection probability of a given individual by

extracting a value based on the size of the individual from its fitness. Bigger programs

are penalized more and thus tend to have fewer children. Formally, each individual x is

assigned a new selection fitness fsel(x) = f(x)−c∗s(x) where f(x) is the original fitness,

s(x) is the size of x and c is the parsimony coefficient. The original fitness value is only

used to recognize solutions or serve as a process stop criterion. Although evidence that

presents the benefits of dynamically adjusting the parsimony coefficient during the run

are presented in [61], most implementations of the method use a constant value of c.

Bloat - The major problem in GP 46

Controlling bloat (program size) and maximizing accuracy at the same time effectively

turns the evolutionary process into a multi-objective optimization problem (or a con-

strained optimization problem). Parsimony pressure combines the two objectives in

the fsel function and treats the minimization of size as a soft constraint. The intensity

with which bloat is controlled depends on the value of the parsimony coefficient. If the

value is too small then there is no push to minimize bloat. By contrast, if the value is

too large, then solution minimization will become the primary objective and the runs

will converge towards extremely small but inaccurate programs [49]. Good values for

the parsimony coefficient are highly dependent on the particular problem to be solved

and on the configuration parameters of the GP process.

There are also methods that try to keep the two optimization criteria (size and accuracy)

separate. They typically rely on the principle of Pareto dominance: “Given a set of

objectives, a solution is said to Pareto dominate another if the first is not inferior to

the second in all objectives and additionally there is at least one objective where it is

better” [46]. For example in [16], Ekart and Nemeth propose a modified tournament

selection operator based on Pareto dominance. An individual is selected if it is not

dominated by a set of randomly chosen individuals. In the case of failure, another

individual is picked from the population until one that is non-dominated is found.

5.4 Bloat and GP Solution Size - The Result Orientated

Perspective

A very important remark that needs to be made right from the start is that in this thesis

we are only interested in the result orientated perspective on bloat. This means that

throughout this work we only focus on producing parsimonious GP solutions rather than

trying to control the code bloating phenomenon in general. This flavor is quite important

as we shall immediately see.

The impact of the bloat phenomenon on solution size is studied by considering the

size and accuracy dynamics of the GP population over several generations and by

collaborating these with the convergence speed of the GP process (i.e. the number of

generations needed to reach the solution of the GP run). We shall now see that the

result orientated perspective on bloat is either based on the training perspective on

bloat or on the validation perspective on bloat depending on what type of data set split

strategy GP uses.

Bloat - The major problem in GP 47

5.4.1 Bloat - The Training Set Perspective

In a GP environment that uses only a training and a test data set, the final effect of

bloat on the size of the GP result or solution is very direct and easy to understand.

As solution designation is based solely on model training performance, the training

perspective on bloat coincides with the GP result perspective on bloat.

In this case, after a number of generations, one can observe that while the average

solution size over the entire population continues to grow, there is no significant im-

provement in training accuracy. But even if not significant, any marginal improvement

(regardless of new model size) will immediately force the GP process to accept the new

model as the current solution candidate. As such, the direct impact of bloat on GP

solution model size is evident: if no better solution in terms of training accuracy is

found after code bloating starts, then there are very high chances to obtain a quite

parsimonious solution model, else, it is very likely to end up with a large (bloated) best

solution.

Trying to modify the standard behavior of the solution designation process such as to

not take into account marginal accuracy improvements that are large-sized is extremely

troublesome. This approach would require a general method for defining what is a

“marginal improvement” and what is “large-sized” with regards to the multitude of

particular cases that might arise as an evolutionary process guides a GP run.

The remaining alternative is to actually try to limit bloating until the solution of the

run has been found. The solution of the run is the best performing model with respect

to training accuracy. The catch is that, because of the stochastic nature of the GP

process, a (marginally) more accurate training model (then the best one so far) can be

found, theoretically, any time.

With respects to the above, the best bloat control technique (when using a training

set for both model evolution and solution designation) is the one that can ensure over-

all model parsimony in the entire population for the longest time without negatively

impacting the fabric of the evolutionary process guiding the search.

This idea of delaying (or preventing) bloating in the population for as long as possible

(ideally forever), whilst at the same time not negatively impacting the evolutionary

process, is the central (and natural) paradigm behind virtually all existing bloat control

techniques.

Bloat - The major problem in GP 48

5.4.2 Bloat - The Validation Set Perspective

In Section 3.3 we defined the overfitting phenomenon as the general major obstacle

in data based modeling. We also stated that a very suitable approach for controlling

overfitting in GP is the usage of a three-fold data set split into a training set, a validation

set and a test set.

The impact of code bloating in GP based modeling that uses a three-fold data set split

is identical to the validation set perspective on bloat as, in this case, the validation set

is the one used for final solution designation. This is important as the training and

validation perspectives on GP bloat can differ significantly. In order to understand this

difference let us first consider the following simple scenario that can arise when using

GP with a three fold data set split strategy:

• In the nth generation of the GP run we come across a fairly small model, Msmall,

that turns out to be the best performing model of the entire run both on the

training set and on the validation set.

• In the (n + 1)th generation of the run we come across a large model, Mlarge,

that has a much higher accuracy than Msmall on the training data set and that

is an offspring of Msmall obtained through crossover. Let us assume that this

model is “not affected by bloat”: does not contain introns (either as inviable code

or unoptimized code) and does not contain “messy code structures” [39] (e.g.,

+(+(+(1, 2), 3), 4)). These semantical or syntactical messy code structures are

still the subject of intense ongoing research in the field of GP in general and bloat

control in particular.

• The GP run terminates immediately after the (n+ 1)th generation.

With regards to the validation accuracy of Mlarge compared to that of Msmall we

consider three distinct possibilities:

• The validation accuracy of Mlarge is significantly better than that of Msmall.

• The validation accuracy of Mlarge is equal or marginally better than that of

Msmall.

• The validation accuracy of Mlarge is worse than that of Msmall

From a training set perspective in all the three cases Mlarge is an improvement with

regards to its parent as it has a much higher training accuracy.

Bloat - The major problem in GP 49

From a validation point of view things are a bit more complicated. Whilst in the first

case there is no doubt that Mlarge can also be viewed as an evolved improvement of its

parent, in the second case, we might argue that Mlarge is affected by bloat (program

growth with no significant return in fitness) and, in the third case, we have good reasons

to suspect thatMlarge suffers from overfitting (low training error and high generalization

error).

As one might expect after reviewing this scenario, validation based solution designation

is helpful in controlling the cases where the larger individual has a validation accuracy

that is worse or equal to the best found solution so far. However validation can not offer

protection from large individuals that contain marginally overfitting code - code that

improves training accuracy significantly but has insignificant benefits from a validation

orientated perspective.

As a generalization, we can say that, when using three-fold data set split, a continuous

generation-wide growth of program size (and possibly training accuracy) that is not

matched by a significant increase in validation accuracy can be regarded from a GP

validation perspective as bloating. In this specific case the bloating comes under the

form of code that we have labeled as marginally overfitting code.

When also taking into consideration the very high probability of having messy code

structures (that are effectively bloat both from a training and a validation point of

view) within a GP model, the concept of code bloat from a GP validation perspective

is illustrated in Figure 5.2.

From all of the above presented, we argue that the usage of validation based solution

designation can help in ensuring both a more parsimonious and a more accurate GP

solution by providing protection against overfitted large individuals. However, the

usage of a validation set can not help with detecting bloat in the form of marginally

overfitting code or messy code.

The use of a validation test has a profound implication in the way we interpret bloat

control, in the sense that it reliefs us of the task of managing population growth after

the point in which the GP process starts overfitting. From our point of view, trying to

control bloat after this point does not make much sense as the (size of the) GP solution

will not be changed anymore.

The paradigm behind bloat control, when using a three-fold data set split, is also slightly

different from the one mentioned in the previous section, as an ideal bloat control

strategy would only need to control the phenomenon till the best validation accuracy

Bloat - The major problem in GP 50

Figure 5.2: The GP validation perspective on bloat structure

is reached. Usually, in most data based modeling techniques (GP being included), the

best validation solution is obtained far ahead of the best training solution.

Every HeuristicLab GP configuration used in this thesis relies on a three-fold data set

split and, as such, the result orientated perspective on bloat that we take into account

in our work is defined by the validation set perspective on bloat.

Methodology and Initial Test Results - The Performance Baseline 51

Chapter 6

Methodology and Initial Test

Results - The Performance

Baseline

6.1 Methodology

We shall now present details regarding the methodology we have adopted for performing

tests and making comparisons throughout this thesis. The focus falls on describing how

we compare different genetic programming (GP) configurations based on the general

performance of the results they produce.

6.1.1 Input Data Preparation

For the two blast furnace modeling scenarios, A5 (14 variables) and A6 (44 variables),

we have split the data set into a training set of 3200 records and a test set of 2000

records. When using GP based regression, the 3200 records data set is further split

into two partitions: a training data set of 1200 records and a validation data set of

2000 records.

The EvoCompetitions 2010 symbolic regression problem is already pre-partitioned by

the competition organizers into a training set (747 records) and a data set (320 records).

When using GP based regression, the training dataset is also further divided into two

separate sets (training 66% and validation 33%).

Methodology and Initial Test Results - The Performance Baseline 52

An important note regarding the EvoCompetitions problem is that Gabriel Kronberger

from the HEAL team entered the contest proposing a model found using the GP stan-

dard regression process implemented in HeuristicLab. His solution was declared the

winner. The knowledge acquired by analyzing the GP modeling process, allowed the

HEAL team to successfully perform variable selection. As such, 9 variables from the

original set of 57 variable were removed from the modeling scenario. All the tests

we have carried out for this problem also consider the reduced 48 variable modeling

scenario.

When using GP, it may also happen that not all the data available for training is used.

Depending on specific parameter settings, only a predefined amount of samples (from

all the available training data) are randomly chosen as the actual GP training set.

6.1.2 Comparing GP with other regression methods

Interpretability

In Chapter 3 we have presented relevant information that GP produces white-box

symbolic regression models that are more interpretable then the gray-box regression

models produced by ANNs and SVMs. The only prerequisite for this is the fact that

the size of the GP based models should be as small as possible.

Linear regression is also a white-box modeling technique, it’s only (major) disadvantage

is its implicit assumption that the dependent variable linearly depends on the other

variables in the data set.

Accuracy

As the three classic regression methods we are using for comparison are deterministic,

the best model for each of them with regards to the modeling scenarios has been chosen

using a systematic testing strategy that will be presented in detail in Section 6.2.1.

The GP process is stochastic in nature and as such multiple runs (more than 25) with

the same configuration are necessary in order to determine the general behavior of

that GP configuration. When we wish to evaluate the performance of a given GP

configuration with regards to the other regression methods, we choose for comparison

the best performing solution (according to MSE on test data) obtained among all the

GP runs based on that given configuration.

Methodology and Initial Test Results - The Performance Baseline 53

Overall Performance

Based on the above, we consider that GP has an overall better performance than ANNs

and SVMs if it is able to produce parsimonious solutions that are at least as accurate

as the ones found using these gray-box modeling methods.

In the case of linear regression, we consider that GP performs better only if it is able

to produce parsimonious models that are more accurate then those created using linear

regression.

In conclusion, when assessing the overall performance of GP based regression models,

interpretability (parsimony) is only the second performance criteria, whilst model accu-

racy is the first one. By model accuracy we always mean model accuracy with respect

to future, “unseen”, data and, as such, the most accurate model is the one that exhibits

the smallest MSE value with regards to the test data set.

6.1.3 Comparing two different GP configurations

We previously mentioned that we need to perform multiple runs with the same con-

figuration in order to determine the general behavior of that configuration. As such,

we performed 100 GP runs for each specific GP modeling attempt, where a modeling

attempt is defined by the pair (GP configuration, modeling scenario). The result of

this is that each individual GP modeling attempt is defined by a data set of solutions

containing 100 records. We shall refer to this data set that contains all the 100 solutions

as the the full data set.

The fact that model accuracy is the first GP performance criteria, determines our in-

terest in especially analyzing and improving the parsimony of the best solutions that

can be generated with a given GP configuration. As such, for each modeling attempt,

we also construct a top accuracy subset that only contains the 25 most accurate solu-

tions in the full data set. When constructing this subset, ties broken in favor of the

more parsimonious model. The top accuracy subsets are used for accuracy and size

comparisons alike.

Our inter-GP comparisons are largely based on basic statistical measures related to

both the full solution data sets and the top accuracy subsets. This basic statistical

measures consist of two central tendency indicators (the average (µ) and the median

(µ1/2))as well as the standard deviation σ.

Methodology and Initial Test Results - The Performance Baseline 54

When comparing among GP configuration results based on the full data sets, we also

make use of significance testing to confirm our empirical based hypotheses. The signifi-

cance test we use is the Mann-Whitney-Wilcoxon (also know as the Mann-Whitney U)

test. The significance level we use is α = 0.05 in the case of one-tailed tests. The choice

for this particular non-parametric test was made because we do not wish to presume

that our solution data is normally distributed, either according to size or accuracy.

We do not use significance testing with regards to the top accuracy subsets as, due to the

selection process, the samples in these subsets violate the assumption of independence

that all standard parametric and non-parametric significance tests assume. As the

samples in the top accuracy subsets exhibit associative dependencies, for the purpose of

this thesis we consider that it is sufficient to only present some empirical observations

related to these subsets.

Whilst we shall use all the three modeling scenarios previously introduced in order to

make the final full comparison between the performance of the initial GP configuration

and the performance of our proposed bloat control system, during the comparison of

some “intermediate” GP configurations, we shall only refer to the A6 blast furnace

scenario as it is both the most complicated and the most interesting from a practical

perspective. However, in each case, we have performed around 30 tests in order to

confirm that the general behavior of a certain GP configuration is largely the same for

all the three modeling scenarios.

In the case of the A6 scenario, apart from comparing GP configurations based on

statistical facts related to the full data sets and top accuracy subsets, we shall also use

two empirical solution performance quantifiers: small and high accuracy. The concrete

values that define these quantifiers are presented in Section 6.2.4.

6.2 Initial Tests

We shall now provide a description of the tests we have conducted in order to produce

the regression models that we consider as being the performance baseline (accuracy

and size) for the modeling scenarios described in Section 4.1.

6.2.1 Weka Test Configurations

In order to find the best parameter settings for the three standard regression methods,

we have adopted a strategy of systematic testing. Initially, for each regression method,

Methodology and Initial Test Results - The Performance Baseline 55

and each considered modeling scenario, our approach was to select the best performing

model using 10-fold cross validation on the training set. While this worked very well on

the EvoCompetitions regression problem, in the case of the two blast furnace scenarios,

we ended up with rather overfit models. We then decided to also try the training set -

validation set - test set approach for the standard regression methods and this proved

to be a lot more successful.

For each of the two data set partitioning methods used we conducted the following

series of tests:

• In the case of the LinearRegression classifier we can opt for three

different attribute selection methods and various values for the ridge

parameter R. Multiple models were created using all the possi-

ble pair combinations between selection methods and R where R ∈
[10−12, 10−11, . . . , 10−3, 0.01, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, . . . 128.0]. We ran a to-

tal of 66 tests for each modeling scenario.

• In the case of the MultilayerPerceptron classifier there are more parameters that

can be configured: the number of hidden layers H, the learning rate L, the

momentum M , the training time N , the type of learning rate (constant or de-

caying) D. Again, a high number of possible combinations were tested using:

H ∈ [1.0, 2.0, auto], L ∈ [0.05, 0.1, 0, 15, . . . , 0.45, 0.5], M ∈ [0.1, 0.2, 0.3, 0.4, 0.5],

N ∈ [500, 1000, 1500] and D ∈ [constant, decaying]. We ran a total of 450 tests

for each modeling scenario.

• The best configuration for the SMOreg classifier was found by vary-

ing the following parameters: the general complexity parameter C with

C ∈ [0.1, 0.25, 0.5, 1, 2, 4, 8, . . . 1024], the RBF kernel parameter γ with

γ ∈ [0.005, 0.01, 0.015, 0.02, 0.025] and the ε parameter of the epsilon inten-

sive loss function with ε ∈ [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25]. We

ran a total of 700 tests for each modeling scenario.

6.2.2 HeuristicLab Test Configuration

In this section we shall present what we shall refer to as the initial HeuristicLab GP

configuration - InitialHL-GP in short. It is the GP process configuration that is able

to produce the best models for all the considered modeling scenario.

The considered GP process uses all the enhancements presented in Section 4.2.1. The

chosen male-selection operator was proportional selection, whilst the chosen female-

Methodology and Initial Test Results - The Performance Baseline 56

selection operator was random selection. The offspring selection success ratio was 1

meaning that all members of the next generation had to outperform their respective

parents. Constants were initialized and modified uniformly (between -20 and 20), whilst

variables were initialized and modified according to a normal distribution N(0, 1). The

other, more common, GP algorithm parameters that we have used are listed in Table

6.1.

Process parameter Value

Function library +, −, ∗, %, power, sqrt

Population size 1000

Mutation rate 15%

Max tree height 15

Max evaluated solutions 5000000

Max generations 1000

Table 6.1: Common GP parameter settings used in all HeuristicLab GP configurations
presented in this thesis

The stopping criterion that was reached first in all the runs stated that the GP process

should terminate if there had been no improvement with regards to the validation

accuracy for more than 20 generations (BestValidationSolutionAge=20).

The only bloat control method the initial version of HeuristicLab GP used was a static

depth limit that prevented trees from having a depth larger than 15. The actual

limit value was chosen empirically after performing numerous tests on several symbolic

regression scenarios (which also included our three current modeling scenarios) and

observing that, in all of them, most of the good and very good solutions had a depth

smaller than 10.

6.2.3 Performance Baseline

Accuracy

In order to compare the generalization error of different regression, models we have

chosen to use an additional indicator, other than the mean squared error (MSE). As

such, for each obtained model we also calculate Spearman’s rank correlation coefficient

(ρ). This coefficient is calculated on the test set in order to provide a more accurate

view of the prediction capability of a given model.

Methodology and Initial Test Results - The Performance Baseline 57

If, when considering regression problems, the smaller the MSE the better the model,

in the case of Spearman’s rank correlation coefficient, the better the model, the closer

the value of ρ is to 1.00.

The best results obtained using the three standard regression methods discussed earlier

and the InitialHL-GP process are summarized in Table 6.2 (the best result is chosen

according to MSE and the corresponding ρ is displayed). While GP based regression

performs quite well on the blast furnace scenarios, its accuracy on the EvoCompetitions

problem is considerably lower.

LinReg ANN SVM Initial GP

Scenario MSE ρ MSE ρ MSE ρ MSE ρ

Blast furnace A5 1.159 0.81 1.498 0.75 0.867 0.87 0.869 0.87

Blast furnace A6 1.175 0.81 1.160 0.80 0.912 0.84 0.865 0.87

EvoComp problem 0.022 0.90 0.018 0.92 0.012 0.94 0.037 0.79

Table 6.2: Accuracy information regarding four regression methods (i.e. MSE on test
data set)

An important observation is the fact that GP achieves the best results on the A6 sce-

nario, and that these results are pretty similar to those obtained on the reduced A5

scenario, both in terms of accuracy and semantics (i.e. the variable impact analysis re-

vealed that they both largely contained the same set of dependent variables). However,

as we will later see, these initial best performing GP models also contain a rather large

level of redundancy.

Solution MSE on test set

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Blast furnace A5 1.103 0.153 1.065 0.960 0.036 0.970

Blast furnace A6 1.448 0.584 1.280 0.929 0.037 0.930

EvoComp problem 0.162 0.071 0.050 0.043 0.002 0.045

Table 6.3: Statistical information regarding the solution accuracy of InitialHL-GP

We continue with the overview of our accuracy baseline by presenting in Table 6.3

information regarding accuracy for the full data sets as well as the top accuracy subsets

of the initial GP configuration.

Methodology and Initial Test Results - The Performance Baseline 58

All of the above presented observations support the conclusion that the InitialHL-GP

process is quite powerful and it is able to produce results of comparable, if not even

better, accuracy than the considered standard regression methods.

Solution size

In order to have an overview of the general behavior of the initial HeuristicLab GP

process with regards to solution size, in Table 6.4 we present solution size related

statistical information regarding the full full data sets and the top accuracy subsets

Solution size

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Blast furnace A5 46.92 20.58 43.00 44.84 19.64 44.00

Blast furnace A6 52.60 28.11 47.00 53.36 29.94 52.00

EvoComp problem 29.92 17.57 26.00 35.16 21.94 30.00

Table 6.4: Statistical information regarding the solution size of InitialHL-GP

Overall

The main goal of this thesis is to reduce the size of the solution regression models

produced with the enhanced GP process implemented in HeuristicLab while at the same

time ensuring no deterioration of solution accuracy. As such, the previously solution

size statistics together with all the results regarding initial GP accuracy, are considered

as the combined accuracy-size baseline for any GP enhancement aimed at improving

GP solution parsimony within the HeuristicLab framework.

6.2.4 Bloat - A Concrete Example

After having presented the general behavior of the InitialHL-GP process in terms of size

and accuracy, we can now present why we consider that, from a result orientated per-

spective (see Section 5.4), a considerable part of the solutions are affected by bloat, and

that, the GP process can be further enhanced in order to produce more parsimonious

solutions.

Methodology and Initial Test Results - The Performance Baseline 59

For this example, we shall only consider the results obtained for the A6 blast furnace

scenario, the scenario where GP performed better than any of the other considered

regression methods. For the A6 modeling scenario we consider the following empirical

solution performance quantifiers: a small solution has a size ≤ 35 and a high accuracy

solution has a test MSE ≤ 0.90. The accuracy threshold was chosen by taking into

account the general performance of linear regression, ANNs and SVMs based regression

for this scenario. The size threshold has been chosen based on the observation that 25%

of the solutions generated by the InitialHL-GP process have a size that is smaller or

equal to 35.

Having set these thresholds, let as look at the full data set of solutions generated with

the InitialHL-GP process. In the entire set we have:

• 19 solutions that that have a small size;

• 6 high accuracy solutions that have a mean size of 61.83;

• one small-sized (size = 20) highly-accurate solution (test MSE = 0.88);

• the best accuracy (test MSE 0.86) is achieved by a solution of size 54 that contains

12 dependent variables.

Interestingly, among the 6 top performing solutions we have two more models that

achieved a test MSE of 0.88, one with a size of 77 and the other with a size of 79.

So, while these two solutions exhibit the same generalization error as the single high

accuracy small-sized solution, they are almost 4 times as large.

Let us take a closer look at the dynamics of the two GP runs that produced the small

solution (Figure 6.1) and the large-sized solution (Figure 6.2). We can see that in the

GP run that produced the large sized solution, the average model size (AvgModSize)

over the entire population as well as the minimum model size (MinModSize) tend

to increase dramatically after only a few generations. By contrast, in the run that

produced the parsimonious solution, these indicators increase steadily and in a much

more dampened manner. The convergence speed (SolGen) towards the solution (i.e.

the model with the best validation accuracy) is largely similar in the two GP runs (and

quite fast when compared with a standard GP approach): the small solution is found

after 15 generations and the large one after 17 generations.

An obvious explanation for the difference in sizes is the fact that the size of the solution

is strongly correlated with the average model size and the smallest model size of the

Methodology and Initial Test Results - The Performance Baseline 60

Figure 6.1: InitialHL-GP run that produced a parsimonious model with a test MSE of
0.88

generation when the solution was found. For the two considered GP runs, this data is

summarized in Table 6.5.

SolGen MinModSize AvgModSize

Small solution 15 8 39.317

Large solution 17 24 102.73

Table 6.5: Population dynamics indicators for the two considered GP runs

Averaging related statistics for the SolGen, MinModSize, AvgModSize indicators based

on the top accuracy subset of InitialHL-GP for the A6 modeling scenario are presented

in Table 6.6. The table also contains an indicator for the average solution size (Avg-

SolSize). On average, the best validation solution was found at the 16th generation.

The main reason for this fast convergence rate is the offspring selection strategy used

within HeuristicLab GP. Whenever comparing with a standard GP implementation

that does not use this enhancement, one should instead look at the number of evalu-

ated individuals till the solution was found. According to this last metric, on average,

the convergence speeds of the two types of GP processes appear to be rather similar.

As one can see, the mean average model size (AvgModSize) in the generation when the

solution was reached is quite high: 68.52. Allthough the mean minimum model size is

considerably smaller, with a value of 21, the average size of the solution (53.36) tends

to be closer to the mean average model size than to the mean minimum model size.

Methodology and Initial Test Results - The Performance Baseline 61

Figure 6.2: InitialHL-GP run that produced a large-sized model with a test MSE of
0.88

Indicator µ σ

SolGen 16.24 3.91

MinModSize 21.00 13.25

AvgModSize 68.50 24.20

AvgSolSize 53.36 29.24

Table 6.6: InitialHL-GP population dynamics indicators for the top accuracy subset of
the A6 modeling scenario

The HeuristicLab GP implementation we tested with for this thesis only stores size

information related to the best performing validation model. If we had size information

regarding the best performing training model as well, it would have been extremely

interesting to analyze the two example GP runs from a purely training set perspective

as well. This is because, for our two considered runs, in the generation where the model

with the best training accuracy was found (i.e. the last generation of each run) the

values of the MinModSize and AvgModSize indicators are much smaller for the run we

have labeled from a result orientated perspective as being affected by overfitting.

Reducing Solution Size in HeuristicLab GP 62

Chapter 7

Reducing Solution Size in

HeuristicLab GP

7.1 The Impact of the Offspring Selection Enhancement on

Solution Size

Let us first present some assumptions on how the offspring selection strategy (see Sec-

tion 4.2.1) in its strictest form (SuccRatio parameter set at 1.00) might influence the

final solution size of the HeuristicLab GP process (i.e. its influence on bloat from the

“validation perspective” - Figure 5.2).

On the one side, the offspring selection enhancement used by HeuristicLab GP can

be regarded as an improvement on the non-destructive crossover methods proposed by

Soule [50] [51] and as such, based on Luke’s experiments in [39], we expect that using

this enhancement will lead to a dramatical decrease of the amount of inviable code

in the population. Furthermore, the combination of offspring selection and validation

based solution designation also helps in combating large individuals that exhibit an

overfitting behavior.

On the other side, taking into account the behavior of unoptimized code (Section 5.2.1)

and the structure of the offspring selection scheme (Section 4.2.1) we also have good

reasons to expect that when using this enhancement, the probability that unoptimized

code will be propagated through the generations actually increases. A hint towards this

possible behavior is also presented in [39].

With regards to the “marginally overfitting code” and “messy code structures” we can

make no assumptions on what the effect(s) of offspring selection on this type of code

bloat are.

Reducing Solution Size in HeuristicLab GP 63

Whilst based on the above assumptions (some of which not fully tested) we cannot

draw a decisive conclusion on what the overall effect of strict offspring selection on

final GP solution size might be, there is strong evidence ([57] [58] [59] [32]) that this

enhancement is extremely beneficial in terms of accuracy. Therefore, in this thesis, our

focus will fall on analyzing the impact of offspring selection on GP solution size.

7.1.1 Offspring Selection Experiments

In order to get a better overview on the effect of offspring selection on GP solution

size and accuracy in the case of our modeling scenarios, we shall first compare the

performance of the InitialHL-GP process with that of a standard GP configuration -

StandardHL-GP. that does not use this enhancement.

Afterwards, we shall also make use of the gender specific selection enhancement (also

described in Section 4.2.1) in order to test if varying the internal selection pressure while

using strict offspring selection has any impact on bloat and resulting model accuracy.

7.1.2 Comparison with Standard GP

The standard GP configuration we have used for testing was a HeuristicLab implemen-

tation of Algorithm 2.1 which also benefited from three GP enhancements presented

in Section : linear scaled error measure, PTC2 based initialization and point mutation

parametrization.

Again, constants were initialized and modified uniformly (between -20 and 20) whilst

variables were initialized and modified according to a normal distribution N(0, 1). The

parents were selected using proportional selection. The BestValidationSolutionAge pa-

rameter was set at 100 and it was the first reached stopping criterion in every run. The

more basic GP parameters settings we have used are the ones described in Table 6.1.

In Table 7.1 we present statistics regarding solution accuracy and solution size when

using the standard GP configuration.

When comparing the results in terms of accuracy, based only on the central tendencies

and standard deviation, we have strong reasons to presume that StandardHL-GP per-

forms far worse than InitialHL-GP (Table 6.3) on the full solution data sets as it has

higher mean and median values and a larger standard deviation. These observations

are also pertinent to the top accuracy subsets.

Reducing Solution Size in HeuristicLab GP 64

Full data set Acc. subset

Perf. criterium µ σ µ1/2 µ σ µ1/2

Solution test MSE 2.178 1.046 1.821 1.177 0.177 1.232

Solution size 45.44 33.50 39.00 44.84 24.55 43.00

Table 7.1: StandardHL-GP configuration performance - A6 scenario

In order to provide a more detailed overview of the accuracy of all the results in the

solution data sets, we now introduce a type of plot (Figure 7.1) that will be used exten-

sively throughout this chapter for result dissemination: the comparative performance-

parameter kernel density estimation plot. In this case, the performance parameter is

solution accuracy (i.e. test MSE value) but later on we shall also present solution size

information in the same manner.

Figure 7.1: Comparative kernel density estimation of GP solution accuracy for
StandardHL-GP and InitialHL-GP - A6 scenario

The observed difference in accuracy between the two GP configurations is also confirmed

by the kernel density estimation plot. Unsurprisingly, this difference is also statistically

significant as the Mann-Whitney-Wilcoxon test yielded a one-tailed p-value smaller

than 0.001.

Finally, we must mention that whilst the general behavior of StandardHL-GP is worse

in terms of accuracy than that of InitialHL-GP, the former was still able to produce two

2 high accuracy models of which one was also small-sized (according to the empirical

solution performance quantifiers defined in Section 6.2.4);

When comparing the results in terms of solution size, the standard GP configuration

has smaller mean and median values with regards to both the full solution data set and

the top accuracy subset.

Reducing Solution Size in HeuristicLab GP 65

The comparative kernel density estimation with regards to solution size is presented in

Figure 7.2. An interesting observation is the fact that this plot appears to confirm our

observations regarding the difference in central tendencies for the full data set whilst

in the case of the top accuracy subset there seems to be no real difference.

Figure 7.2: Comparative kernel density estimation of GP solution size for StandardHL-
GP and InitialHL-GP - A6 scenario

The hypothesis that the observed difference in central tendencies is statistically signif-

icant with regards to the full solution data set is confirmed by the one-tailed Mann-

Whitney-Wilcoxon test (one-tailed p-value=0.005).

7.1.3 The effect of parent selection pressure

Within the offspring selection strategy, the parent selection pressure can be:

• high - when both parents are chosen using proportional selection

• medium - when one parent is chosen using proportional selection and the other

using random selection

• low - when both parents are chosen using random selection

We have conducted a series of tests to see if this factor has any influence on final

solution performance when using offspring selection. As InitialHL-GP is actually an

example of using medium parent selection pressure, starting from it we have easily

obtained configurations implementing high and low parent selection pressures by simply

modifying one of the selection operators. All the other configuration parameters were

left unchanged.

Reducing Solution Size in HeuristicLab GP 66

The basic statistics regarding solution accuracy are listed in Table 7.2 and the statistics

regarding solution size are listed in Table 7.3. The comparative accuracy kernel density

estimation plot is presented in Figure 7.3 whilst the comparative size kernel density

estimation plot is presented in Figure 7.4.

Figure 7.3: Comparative kernel density estimation of solution accuracy for three GP
configurations with different parent selection pressures - A6 scenario

Figure 7.4: Comparative kernel density estimation of solution size for three GP config-
urations with different parent selection selection pressures - A6 scenario

For the presented statistics regarding the accuracy and size performance of the three

chosen configurations, we have tested for significance with the Mann-Whitney-Wilcoxon

test all the possible hypothesis (based on the full solution data set).

With regards to accuracy, the fact that the low pressure configuration has lower central

tendencies than the high pressure configuration is marginally significant (one-tailed

(p-value=0.0042)).

Reducing Solution Size in HeuristicLab GP 67

Solution MSE on test set

Full data set Acc. subset

Configuration µ σ µ1/2 µ σ µ1/2

Low pressure 1.308 0.490 1.14 0.926 0.054 0.93

Medium pressure 1.448 0.584 1.280 0.929 0.037 0.930

High pressure 1.5196 0.6927 1.280 0.923 0.056 0.920

Table 7.2: Solution accuracy statistics for three GP configurations with various parent
selection pressures - A6 scenario

Solution size

Full data set Acc. subset

Configuration µ σ µ1/2 µ σ µ1/2

Low pressure 62.65 31.36 62.5 65.00 29.29 64

Medium pressure 52.60 28.11 47.00 53.36 29.94 52.00

High pressure 48.96 24.68 47.00 47.60 22.50 44.00

Table 7.3: Statistical information regarding the solution size of three GP configurations
with various parent selection pressures - A6 scenario

With regards to the solution size distribution two observations are statistically signifi-

cant:

1. the low pressure configuration has higher central tendencies than the medium

pressure configuration - (one-tailed p-value=0.004);

2. the low pressure configuration has higher central tendencies than the high pressure

configuration - (one-tailed p-value<0.001);

By analyzing the values of the presented statistics as well as the plots of the estimated

densities with regards to the top accuracy subsets, the central tendency trends presented

above don’t seem to be that relevant. For example in Figure 7.3 the accuracy distribu-

tions of the low pressure and high pressure configurations are virtually identical with

respect to the top accuracy subsets, whilst on the full data sets, the difference between

these two distributions is marginally significant.

With regards to the empirical solution performance quantifiers described in Section

6.2.4, the high pressure configuration was able to produce 12 high accuracy models of

which only one is small-sized, whilst the low pressure configuration was able to produce

10 high accuracy models of which two are also small-sized.

Reducing Solution Size in HeuristicLab GP 68

7.1.4 Discussion

From the series of tests we have described regarding offspring selection and based on

the presented observations and the hypothesis that have been labeled as statistically

significant, we can draw the following conclusions regarding the general behavior of this

strategy:

• Offspring Selection helps GP perform significantly better in terms of accuracy

while also determining a significant overall increase in solution size.

• Within the offspring selection strategy, the real driving force behind the evolu-

tionary process is the offspring selection step. As such, the GP configuration that

used a low parent selection pressure performed just as good in terms of accuracy

(if not better) as the configurations that used medium and high parent selection

pressures.

• Applying increased parent selection pressure has no positive influence on overall

solution accuracy.

• Applying low parent selection pressure seems to drive a significant increase in

overall solution size

The last two conclusions regarding the behaviour of the offspring selection strategy

are very important as they motivate our decision to keep the medium parent selection

pressure configuration (i.e., the InitialHL-GP configuration) as the base configuration

for future tests aimed at improving GP solution parsimony.

The above conclusions are based on the performance of the various configurations with

regards to the full solution data sets. During the presentation of the results we have

also hinted that empirical observations on the top accuracy subsets don’t appear to

confirm all these preliminary conclusions.

Nevertheless, the fact that the enhanced HeuristicLab GP process (based on offspring

selection) is far superior to a standard GP process in terms of general solution quality

is undisputed. This is extremely important for the later stages of the modeling process

(e.g., variable impact analysis) when an increased number of high quality solutions

provides experts with a far better overall view of the problem at hand.

In light of the above observations, our main challenge has become a little more well

defined: we must further enhance the InitialHL-GP process such as to reduce the

apparent overall increase in solution size that offspring selection promotes, while at the

Reducing Solution Size in HeuristicLab GP 69

same time, ensuring that the significantly better accuracy performance of InitialHL-GP

is not affected.

7.2 Possible Bloat Control Strategies for HeuristicLab

Based on the general reasoning presented in 5.4 and especially in 5.4.2, our strategy

for ensuring solution parsimony in HeuristicLab GP (i.e. reducing bloat from a result

orientated perspective) is to try to delay the bloating phenomenon or at least limit its

magnitude without affecting the behavior of the evolutionary process.

For this reason we have chosen to investigate what popular bloat control techniques

can be integrated in HeuristicLab and how they would perform. The main challange

came from trying to smoothly integrate these bloat control techniques with the offspring

selection strategy.

For instance, the anti-bloat selection methods (Section 5.3.3) are fairly hard to combine

with the offspring selection enhancement because their most effective implementations

are based on dynamically adjusting the control parameters: the parsimony coefficient

(for the parsimony pressure method) or the weighting of the objectives (for the Pareto

dominance method). Each such adjustment is based on a certain set of statistics regard-

ing a given generation and, as such, coefficient and weight modifications are performed

at most once every generation. But, as explained in Section 6.2.4, the offspring selec-

tion enhancement makes the GP process converge very fast (in terms of generations)

to the best validation solution (see Table 6.6). This means that there are far fewer op-

portunities to dynamically adjust the control parameters, and the impact of this on the

original bloat combating performance is hard to estimate. Furthermore, a modification

of the offspring selection enhancement such as to somehow allow for intra-generation

control parameter adjustment is a fairly complicated task. Based on this, we opted for

keeping anti-bloat selection methods as a measure of last resort.

In the case of anti-bloat genetic operators (Section 5.3.2) we are not aware of any

research that fully documents the influence of this method on the behavior of the

evolutionary process (especially for tree-based GP algorithm used for solving complex

modeling scenarios). Our educated guess is that in this case, the combination of size

and/or depth limitations imposed to genetic operators and offspring selection has a high

chance of leading to a fast drop in genetic diversity (i.e. premature convergence). This

is due to the fact that we would have a combination between a method that restricts

the number of offspring that are produced and a method that includes in the next

generation only offspring that are more accurate than their respective parents.

Reducing Solution Size in HeuristicLab GP 70

As the initial HeuristicLab GP configuration already implements basic depth limitation

(Section 6.2.2), our initial idea was to try to develop our bloat control strategy around

this bloat control method. The decision was also motivated by the fact that there

are no obstacles in trying to integrate this bloat control strategy with the offspring

selection enhancement. Size limitations were not considered as there is strong evidence

that using them can actually favor bloating in the early stages of the run [13].

After a set of initial experiments with static depth limitations we also decided to test

the opportunity of using a dynamic depth limitation strategy.

Largely inspired by [1] and [57], and taking into consideration all the particularities of

the GP process we are trying to enhance, we also decided to implement and test a bloat

control strategy based on syntax-tree pruning.

7.2.1 Static Depth Limits

As mentioned in 5.3.1, the classical implementation of this strategy ([29]) eventually

leads to a population that fills up with “bushy programs” that nearly infringe the limit.

The well known method for combating this behavior (i.e. the avoidance of parent

replication when an offspring violates the limit) is also implemented in the HeuristicLab

GP process.

Even so, with static depth limiting, in the very late stages of the evolutionary process,

the offspring selection strategy seems to promote the creation of “bushy” offspring as

they seem to be the easiest means of obtaining marginal training accuracy improvements

over already large parents.

Another major limitation of this basic bloat control method is the fact that it does

nothing to control bloat until the limit is reached.

As expected, by considering the above, our attempts to control solution bloating by

manipulating the value of the static depth limit (initially set at 15) were not very

successful. Furthermore, the classic argument against static limitations (the value of

the limit must be set accordingly to the specific problem at hand) makes this method an

unlikely candidate for the robust bloat control system we set out to design, especially

since estimating the proper limit value is harder when also using a validation test.

Nevertheless, the usage of a static depth limit with a high enough value (15 in our case)

does seem to help in improving the speed of the GP process as the method prevents the

Reducing Solution Size in HeuristicLab GP 71

creation and subsequent manipulation of extremely large individuals that are highly

bloated and/or extremely overfit.

7.2.2 Dynamic Depth Limits

In [48], Silva and Costa present a simple yet effective solution for overcoming most of

the shortcomings of static depth limitation. Their idea is to dynamically adjust the

value of the depth limit during the run.

Description

Compared to the original method, we have made a series of modifications in order

to integrate dynamic depth limiting (DDL) into the HeuristicLab GP process. As

such, the offspring selection criterion is slightly modified in order to incorporate a

module that takes into consideration the dynamic depth limit (see Algorithm 7.1). In

our implementation of the concept, the dynamic limit is initially set to a low value

(InitialDepthLimit), usually 20-30% higher than that of the maxium depth in the

initial population. Inside the offspring is automatically accepted in the next generation

if it satisfies the accuracy constraint and at the same does not infringe the depth limit.

If an offspring infringes the depth limit but is the best individual found so far (with

regards to training accuracy) then it is accepted in the next generation if the increase in

size is matched by the increase in accuracy. In this last case, the DDL is raised to match

the depth of the new best-of-the-run individual. After several test runs we decided to

also allow the limit to decrease. If during the run the best found individual at a given

time has a depth that is significantly lower than the current DDL, the depth limit will

be lowered, but it can not fall down to a value that is lower than its initialization value.

(i.e. we implemented what Silva and Costa called the heavy dynamic depth limit).

The condition on Line 11 states that the DDL should be raised if each extra depth level

is matched by an increase in training accuracy of at least Craise%. Analogously, the

condition on Line 3 states that the DDL should be lowerd if each decreased depth level

is matched by an increase in trianing accuracy of at least Clower%. As an empirical

rule, tests have shown that the relation Clower = 2 ∗ Craise enables the DDL to have a

stable behaviour throughout the run for all the considered test scenarios. Furthermore,

we discovered that Craise = 0.015 is also a stable setting for all test scenarios. Some

initial tests revealed that the unusual stability of these settings is highly influenced by

the usage of the linear scaled error measure and offspring selection enhancements.

Reducing Solution Size in HeuristicLab GP 72

Algorithm 7.1 The dynamic depth limiting module (DDL module)

1: AcceptStatus = true
2: if OffDepth ≤ DepthLimit then
3: if (BestMSE / OffspringMSE - 1) ≥ (DLimit - OffspringDepth) * Clower then
4: if OffspringDepth > InitialDepthLimit then
5: DLimit = OffspringDepth
6: else
7: DLimit = InitialDepthLimit
8: end if
9: end if

10: else
11: if (BestMSE / OffMSE - 1) ≥ (OffspringDepth - DLimit) * Craise then
12: DLimit = OffspringDepth
13: else
14: AcceptStatus = false
15: end if
16: end if
17: return AcceptStatus

Performance

In order to test the performance of this bloat control method, we have created a GP

configuration that is identical in every way to the InitialHL-GP configuration with the

exception that it also uses dynamic depth limiting - DDL-HL-GP in short. The static

depth limit was kept at a level of 15.

The basic statistics regarding DDL-HL-GP solution performance are listed in Table

7.4. The comparative accuracy kernel density estimation plot is presented in Figure 7.5

whilst the comparative size kernel density estimation plot is presented in Figure 7.6.

Full data set Acc. subset

Perf. criterium µ σ µ1/2 µ σ µ1/2

Solution test MSE 1.514 0.643 1.345 0.919 0.049 0.940

Solution size 32.92 16.30 30.50 34.16 14.32 34.00

Table 7.4: DDL-HL-GP configuration performance - A6 scenario

With regards to solution accuracy, the central tendencies of the InitialHL-GP process

(Table 6.3) are slightly better (smaller MSE) then the ones of DDL-HL-GP process

both for the full data sets and for the top accuracy subsets. However, the hypothesis

that this difference is statistically significant with regards to the full solution data set

is rejected by the Mann-Whitney-Wilcoxon test (one-tailed p-value= 0.298).

Reducing Solution Size in HeuristicLab GP 73

Figure 7.5: Comparative kernel density estimation of solution accuracy for DDL-HL-GP
and InitialHL-GP - A6 scenario

Figure 7.6: Comparative kernel density estimation of solution size for DDL-HL-GP and
InitialHL-GP - A6 scenario

With regards to solution size, the central tendencies of the DDL-HL-GP process are a

lot smaller then the ones of the InitialHL-GP process (Table 6.4) both for the full data

sets and for the top accuracy subsets. The difference is also statistically significant with

regards to the full solution data set (one-tailed p-value< 0.0001).

With regards to the empirical solution performance quantifiers described in Section

6.2.4, DDL-HL-GP was able to produce 10 high accuracy solutions of which 4 were also

small-sized.

7.2.3 Pruning

Most bloat combating strategies adopt a preventive/passive stance in trying to control

the phenomenon. This means that they do not directly try to modify bloated individuals

Reducing Solution Size in HeuristicLab GP 74

but they try to impose some restrictions on various parts of the evolutionary process

such as to prevent the spreading (or conservation of bloat) in future generations. As

we shall now see, there also exist more active ways of trying to combat bloat.

In machine learning, the term pruning is used to describe the act of systematically

removing parts of decision trees. When used, regression or classification accuracy is

decreased intentionally and traded for simplicity and better generalization. The concept

of removing branches has also been transfered in (tree-based) GP. Several pruning

methods for GP have been proposed over the years (e.g., [18] [14] [40]). In the context

of GP, pruning is used for avoiding overfitting and as a bloat control method.

An exhaustive pruning technique is described in [57]. The method is based on the idea

of systematically trying all pruning possibilities such as to maximize model complexity

deterioration (i.e. reduction in size) while at the same time minimizing the deterioration

coefficient (i.e. loss in accuracy). While the method has the advantage of ensuring

the best possible pruning decision, it also has the main downside of being extremely

computationally intensive.

Description

For this thesis, in order to evaluate the opportunity of using a pruning stage, we im-

plemented a fairly simple pruning idea called iterated tournament pruning (ITP). The

strategy is described in Algorithm 7.2. It is based on a couple of consecutive pruning

tournaments. In each tournament we create several pruning candidates of the syntax-

tree model we wish to prune in that tournament (the pruning base model). A pruning

candidate for a model is created through a very simple process (Line 6) that randomly

selects a subtree from the given model an replaces it with the mean value obtained by

evaluating that subtree over all the records in the training set. The size of the excised

subtree is limited to at most MaxPruning% with regards to the prunning base model.

At the end of each tournament, we select as the prunning base for the next tournament,

the prunned model with the highest accuracy (minimum MSE).

As we do not apply pruning on all individuals in the population or at every generation,

the effectiveness of the pruning method is also determined by the pruning criterion (i.e.

when and what models we choose to prune).

When considering all the three modeling scenarios, initial tests revealed that the method

is not very stable with regards to all the parameters it supports. But, as a rule of the

thumb, after initial testing, we can say that:

Reducing Solution Size in HeuristicLab GP 75

Algorithm 7.2 The iterated tournament pruning module (ITP module)

1: BestMSE = ∞
2: PrunSolution = Φ
3: PrunBase = OriginalModel
4: for i = 0 to IterationsCount do
5: for j = 0 to TournamentSize do
6: PrunCandidate = StochasticPrune(PrunBase, MaxPruning)
7: PrunMSE = ComputeMSE(PrunCandidate)
8: if PrunMSE < BestMSE then
9: PrunSolution = PrunCandidate

10: BestPrunMSE = PrunMSE
11: end if
12: end for
13: PrunBase = PrunSolution
14: end for
15: return PrunSolution

• The MaxPruning and IterationsCount parameters should be set such as to

generally avoid the possibility of completely reducing a model to a single node.

• The TournamentSize should have a value > 50

• Better solution accuracy is obtained if pruning is not applied in the initial genera-

tions (e.g. the first 5 generations when using offspring selection) and then applied

every two or three generations.

• Better solution accuracy is obtained if pruning is not performed on all individuals

in the population. When ordering the population according to accuracy, pruning

yielded best results when applied only to the individuals that were not among

the best 10-15% (i.e. PruningStartPercentile = 10−15%) nor among the worst

20-40% (i.e. PruningEndPercentile = 60− 80%).

• Because in HeuristicLab GP point mutation is the only method for the

parametrization of constants and each pruning operation produces at least

IterationsCount new constants, an increased mutation rate of 25-50% helps in

improving solution accuracy. This is also possible because, by design, the offspring

selection strategy automatically rejects mutations that are not beneficial.

Performance

In order to test the pruning strategy we modified the InitialHL-GP configuration such

as to also include the pruning module. Using the new configuration (ITP-HL-GP) we

Reducing Solution Size in HeuristicLab GP 76

made a series of tests in order to discover what parameter settings are more suitable

for the A6 blast furnace scenario. The best found parameter configuration is presented

in Table 7.5.

The basic statistics regarding ITP-HL-GP solution performance are listed in Table 7.6.

The comparative accuracy kernel density estimation plot is presented in Figure 7.7

whilst the comparative size kernel density estimation plot is presented in Figure 7.8.

Figure 7.7: Comparative kernel density estimation of solution accuracy for ITP-HL-GP
and InitialHL-GP - A6 scenario

With regards to solution accuracy, the central tendencies of the ITP-HL-GP process

are better (smaller MSE) then the ones of InitialHL-GP process (Table 6.3) for the full

data sets. This difference is also statistically significant one-tailed (p-value=<0.0013),

two-tailed (p-value=<0.0027). Interestingly, with regards to the top accuracy subsets,

the situation is reversed as the central tendencies of the ITP-HL-GP process are slightly

better than the ones of the Initial-GP process.

Pruning parameter Value

IterationsCount 3

TournamentSize 100

MaxPruning 30%

PruningStartPercentile 10%

PruningEndPercentile 75%

MutationRate 50%

Table 7.5: ITP-HL-GP best found parameter settings - A6 scenario

Reducing Solution Size in HeuristicLab GP 77

Full data set Acc. subset

Perf. criterium µ σ µ1/2 µ σ µ1/2

Solution test MSE 1.228 0.925 1.065 0.962 0.035 0.970

Solution size 39.34 18.65 35.00 42.16 18.43 38.00

Table 7.6: ITP-HL-GP configuration performance - A6 scenario

Figure 7.8: Comparative kernel density estimation of solution size for ITP-HL-GP and
InitialHL-GP - A6 scenario

With regards to solution size, the central tendencies of the ITP-HL-GP process are

considerably smaller then the ones of the InitialHL-GP process (Table 6.4) both for

the full data sets and for the top accuracy subsets. The difference is also statistically

significant with regards to the full solution data sets (one-tailed p-value< 0.0001).

With regards to the empirical solution performance quantifiers described in Section

6.2.4, ITP-HL-GP was able to produce 2 high accuracy solutions of which one was also

small-sized.

7.2.4 Discussion

As a general observation both dynamic depth limiting and pruning have proven to be

effective bloat control methods (from a result orientated perspective) as they enabled

the HeuristicLab GP process to generally find more parsimonious solutions.

While the usage of dynamic depth limiting does not seem to have a great impact on

the overall accuracy of the found solution, the usage of pruning determines a very

interesting effect with regards to this performance criterion:

Reducing Solution Size in HeuristicLab GP 78

• Generally (i.e. full solution data sets) the method determines the GP process to

create solutions that are tightly grouped together (i.e. small value of σ) around a

fairly good value (when considering the general performance of ANN, SVM and

GP regression for the A6 scenario - Table 6.2).

• Specifically (i.e. top accuracy subsets and empirical performance quantifiers) the

method seems to somehow prevent the GP process from finding highly accurate

solutions.

Even in the “lightweight” form that we presented in Section 7.2.3, pruning is a very

computational intensive task and as such coupling the method with a static depth limit

(Section 7.2.1) with a high enough value is very beneficial from a runtime point of view

whilst having no negative impact on solution size or accuracy.

7.3 The Resulting HeuristicLab Bloat Control System

Although the improvements in solution size obtained with both dynamic depth limiting

and pruning were quite satisfactory, we decided to test if we could somehow improve

on these results by integrating both methods inside a single bloat control system.

Description

From the descriptions provided in the Section 7.2, one can observe that dynamic depth

limiting and pruning have two complementary ways of fighting bloat. Whilst the former

tries to prevent the creation and propagation of bloat, the latter directly attempts to

remove superfluous code from the models. As such, trying to combine both methods

in a single integrated solution aimed at combating bloating, seemed a very natural

approach.

Thus, we have modified the InitialHL-GP configuration such as to include both the

DDL module (see Algorithm 7.1) and the ITP module (see Algorithm 7.2). The static

depth limit was also kept (mainly for reasons related to algorithm speed). We have

named the resulting configuration BCS-HL-GP.

In our initial test, for the two bloat control methods, we decided to use the same

parameter settings from the stand-alone configurations. To our surprise, this approach

was quite successful.

Reducing Solution Size in HeuristicLab GP 79

Performance

The basic statistics regarding BCS-HL-GP solution performance for all the considered

modeling scenarios are listed in Table 7.7 (accuracy) and Table 7.8 (Size). The com-

parative accuracy kernel density estimation plots are presented in Figure 7.9 whilst the

comparative size kernel density estimation plots are presented in Figure 7.10.

Solution MSE on test set

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Blast furnace A5 1.062 0.118 1.065 0.960 0.031 0.960

Blast furnace A6 1.339 0.470 1.210 0.915 0.032 0.900

EvoComp problem 0.057 0.043 0.048 0.044 0.001 0.045

Table 7.7: Statistical information regarding the solution accuracy of BCS-HL-GP

Solution size

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Blast furnace A5 28.42 12.31 27.00 25.64 11.89 22.00

Blast furnace A6 29.17 11.18 28.00 26.36 10.21 23.00

EvoComp problem 18.16 6.81 18.00 21.32 9.44 18.00

Table 7.8: Statistical information regarding the solution size of BCS-HL-GP

With regards to solution accuracy, the central tendencies of the BCS-HL-GP process

are slightly better (smaller MSE) then the ones of InitialHL-GP process both for the

full data sets and the top accuracy subsets in all the considered scenarios. However,

the Mann-Whitney-Wilcoxon test firmly rejected the hypothesis that any of these dif-

ferences are statistically significant for the A6 and EvoComp scenarios (one-tailed p-

value>0.2). The test confirmed that in the case of the A5 scenario the observed differ-

ence in central tendencies is marginally significant with a one-tailed p-value of 0.0409.

With regards to solution size, the central tendencies of the BCS-HL-GP process are

considerably smaller then the ones of the InitialHL-GP process (Table 6.4) both for the

full data sets and the top accuracy subsets in all the considered scenarios. In all three

cases, the difference is also statistically significant with regards to the full solution data

sets (one-tailed p-value< 0.0001).

Reducing Solution Size in HeuristicLab GP 80

Interestingly, when considering the A6 scenario, with regards to solution size, the central

tendencies of the BCS-HL-GP configuration are also smaller then the central tendencies

of both the DDL-HL-GP configuration and the ITP-HL-GP configuration. The differ-

ence with regards to DDL-HL-GP is statistically significant with a one-tailed p-value of

0.0183 whilst the difference with regards to ITP-HL-GP is statistically significant with

a one-tailed p-value smaller then 0.0001.

Furthermore, also related to the A6 scenario, when considering the empirical solution

performance quantifiers, the BCS-HL-GP configuration was able to produce 13 high

accuracy solutions of which no fewer than 11 also have a small size.

Indicator µ σ

SolGen 13.24 2.12

MinModSize 11.12 4.80

AvgModSize 32.94 9.36

AvgSolSize 26.36 10.21

Table 7.9: BCS-HL-GP population dynamics indicators for the top accuracy subset of
the A6 modeling scenario

For the A6 modeling scenario, the mean population dynamics indicators (see Section

6.2.4) for the top accuracy solution subset of the BCS-HL-GP configuration are pre-

sented in Table 7.9 together with the average solution size measure. When comparing

these mean values with the ones reported for the InitialHL-GP configuration (Table

6.6) we observe that:

• The BCS-HL-GP configuration converges faster towards the best validation des-

ignated solution.

• The mean values of the MinModSize and AvgModSize indicators for BCS-HL-GP

are twice as small as the ones for BCS-HL-GP.

• The average solution size for the BCS-HL-GP configuration is also twice as small.

• The σ values for all the presented indicators are significantly smaller in the case

of the BCS-HL-GP configuration (i.e. the configuration is more robust).

These observations provide further empirical evidence that the proposed bloat control

system is very efficient and enables the enhanced HeuristicLab GP process to find high

quality parsimonious solutions.

Reducing Solution Size in HeuristicLab GP 81

Discussion

The results obtained after fitting the InitialHL-GP process with a bloat control system

based on dynamic depth limiting and iterated stochastic pruning demonstrate the suc-

cess of this approach with regards to the overall goal of this thesis: improving overall

GP solution parsimony without impacting overall GP solution accuracy.

When considering the three test modeling scenarios presented in Section 4.1 and the

results obtained by the classical regression methods and the InitialHL-GP process (Ta-

ble 6.2) we can state that the presented bloat control system enables the GP process

to produce very competitive, highly interpretable, regression models:

• For the A5 scenario, BCS-HL-GP found a solution of size 28 with a MSE on the

test set of 0.88.

• For the A6 scenario, BCS-HL-GP found a solution of size 18 with a MSE on the

test set of 0.86.

• For the EvoComp scenario, BCS-HL-GP found a solution of size 12 with a MSE

on the test set of 0.039.

Without using any form of parameter tuning, the simple combination of dynamic depth

limiting and pruning was able to significantly outperform the results of both bloat

control methods considered separately. This is a very important observation as it

allows for future performance improvement, whilst at the same providing strong proof

that the approach of simultaneously trying to combat bloat from two complementary

perspectives (prevention thorough DDL and active removal thorough ITP) is quite

successful.

Reducing Solution Size in HeuristicLab GP 82

Figure 7.9: Comparative kernel density estimation of solution accuracy for BCS-HL-GP
and InitialHL-GP - all test scenarios

Reducing Solution Size in HeuristicLab GP 83

Figure 7.10: Comparative kernel density estimation of solution size for BCS-HL-GP
and InitialHL-GP - all test scenarios

Conclusion 84

Chapter 8

Conclusion

8.1 Achievements

The main aim of our work was to investigate the possibility of reducing the size of the

symbolic regression solutions produced by the enhanced genetic programming (GP)

process implemented in HeuristicLab (an optimization framework developed by the

Heuristic and Evolutionary Algorithms Laboratory (HEAL) of the Upper Austria Uni-

versity of Applied Sciences).

Before setting out to achieve our main goal, we first had to define a suitable methodol-

ogy (Section 6.1.3) that would enable us to make an objective comparison between the

results produced by different GP configurations. Thus, throughout our work, when-

ever comparing between GP configurations, we rely on average tendencies related to

full solution data sets (100 solutions/configuration) and top accuracy subsets (25 solu-

tions/configuration), on significance testing (the Mann-Whitney-Wilcoxon test) and on

empirical solution performance quantifiers (Section 6.2.4).

One of the main enhancements the HeuristicLab GP process uses is the offspring selec-

tion strategy [2]. Although this enhancement is of great importance, as it enables the

GP process to generally produce solutions of much higher quality than a standard GP

process, the tests we have performed revealed that the offspring selection strategy also

seems to determine a slight but statistically significant increase in average solution size

(in comparison to a standard GP approach).

After initially having presented the influence of the code bloating phenomenon on the

size of the solution produced by the HeuristicLab GP process, we continued by re-

viewing various bloat control methods and, in the end, we adapted, implemented and

independently tested two different bloat control concepts that, by design, were very easy

Conclusion 85

to integrate with the HeuristicLab GP process in general and the offspring selection

strategy in particular. Both techniques managed to determine a significant reduction

in GP solution size.

The two bloat control methods we have considered propose different approaches in

combating the phenomenon: prevention (dynamic depth limiting - DDL) and active

removal (iterated tournament pruning - ITP). The natural observation that these two

paradigms, though different, are also highly complementary, determined us to incor-

porate both in a single bloat control system. The resulting bloat control solution per-

formed significantly better than the individual bloat control approaches even without

any specific parameter tuning.

The fact that the HeuristicLab bloat control system is very robust and successful with

regards to the goal that we initially set out to achieve is confirmed by the following

observations:

• it helped reduce the mean size of GP symbolic regression models by ≈ 40% on

all three test scenarios;

• it helped reduce the standard deviation with regards to solution size by ≈ 40%

on the A5 scenario and by ≈ 60% on the A6 and EvoComp scenarios

• it exhibited no negative impact on the solution accuracy distributions

8.2 Future Perspectives

In spite of the very good results obtained by the final bloat control system, we consider

that, at the current stage of development, its main function is that of a proof of concept

with regards to the successful combination of two bloat combating methods that are

based on different paradigms.

Further development of the bloat control system can be firstly achieved by indepen-

dently improving on its two major parts: the DDL module and the ITP module. In

the form presented in this thesis, both modules use certain parameters for which we

have empirically determined values that perform well for our studied modeling scenar-

ios. While, especially in the case of DDL, the proposed values exhibited a remarkable

stability, the need for a more context independent parametrization schema is very obvi-

ous. With regards to the ITP strategy we have proposed, we believe that a significant

improvement in terms of performance and runtime can be achieved by dynamically

Conclusion 86

adjusting (some of) the used parameters during the run. An idea is to base these

adjustments on specialized GP information regarding genetic propagation, population

diversity as well as on population dynamics indicators.

Secondly, an overall improvement of the bloat control system may come from trying

to better understand and improve the interaction between the DDL and ITP mod-

ules. Also, the opportunity of integrating other bloat control methods (like anti-bloat

selection and anti-bloat genetic operators) should be studied in more detail.

Last but not least, we think that the general design of the bloat control system based

on DDL and ITP will enable it to perform quite well in other GP application domains

as well, and a study in this direction should be performed in the near future.

Bibliography 87

Bibliography

[1] Affenzeller, M. Personal communication, February 2010.

[2] Affenzeller, M., and Wagner, S. Offspring selection: A new self-adaptive

selection scheme for genetic algorithms. In Adaptive and Natural Computing Algo-

rithms (2005), B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C.

Steele, Eds., Springer, pp. 218–221.

[3] Altenberg, L. The evolution of evolvability in genetic programming. In Advances

in Genetic Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 3, pp. 47–74.

[4] Angeline, P. J. Genetic programming and emergent intelligence. In Advances in

Genetic Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 4, pp. 75–98.

[5] Banzhaf, W., and Langdon, W. B. Some considerations on the reason for

bloat. Genetic Programming and Evolvable Machines 3, 1 (Mar. 2002), 81–91.

[6] Bojarczuk, C. C., Lopes, H. S., and Freitas, A. A. Genetic programming

for knowledge discovery in chest-pain diagnosis. IEEE Engineering in Medicine

and Biology Magazine 19, 4 (July-Aug. 2000), 38–44.

[7] Buchberger, B. Personal communication, October 2009.

[8] Chang, C.-C., and Lin, C.-J. LIBSVM: a library for support vector machines,

2001. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[9] Chen, S.-H., and Liao, C.-C. Agent-based computational modeling of the stock

price-volume relation. Information Sciences 170, 1 (18 Feb. 2005), 75–100.

[10] Cramer, N. L. A representation for the adaptive generation of simple sequential

programs. In Proceedings of an International Conference on Genetic Algorithms

and the Applications (Carnegie-Mellon University, Pittsburgh, PA, USA, 24-26

July 1985), J. J. Grefenstette, Ed., pp. 183–187.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 88

[11] Crawford-Marks, R., and Spector, L. Size control via size fair genetic oper-

ators in the PushGP genetic programming system. In GECCO 2002: Proceedings

of the Genetic and Evolutionary Computation Conference (New York, 9-13 July

2002), W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,

K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,

A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds., Morgan Kaufmann

Publishers, pp. 733–739.

[12] Darwin, C. The Origin of Species By Means of Natural Selection, or the Preser-

vation of Favoured Races in the Struggle for Life. Murray, London, 1859.

[13] Dignum, S., and Poli, R. Crossover, sampling, bloat and the harmful ef-

fects of size limits. In Proceedings of the 11th European Conference on Genetic

Programming, EuroGP 2008 (Naples, 26-28 Mar. 2008), M. O’Neill, L. Van-

neschi, S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa, and

E. Tarantino, Eds., vol. 4971 of Lecture Notes in Computer Science, Springer,

pp. 158–169.

[14] Eggermont, J., Kok, J. N., and Kosters, W. A. Detecting and pruning

introns for faster decision tree evolution. In Parallel Problem Solving from Nature

- PPSN VIII (Birmingham, UK, 18-22 Sept. 2004), X. Yao, E. Burke, J. A. Lozano,

J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. T. A. Kabán, and

H.-P. Schwefel, Eds., vol. 3242 of LNCS, Springer-Verlag, pp. 1071–1080.

[15] Eiben, A. E., and Smith, J. E. Introduction to Evolutionary Computing.

Springer, 2003.

[16] Ekart, A., and Nemeth, S. Z. Selection based on the pareto nondomination cri-

terion for controlling code growth in genetic programming. Genetic Programming

and Evolvable Machines 2, 1 (Mar. 2001), 61–73.

[17] EvoStar, 2010. http://www.evostar.org/.

[18] Folino, G., Pizzuti, C., and Spezzano, G. Improving cooperative GP en-

semble with clustering and pruning for pattern classification. In GECCO 2006:

Proceedings of the 8th annual conference on Genetic and evolutionary computation

(Seattle, Washington, USA, 8-12 July 2006), M. Keijzer, M. Cattolico, D. Arnold,

V. Babovic, C. Blum, P. Bosman, M. V. Butz, C. Coello Coello, D. Dasgupta,

S. G. Ficici, J. Foster, A. Hernandez-Aguirre, G. Hornby, H. Lipson, P. McMinn,

J. Moore, G. Raidl, F. Rothlauf, C. Ryan, and D. Thierens, Eds., vol. 1, ACM

Press, pp. 791–798.

http://www.evostar.org/

Bibliography 89

[19] Forrest, S., Nguyen, T., Weimer, W., and Le Goues, C. A genetic pro-

gramming approach to automated software repair. In GECCO ’09: Proceedings of

the 11th Annual conference on Genetic and evolutionary computation (Montreal,

8-12 July 2009), G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle,

M. Birattari, C. B. Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman,

J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van

Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O’Neill, M. Di Penta, B. Doerr,

T. Jansen, R. Poli, and E. Alba, Eds., ACM, pp. 947–954. best paper.

[20] Forsyth, R. BEAGLE A Darwinian approach to pattern recognition. Kybernetes

10, 3 (1981), 159–166.

[21] Fukunaga, A., and Stechert, A. Evolving nonlinear predictive models for

lossless image compression with genetic programming. In Genetic Programming

1998: Proceedings of the Third Annual Conference (University of Wisconsin, Madi-

son, Wisconsin, USA, 22-25 July 1998), J. R. Koza, W. Banzhaf, K. Chellapilla,

K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and

R. Riolo, Eds., Morgan Kaufmann, pp. 95–102.

[22] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H. The weka data mining software: An update. SIGKDD Explorations

Volume 11, 1 (2009), 10–18.

[23] Howard, D., Roberts, S. C., and Ryan, C. Pragmatic genetic programming

strategy for the problem of vehicle detection in airborne reconnaissance. Pattern

Recognition Letters 27, 11 (Aug. 2006), 1275–1288. Evolutionary Computer Vision

and Image Understanding.

[24] Kaboudan, M. Genetic programming forecasting of real estate prices of residen-

tial single family homes in southern california. Journal of Real Estate Literature

16, 2 (2008), 219–239.

[25] Keijzer, M. Scientific Discovery using Genetic Programming. PhD thesis, Danish

Technical University, Lyngby, Denmark, Mar. 2002.

[26] Keijzer, M. Improving symbolic regression with interval arithmetic and linear

scaling. In Genetic Programming, Proceedings of EuroGP’2003 (Essex, 14-16 Apr.

2003), C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds.,

vol. 2610 of LNCS, Springer-Verlag, pp. 70–82.

Bibliography 90

[27] Keijzer, M. Scaled symbolic regression. Genetic Programming and Evolvable

Machines 5, 3 (Sept. 2004), 259–269.

[28] Kinnear, Jr., K. E. Evolving a sort: Lessons in genetic programming. In Pro-

ceedings of the 1993 International Conference on Neural Networks (San Francisco,

USA, 28 Mar.-1 Apr. 1993), vol. 2, IEEE Press, pp. 881–888.

[29] Koza, J. R. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[30] Koza, J. R., Andre, D., Bennett III, F. H., and Keane, M. Genetic

Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman,

Apr. 1999.

[31] Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J.,

and Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine

Intelligence. Kluwer Academic Publishers, 2003.

[32] Kronberger, G., C.Feilmayr, Kommenda, M., Winkler, S.,

M.Affenzeller, and Burgler, T. System identification of blast fur-

nace processes with genetic programming. In Logistics and Industrial Informatics

- LINDI (2009), IEEE Press, pp. 1–6.

[33] Langdon, W. B. The evolution of size in variable length representations. In

1998 IEEE International Conference on Evolutionary Computation (Anchorage,

Alaska, USA, 5-9 May 1998), IEEE Press, pp. 633–638.

[34] Langdon, W. B., and Poli, R. Fitness causes bloat. In Soft Computing in En-

gineering Design and Manufacturing (23-27 June 1997), P. K. Chawdhry, R. Roy,

and R. K. Pant, Eds., Springer-Verlag London, pp. 13–22.

[35] Langdon, W. B., and Poli, R. Foundations of Genetic Programming. Springer-

Verlag, 2002.

[36] Langdon, W. B., and Poli, R. Evolutionary solo pong players. In Proceedings

of the 2005 IEEE Congress on Evolutionary Computation (Edinburgh, UK, 2-5

Sept. 2005), D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca,

G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies,

J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G. Volkert,

D. Ashlock, and M. Schoenauer, Eds., vol. 3, IEEE Press, pp. 2621–2628.

Bibliography 91

[37] Luke, S. Genetic programming produced competitive soccer softbot teams for

robocup97. In Genetic Programming 1998: Proceedings of the Third Annual Con-

ference (University of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998),

J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.

Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds., Morgan Kaufmann, pp. 214–

222.

[38] Luke, S. Two fast tree-creation algorithms for genetic programming. IEEE Trans-

actions on Evolutionary Computation 4, 3 (Sept. 2000), 274–283.

[39] Luke, S. Modification point depth and genome growth in genetic programming.

Evolutionary Computation 11, 1 (Spring 2003), 67–106.

[40] Maeda, Y., and Kawaguchi, S. Redundant node pruning and adaptive search

method for genetic programming. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2000) (Las Vegas, Nevada, USA, 10-12 July

2000), D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G.

Beyer, Eds., Morgan Kaufmann, p. 535.

[41] McPhee, N. F., Jarvis, A., and Crane, E. F. On the strength of size lim-

its in linear genetic programming. In Genetic and Evolutionary Computation –

GECCO-2004, Part II (Seattle, WA, USA, 26-30 June 2004), K. Deb, R. Poli,

W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Fos-

ter, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens,

and A. Tyrrell, Eds., vol. 3103 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 593–604.

[42] McPhee, N. F., and Miller, J. D. Accurate replication in genetic program-

ming. In Genetic Algorithms: Proceedings of the Sixth International Conference

(ICGA95) (Pittsburgh, PA, USA, 15-19 July 1995), L. Eshelman, Ed., Morgan

Kaufmann, pp. 303–309.

[43] Nordin, P., and Banzhaf, W. Complexity compression and evolution. In

Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95)

(Pittsburgh, PA, USA, 15-19 July 1995), L. Eshelman, Ed., Morgan Kaufmann,

pp. 310–317.

[44] Nordin, P., and Banzhaf, W. Programmatic compression of images and sound.

In Genetic Programming 1996: Proceedings of the First Annual Conference (Stan-

ford University, CA, USA, 28–31 July 1996), J. R. Koza, D. E. Goldberg, D. B.

Fogel, and R. L. Riolo, Eds., MIT Press, pp. 345–350.

Bibliography 92

[45] Poli, R., Langdon, W. B., and Dignum, S. On the limiting distribution

of program sizes in tree-based genetic programming. In Proceedings of the 10th

European Conference on Genetic Programming (Valencia, Spain, 11 - 13 Apr.

2007), M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar,

Eds., vol. 4445 of Lecture Notes in Computer Science, Springer, pp. 193–204.

[46] Poli, R., Langdon, W. B., and McPhee, N. F. A field guide to genetic pro-

gramming. Published via http://lulu.com and freely available at http://www.gp-

field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[47] Ritchie, M. D., White, B. C., Parker, J. S., Hahn, L. W., and Moore,

J. H. Optimization of neural network architecture using genetic programming

improves detection and modeling of gene-gene interactions in studies of human

diseases. BMC Bioinformatics 4, 28 (2003).

[48] Silva, S., and Costa, E. Dynamic limits for bloat control in genetic program-

ming and a review of past and current bloat theories. Genetic Programming and

Evolvable Machines 10, 2 (2009), 141–179.

[49] Soule, T. Code Growth in Genetic Programming. PhD thesis, University of

Idaho, Moscow, Idaho, USA, 15 May 1998.

[50] Soule, T., and Foster, J. A. Code size and depth flows in genetic program-

ming. In Genetic Programming 1997: Proceedings of the Second Annual Conference

(Stanford University, CA, USA, 13-16 July 1997), J. R. Koza, K. Deb, M. Dorigo,

D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., Morgan Kaufmann, pp. 313–

320.

[51] Soule, T., and Foster, J. A. Removal bias: a new cause of code growth in

tree based evolutionary programming. In 1998 IEEE International Conference on

Evolutionary Computation (Anchorage, Alaska, USA, 5-9 May 1998), IEEE Press,

pp. 781–186.

[52] Soule, T., and Heckendorn, R. B. An analysis of the causes of code growth in

genetic programming. Genetic Programming and Evolvable Machines 3, 3 (Sept.

2002), 283–309.

[53] Spector, L. Automatic Quantum Computer Programming: A Genetic Program-

ming Approach, vol. 7 of Genetic Programming. Kluwer Academic Publishers,

Boston/Dordrecht/New York/London, June 2004.

Bibliography 93

[54] Vapnik, V. N. The nature of statistical learning theory. Springer-Verlag New

York Inc., New York, NY, USA, 1995.

[55] Wagner, S., and Affenzeller, M. Heuristiclab: A generic and extensible

optimization environment. In Adaptive and Natural Computing Algorithms (2005),

B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C. Steele, Eds.,

Springer, pp. 538–541.

[56] Wagner, S., and Affenzeller, M. SexualGA: Gender-specific selection for

genetic algorithms. In Proceedings of the 9th World Multi-Conference on Sys-

temics, Cybernetics and Informatics (WMSCI) (2005), N. Callaos, W. Lesso, and

E. Hansen, Eds., vol. 4, International Institute of Informatics and Systemics,

pp. 76–81.

[57] Winkler, S. M. Evolutionary System Identification. PhD thesis, Johannes-

Kepler-Universitat, Linz, Austria, 2008.

[58] Winkler, S. M., Affenzeller, M., and Wagner, S. On the reliability of

nonlinear modeling using enhanced genetic programming techniques. In Topics on

Chaotic Systems - Selected Papers from CHAOS 2008 International Conference

(2009), C. S. C. Skiadas, I. Dimotikalis, Ed., World Scientific Publishing, pp. 398–

405.

[59] Winkler, S. M., Affenzeller, M., and Wagner, S. Using enhanced genetic

programming techniques for evolving classifiers in the context of medical diagnosis.

Genetic Programming and Evolvable Machines 10, 2 (2009), 111–140.

[60] Xie, H., Zhang, M., and Andreae, P. Genetic programming for auto-

matic stress detection in spoken english. In Applications of Evolutionary Com-

puting, EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoIn-

teraction, EvoMUSART, EvoSTOC (Budapest, 10-12 Apr. 2006), F. Rothlauf,

J. Branke, S. Cagnoni, E. Costa, C. Cotta, R. Drechsler, E. Lutton, P. Machado,

J. H. Moore, J. Romero, G. D. Smith, G. Squillero, and H. Takagi, Eds., vol. 3907

of LNCS, Springer Verlag, pp. 460–471.

[61] Zhang, B.-T., and Mühlenbein, H. Balancing accuracy and parsimony in

genetic programming. Evolutionary Computation 3, 1 (1995), 17–38.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt

bzw. die wörtlich oder inhaltlich entnommenen Stellen deutlich als solche kenntlich

gemacht habe.

Hagenberg, Juli 2010 Alexandru-Ciprian Zăvoianu

	1 Introduction
	1.1 Background
	1.2 Goal and Approach
	1.3 Original Contribution
	1.4 Outline of the Thesis

	2 Genetic programming
	2.1 What is Genetic Programming?
	2.2 Historical Background
	2.3 The GP Process
	2.3.1 Representation
	2.3.2 Evaluation
	2.3.3 Initialization
	2.3.4 Selection
	2.3.5 Genetic Operators: Crossover and Mutation
	2.3.6 Termination and Solution Designation

	2.4 Applications of Genetic Programming

	3 Symbolic Regression and Data Based Modeling
	3.1 Data Based Modeling in Scientific Discovery
	3.1.1 Model Performance Criteria
	3.1.2 Model Interpretability in GP

	3.2 Regression and Symbolic Regression
	3.2.1 Formalization and Standard Solving Methods
	3.2.2 Symbolic Regression Using Genetic Programming

	3.3 Obstacles in Data Based Modeling

	4 Modeling Scenarios and Testing Environment
	4.1 Modeling Scenarios
	4.1.1 The Blast Furnace Problem
	4.1.2 The EvoCompetitions 2010 Symbolic Regression Problem

	4.2 Testing Environment
	4.2.1 The GP Process in HeuristicLab
	4.2.2 The WEKA Platform

	5 Bloat - The major problem in GP
	5.1 Bloat - Background
	5.2 Theoretical Aspects
	5.2.1 Bloat and Introns
	5.2.2 Five Theories of Bloat
	5.2.3 Discussion

	5.3 Classic Bloat Control Methods
	5.3.1 Size and Depth Limits
	5.3.2 Anti-bloat Genetic Operators
	5.3.3 Anti-bloat Selection

	5.4 Bloat and GP Solution Size - The Result Orientated Perspective
	5.4.1 Bloat - The Training Set Perspective
	5.4.2 Bloat - The Validation Set Perspective

	6 Methodology and Initial Test Results - The Performance Baseline
	6.1 Methodology
	6.1.1 Input Data Preparation
	6.1.2 Comparing GP with other regression methods
	6.1.3 Comparing two different GP configurations

	6.2 Initial Tests
	6.2.1 Weka Test Configurations
	6.2.2 HeuristicLab Test Configuration
	6.2.3 Performance Baseline
	6.2.4 Bloat - A Concrete Example

	7 Reducing Solution Size in HeuristicLab GP
	7.1 The Impact of the Offspring Selection Enhancement on Solution Size
	7.1.1 Offspring Selection Experiments
	7.1.2 Comparison with Standard GP
	7.1.3 The effect of parent selection pressure
	7.1.4 Discussion

	7.2 Possible Bloat Control Strategies for HeuristicLab
	7.2.1 Static Depth Limits
	7.2.2 Dynamic Depth Limits
	7.2.3 Pruning
	7.2.4 Discussion

	7.3 The Resulting HeuristicLab Bloat Control System

	8 Conclusion
	8.1 Achievements
	8.2 Future Perspectives

	Bibliography

