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Abstract

Over the past decade, specialized evolutionary algorithms have emerged as one of the best
methods for solving multi-objective optimization problems (MOOPs). These approaches
have been used to tackle complicated real-life optimization scenarios from various fields.
One of the characteristics of evolutionary algorithms is that a large number of evaluations
of the objective function need to be performed during their execution. This inherent re-
quirement is extremely problematic in the case of industrial optimization contexts where
evaluating objective performance and constraint satisfaction is very computationally inten-
sive (i.e., requiring several minutes or even hours).

We are particularly concerned with (and largely motivated by) the need to improve
optimization performance on computationally-intensive multi-objective optimization prob-
lems (CIMOOPs) from the field of electrical drive design. Such design problems are fairly
complicated as they arise from the need to simultaneously increase the efficiency, reduce
the costs and improve the fault tolerance and operating characteristics of new electrical
machines. Furthermore, (several) computationally-intensive finite element (FE) simulations
are usually required in order to evaluate the performance of a single design.

In this thesis we present the results of research that was aimed at improving the perfor-
mance of multi-objective evolutionary algorithms (MOEAs) when applied on CIMOOPs.
Initial focus falls on designing and applying on-the-fly surrogate modeling in order to
reduce the dependency of the MOEAs on FE simulations. By surrogate modeling we
understand the creation of fast-to-evaluate linear and non-linear regression models that
can accurately approximate FE results. Next, we investigate the best way of distributing
MOEA computations over a high-throughput computing environment, when considering a
master-slave architecture. Finally, we propose two new MOEAs (based on coevolution) that
are both highly competitive when compared to state-of-the-art approaches and quite robust
with regard to their own parameterization settings. We also present a newly synthesized
performance assessment methodology that can generally aid when wishing to test or fine
tune a particular MOEA over a large set of benchmark problems.

Several statistical analyses over benchmark MOOP results and empirical observations
of average performance on electrical drive design CIMOOPs confirm that the enhanced evo-
lutionary computation methods we propose are generally able (individually and especially
combined) to improve both the speed and the accuracy of multi-objective optimizations.
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Chapter 1

Introduction

1.1 Background

In the most general sense, an optimization (problem) is concerned with finding the best
option (with regard to given criteria) from a set of available alternatives. The generality
of this plain language definition is intended to emphasize the fact that an optimization
problem can be identified in a multitude of contexts and, at close inspection, in nearly all
life-related activities.

As over the centuries human societies gradually developed and became more complex, so
did the type of optimization problems they were confronted with. In order to find solutions to
these problems, ever more ingenious and successful optimization strategies were developed.
The first of these strategies were purely empirical (i.e., adapting “what seems to work” in
one context to a new one), but they evolved in time into (complex) analytical frameworks
that emerged from the works of ancient philosophers / mathematicians and are presently
found in a large range of scientific (sub)fields from mathematics and computer science.

Whenever the goal of the optimization is to find a solution that must “best” satisfy
not one but several (often conflicting) criteria, one is operating inside a multi-objective
optimization (MOO) context. Because of the rapidly increasing complexity of human
society, the occurrence (or better said identifiability) rate of multi-objective optimization
problems (MOOPs) and the importance of being able to solve them has known an ever
increasing trend in the last 70 years. In present times, people are confronted with MOOPs
(sometimes on a daily basis) in various activity fields ranging from the design of mobile
communication infrastructures to financial portfolio management and the development of
new pharmaceuticals.

Because of the increased complexity associated with MOOPs, over time, a lot of
strategies for solving them have been proposed. In the past 20 years, the evolutionary
algorithm (EA) paradigm has emerged as one of the most successful methods for tackling
complex MOOPs where the practitioners want to obtain global views of the (estimated)
solution space. In general, EAs are non-deterministic strategies that solve search and
optimization problems by applying concepts inspired from natural evolution. One of the
characteristics of EAs in general, and multi-objective evolutionary algorithms (MOEAs)
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in particular, is that a large number of evaluations of the objective function need to be
performed during their execution. This inherent requirement is extremely problematic
for a growing class of computationally intensive multi-objective optimization problems
(CIMOOP)s for which the process of evaluating objective performance and constraint
satisfaction is very time-intensive (i.e., requiring several minutes or even hours). Concretely,
in the present thesis, we are particularly concerned with CIMOOPs originating from the
field of electrical drive design. These optimal design problems are quite complicated as
they usually arise from the need to simultaneously reduce the costs, increase the efficiency
and improve various operating characteristic of new electrical machines. Furthermore,
computationally-intensive finite element simulations (FE simulations) must be used in
order to evaluate the performance of a given design.

1.2 Goal and Approach
The main goal of our presently reported research is to generally improve the con-
vergence speed and the final solution quality of evolutionary algorithms applied for
solving computationally-intensive multi-objective optimization problems.

In order to achieve this goal, we investigated and obtained very promising results
(i.e., MOEA-intended / suitable enhancements) along three distinct but complementary
research lines:

• Initial focus was directed towards the very intuitive idea of reducing the dependency
of the MOEAs on the computationally-intensive objective function evaluation process
by incorporating on-the-fly surrogate modeling techniques.

• Secondly, we tried to determine the best way of distributing MOEA computations
over a high-throughput computing environment, when considering a (basic) master-
slave paradigm and the particularities of the CIMOOP one wishes to solve.

• Thirdly, we experimented with coevolutionary-based enhancements in order to
obtain good MOEAs that are very robust with regard to their parameterizations (and
thus highly suitable as black-box solvers).

The choice of dividing our efforts in what many would consider non-overlapping
directions was largely motivated by practical considerations: throughout our collaboration
with the LCM we have encountered several electrical-drive design CIMOOPs that proved
extremely challenging when considering a single type of MOEA-intended enhancement.
Therefore, there was a strong desire to develop several methods that would enable us to
tackle such problematic cases from different angles.

2
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1.3 Outline of the Thesis
The rest of this manuscript is organized as follows:

• Chapter 2 starts by introducing the formal general description of a MOOP and presents
key concepts related to the structure of a MOOP solution. Focus then shifts to the
presentation of classical MOO methods – some of which are critical for understanding
more advanced solvers. The last part of this chapter is dedicated to evolutionary MOO
and to the presentation of some of its best-known exponents.

• Chapter 3 is divided in three main sections. The first one describes the artificial and
industrial MOOPs we refer to throughout this work. The second section is dedicated to
standard performance measures used for assessing solution quality in MOO contexts.
The third section is dedicated to a newly proposed MOEA performance evaluation
methodology.

• Chapter 4 describes a systematic strategy for efficiently hybridizing a standard MOEA
with on-the-fly surrogate models. This is the largest chapter of the thesis as it also
presents concepts from the field of machine learning / statistical learning algorithms
that are required in order to describe the (proposed) surrogate-based enhancements.

• Chapter 5 is dedicated to a combined quantitative and qualitative analysis aimed at
providing practitioners of MOEAs with a simple but effective method of deciding
which master-slave parallelization option is better given the particularities of the
concrete optimization process.

• Chapter 6 introduces two coevolutionary-based MOEAs that are empirically proven
to successfully integrate (in a single optimization run) the individual strategies of
different standard MOEAs.

• Chapter 7 presents a very brief but extremely important overview of how the concepts
form the previous three chapters can be easily combined in order to obtain powerful
hybrid MOEAs than can successfully tackle an extremely difficult electrical drive
design CIMOOP.

• Chapter 8 contains general conclusions, a summary of the obtained results and an
overview on future research lines.

1.4 Original Contribution
Apologizing in advance for referring to concepts not yet introduced, for the general interest
of the reader, we now summarize the novel parts of our research, most of which have already
been disseminated in scientific journals, conference proceedings and edited volumes:

• in Chapter 3, the racing-based methodology for easily assessing comparative MOEA
performance over large problem sets has been introduced in [1];
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• in Chapter 4, the systematic strategy for designing MLP-based global surrogate
models and for successful integrating them in a hybrid MOEA-based solver has been
initially proposed in [2] and described at length in [3];

• the ensemble-based approaches aimed at improving the overall time-wise efficiency of
the surrogate construction process (also described in Chapter 4) have been introduced
in [4];

• although seriously extended and improved, the main ideas pertinent to the comparison
between the generational and steady-state master-slave parallelization schemata from
Chapter 5 have been described in [5];

• the DECMO algorithm presented in Chapter 6 has been originally proposed in [6];

• the DECMO2 algorithm also described in Chapter 6 has been introduced in [1];

• the ideas and results from Chapter 7 and from Section 4.4.3 are completely new;
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“A human being should be able to change a diaper, plan an invasion, butcher a hog, conn
a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone,
comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze
a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die
gallantly. Specialization is for insects.”

Robert A. Heinlein

Chapter 2

Multi-Objective Optimization

2.1 Multi-Objective Optimization Problems

2.1.1 General Definition and Structure of Solutions
A general unconstrained MOOP can be formulated1 as:

minimize O(x) = [o1(x), . . . ,om(x)]
subject to x ∈ Dn, m≥ 2

(2.1)

where:

• all the m single-objective functions contained in O, oi : Dn→ R, i ∈ {1, . . . ,m}, need
to be minimized simultaneously;

• the n-dimensional domain Dn is called the variable (or decision) space of the MOOP;

• the m-dimensional codomain of O is Zm ⊆ Rm and is called the objective (or result)
space of the MOOP.

Furthermore, in nearly all cases, the feasible decision space of the MOOP is itself mul-
tidimensional (i.e., n > 1) meaning that x ∈ Dn is a (variable) vector ( multidimensional
point/n-tuple) and it has the form x = (x1,x2, . . . ,xn).

Throughout the remainder of this work we shall mark with n the dimension of the
feasible decision space of the MOOP and with m the dimension of the objective space. Also
we shall use a bold face and superscript notation for vectors (e.g., x∗,ya), subscripts for
their components (e.g., x∗1,x

∗
n,y

a
2) and all sets shall be marked with capitals2 (e.g., D).

Since the single objectives that need to be optimized [i.e., o1(x) . . .om(x) from (2.1)]
are generally conflicting (e.g., cost vs. quality, risk vs. return on investment), usually, there

1Like any optimization problem, a general MOOP can be formulated either as a minimization or a
maximization problem. In the present work we prefer the former approach.

2In order to maintain consistency with literature, in special cases we also use capitals for numeric
parameters.
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is no single vector in D able to simultaneously minimize all of them. If such an ideal
variable vector (not: xId) does exist, the MOOP is reduced to solving any of the contained
single-objective functions and no special multi-objective solving strategies are needed.

When a single vector cannot minimize all the single-objective functions, it is quite
intuitive that the solution of the MOOP comes in the form of a set of vectors (that would
contain at least the solutions of all the contained single-objective functions). In order to
formally define this solution set, we must first introduce the notions of Pareto dominance
and Pareto optimality.

When considering two variable vectors x,y ∈ Dn, vector x is said to Pareto-dominate
vector y (not: x� y) if and only if oi(x)≤ oi(y) for every i ∈ {1, . . . ,m} and o j(x)< o j(y)
for at least one j ∈ {1, . . . ,m}. This means that x is better than y with regard to at least
one objective and isn’t worse than y with regard to any objective. A vector x∗ ∈ Dn with
the property that there exists no y ∈ Dn such that y� x∗ is said to be Pareto-optimal with
regard to (2.1).

The set that reunites all the Pareto-optimal vectors is called the Pareto-optimal Set (not:
PS) and this set is the full /general solution of a MOOP. For many MOOPs, the PS is
unknown and/or infinite. Therefore, in most application domains, decision makers use the
Pareto non-dominated Set (not: PN) which contains an arbitrarily fixed number of vectors
that are able to provide a good approximation of the PS. Thus, finding high-quality PNs is
the goal of most modern methods aimed at solving MOOPs. For the rest of this work, for
any given MOOP, we shall use the term PN in order to refer to a potential solution set and
the term PS to refer to the true solution set.

The projection of an arbitrary PN on the objective space is called the Pareto Front (not:
PF). Like many other authors, we shall refer to the projection of the PS on the objective space
as the true Pareto Front (not: PFtrue) of the MOOP (please see Figure 2.1 for an example).
The components of any Pareto-front are themselves m-dimensional vectors (points) and in
order to distinguish these objective vectors from the n-dimensional variable vectors they are
connected to, we shall mark Pareto front members exclusively with p and some associated
superscripts. For example, O(xa) = pa, O(y∗) = p∗, etc. N.B. The Pareto dominance
and Pareto optimality relations translate directly from variable vectors to their associated
objective vectors and vice versa: xa � xb ⇐⇒ pa � pb, given O(xa) = pa,O(xb) = pb.

When considering the PFtrue of a problem and all its members, the imaginary point in
objective space that would contain the worst (highest in our case) existing values for each
of the m objective functions is called the nadir objective vector (not: pnad). As shown in
Figure 2.1, this anti-optimal point can be considered the opposite of the objective space
projection of the ideal variable vector (not: pId = O(xId)). Both these extreme – and usually
artificially constructed – points are used in the definition of several solving strategies and
performance metrics.

It is very important to note that in most real-life applications (like the ones that motivate
our research), solving a MOOP can be divided into two stages:

1. Search - the goal is to find variable vectors that are able to optimize (minimize) the
contained single-objective functions.

2. Decision making / Articulation of preferences - the goal is to determine those
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Figure 2.1: A diagram of the most important multi-objective optimization concepts outlined
so far. N.B. The presented example is quite trivial as both variable and objective spaces are
only bi-dimensional.

variable vectors that incorporate the best trade-offs in the decision maker (DM)’s
opinion.

The focus of this thesis is on the analysis and design of methods (algorithms) that are
generally able to efficiently solve the search stage by finding high-quality PNs. The
motivation for this is that once a clear and broad picture of all the existing trade-offs in the
MOOP is available (i.e., a good PF has been discovered), the DM can better tune the more
subjective multi-criteria decision making (MCDM) part in order to select a very limited
number of Pareto non-dominated solutions (sometimes just one) that will be constructed /
implemented / applied in the real-life process modeled by the MOOP (s)he wishes to solve.
This view regarding the interplay between the search and MCDM stages is by no mean
general within the MOO community and Section 2.2.2 contains a more detailed discussion
on the subject.

2.1.2 Constraints
When considering the general MOOP definition from (2.1), there are at least three types of
constraints that can be enforced:

• result-related constraints;

• variable-related constraints;

• informal constraints.

For most MOOPs, constraints must be imposed in the result space of (2.1) in order to
make the problems meaningful: e.g., we are only interested in the cost of the product if the
associated quality is above an agreed threshold. Usually, these result-related constraints
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pertain to the given individual objectives of the MOOP (i.e., they are internal constraints).
Without loss of generality, such an internal constraint can be formulated as:

cint : Dn → R
cint(x)≤ 0, x ∈ Dn,

(2.2)

with the assumption that cint is a composition of at least one of the single-objective functions
from (2.1).

In many real-life MOOPs, constraints are also defined around independently specified
auxiliary functions (results) that we wish to monitor but not include in the optimization:
e.g., the carbon footprint of constructing the product should be smaller than an agreed
threshold, although the carbon footprint is not an explicit goal of the optimization. The
formulation of such an (external) constraint is identical to that of internal constraints, minus
the composition requirement:

cext : Dn → R
cext(x)≤ 0, x ∈ Dn,

(2.3)

Therefore, most authors do not differentiate between the two types of result-related con-
straints.

Obviously, when result-related constraints are provided, a given variable vector xc ∈ Dn

will be included in the PN if and only if it satisfies all the constraints. Otherwise, the vector
will be labeled as an invalid vector.

As the name suggests, the variable-related constraints that can be imposed on (2.1)
concern the way the feasible decision space of the MOOP (i.e., Dn) is defined. For example,
Miettinen [7] refers to Dn as the “feasible region” that is a subset obtained by imposing
certain constraints on the “decision variable space” of the MOOP that is always Rn. This
point of view is in accordance with most real-life and artificial MOOP definitions where the
domain Dn of the multi-objective function is defined as the Cartesian product of sets that
contain the possible values of the individual decision variables. Formally, for a MOOP that
has n decision variables, the (variable) vector encoding will be of the form:

x = (x1,x2, . . . ,xn) with
x1 ∈ D1, D1 ⊆ R

...
xn ∈ Dn, Dn ⊆ R and

Dn = D1× . . . ×Dn, Dn ⊆ Rn.

(2.4)

It is important to note that each individual subset D1 . . .Dn can have its own specific
structure: real interval, infinite / finite integer set, union of real intervals, etc.

Whenever constraints are applied either in variable or result space, usually, the com-
plexity level of the MOOP is also increased. Figure 2.2 provides a small example into this
matter and shows how imposing variable (i.e., feasibility) and result-related constraints can
seriously alter the solution space of a MOOP.
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Figure 2.2: The possible effects on Zm (the objective space of the MOOP) and on PFtrue
when imposing variable and result-related constraints.

We strongly feel that apart from the previously mentioned result and variable-related
constraints that are generally mentioned in literature, more informal (domain-specific)
limitations can also play a very important role. Two very important types of informal
constraints that appear especially in real-life MOOPs are:

• time constraints – allowing a low time limit for solving the MOOP can be extremely
challenging, especially when dealing with problems where evaluating one or more of
the single-objective functions is computationally intensive;

• formalization constraints – not being able to correctly define Dn (i.e., the feasible
decision space of the MOOP) can hinder the ability of most solvers to efficiently
tackle the problem. Such cases are common when practitioners (are forced to) define a
“search space” (not: D

′ ⊇ Dn) using the very convenient Cartesian product procedure
presented in (2.4) without being able to account for the fact that for at least one
vector from D′ the multi-objective optimization function cannot be defined – i.e.,
∃xerr ∈ D′ : O(xerr) is undefined3. In these cases, where at least one such error

3In essence, xerr is an infeasible point in the “search space” of the MOOP.
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vector exists, it is obvious that Dn ⊂ D′ and , usually, the actual feasible variable
space of the MOOP (i.e., Dn) is either not easy to define or even unidentifiable.

It is important to note that while most artificial MOOPs reported in literature, are defined
as combinations of the general problem from (2.1) and several internal constraints (2.2)
with a clearly defined feasible decision space [as shown in (2.4)] , the real-life electrical
drive design optimization problems we aim to solve also involve external constraints (2.3)
and, more importantly, time and formalization-related constraints.

2.2 Classical Multi-Objective Optimization Methods

2.2.1 General Considerations

It is widely accepted that the concept of MOO has emerged in the specialized contexts
of economic equilibria and welfare theories at the end of the 19th / beginning of the 20th

century with the pioneering works of Vilfredo Pareto [8] and Francis Edgeworth [9]. In [10]
Stadler states that since MOO plays a central part in economic equilibrium theories, it can
even be traced back to 1776 and Adam Simith’s magnum opus “An Inquiry Into the Nature
and Causes of the Wealth of Nations” [11].

The 1951 paper of Khun and Tucker [12] is credited with establishing multi-objective
optimization as a mathematical discipline in its own right by introducing the “vector
maximum problem”. In [13], the authors describe how in the ’50s and ’60s, a multitude of
scientists have started to observe and address various MOOPs arising in production theory
[14], public investment businesses [15] and engineering [16]. By the end of the ’70s, the
usage of MOO methods became quite popular in several fields [17] [18].

For a good overview regarding both early and more modern mathematical methods for
solving MOOPs one should consult sources like [7], [19], and [13]. In the next sections,
we shall try to classify and briefly describe some of the most well-known and widely used
methods for solving MOOPs.

2.2.2 A Taxonomy of Available Approaches

Several ways of categorizing the numerous MOO techniques have been proposed over the
years. The one that seems to have gained most ground in the community is attributed to
Cohon and Marks [20] and has been used (with slight adaptations) by several researchers,
such as [21], [22], [23], and [13]. Proclivity for this taxonomy can be explained by the fact
that it is centered on the interaction between the two inherent stages of all MOOPs that are
described at the end of Section 2.1.1: (I) the search stage and (II) the MCDM (or preference
articulation) stage. Thus, according to Cohon and Mark’s classification, we can distinguish
between MOO methods that require:

No articulation of preferences - the DM does not state any preferences with regard
to trade-offs between the single-objective functions of the MOOP;
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A priori articulation of preferences - the DM states the trade-off preferences before
the start of the search process;

A progressive articulation of preferences - the DM adapts trade-off preferences
during the search process

A posteriori articulation of preferences - the DM considers trade-off preferences
after the end of the search process;

As a general remark, regardless of the used articulation of preferences, most of the
classical MOO methods we shall now proceed to describe are based on the central idea of
reducing / restating the original MOOP to / as a single-objective function. Considering the
general definition of a MOOP from (2.1), we mark its single-objective restatement by:

Osng(x) : Dn→ R (2.5)

Obviously, the main advantage of restating the problem is that the reduced function can
be minimized using standard single-objective optimization methods. It must be emphasized,
though, that the constraints of the original MOOP must also be taken into consideration
during the optimization of (2.5) .

2.2.3 MOO with No Articulation of Preferences
The Tschebyscheff min-max and global-criterion methods are the most well known ex-
ponents of MOO techniques that require no articulation of preferences on part of the DM.
When employing such methods, at the end of the optimization, the DM is presented with
a single solution that (s)he may either accept or reject. Depending on the success of the
run, this single solution may or may not be part of a good PN approximation of the PFtrue
associated with the original MOOP.

Considering the notations from (2.1), in its most basic form, the reduced function defined
by the Tschebyscheff min-max approach is:

Osng(x) =
m

max
i=1

[
oi (x)− pId

i

]
. (2.6)

The solution that minimizes (2.6) is the variable vector x∗ with the property that O(x∗)
is the point in objective space “closest” to a usually unknown pId that must be roughly
estimated beforehand. Although direct applications of (2.6) exist (e.g., [24]]), since the
function is unstable when the single-objectives of the MOOP have different magnitudes,
most min-max formulations rely on relative deviations:

Osng(x) =
m

max
i=1

[
|oi (x)− pId

i |
|pId

i |

]
. (2.7)

Obviously, when using (2.7) and other methods employing similarly-defined relative
deviations, one must take special care in (re)formulating the MOOP such that pId

i 6= 0 for
all i ∈ {1, . . . ,m}.
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In the case of the global criterion approach, the reduced function is also aimed at
measuring how close the objective vector is to pId. Depending on how this “closeness” is
defined, there can be different formulations, but the most common one is of the form:

Osng(x) =

{
m

∑
i=1

[
|oi (x)− pId

i |
|pId

i |

]t}1/t

. (2.8)

In (2.8) we have preferred relative deviations. In literature (e.g., [7] and [23]), absolute
ones (i.e., |oi (x)− pId

i |t) are usually reported as standard. In [7], Miettinen also mentions
that for 1 ≤ t < ∞, the exponent 1/t can be dropped. The usual choices for t are 1,2 or
∞. Results are obviously influenced by this choice as when t = 1 all deviations are taken
into account in direct proportion to their magnitudes and for 2 ≤ t < ∞ larger deviations
carry greater weight. If t = ∞, only the largest deviation is taken into consideration and the
resulting L∞-metric is equivalent to the Tschebyscheff min-max formulation from (2.7).

There are also several other methods that do not require an articulation of preferences
like the Nash arbitration, Rao’s method, and the MPB method. A comprehensive review
of these can be found in [7] and [23].

2.2.4 MOO with A Priori Articulation of Preferences

In [22], Andersson states that a priori articulation of the DM’s preferences is the most
common way of conducting MOO. This should explain the numerous approaches reported
in literature that fall in this category. In order to allow the DM to express his preferences /
opinions / hopes on what the outcome of the optimization should be, most of these a priori
approaches rely on Osng(x) formulations that require parameters like weights, constraints,
exponents, etc. Nevertheless, Miettinen argues that a priori approaches involve inherent
difficulty in the sense that the DM does not necessarily “know beforehand what is possible
to attain in the problem and how realistic her or his expectations are” [7]. Hence, bad
parameter settings (i.e., unrealistic expectations) can seriously influence the outcome of the
optimization.

As mentioned, several a priori MOO approaches rely on assigning weights to the different
single-objectives contained by the MOOP. Among them, the weighted sum method is the
simplest and most common:

Osng(x) =
m

∑
i=1

wioi (x) . (2.9)

Unsurprisingly, numerous weighting strategies for (2.9) have been reported over the
years (please see [25] for a review). The simplest and most common of them include ranking
methods, where the different objectives are weighted proportionally to their perceived im-
portance. Another option are categorization methods, where objectives are assigned weights
corresponding to a broad category (e.g., “highly important”, “moderately important”) that
they have previously been assigned to by the DM. More advanced weighting schemata are
based on pair-wise comparisons between objectives and eigenvalues [26].
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By introducing weights, both methods presented in the previous subsection can also be
parameterized such as to articulate the DM’s preferences. As such, by modifying (2.6) we
obtain the weighted Tschebyscheff (or weighted min-max) method:

Osng(x) =
m

max
i=1

{
wi

[
oi (x)− pId

i

]}
(2.10)

and by modifying (2.8) we attain the weighted global criterion formulation:

Osng(x) =

{
m

∑
i=1

wp
i

[
|oi (x)− pId

i |
|pid

i |

]t}1/t

. (2.11)

Another popular approach for a priori articulating preferences is lexicographic or-
dering. The first step requires the DM to order the m single objectives of the MOOP in
decreasing order of their absolute importance: oL1(x), . . . ,oLm(x). After this reordering the
first (i.e., most important) single-objective function is minimized subject to the original
constraints [see (2.2) and (2.3)] of the MOOP. We reunite all the solutions of this prob-
lem into the set LS1 and then proceed to minimize the second most important objective:
oL2(x). This time the optimization is subject to both the original MOOP constraints as well
as to the extra constraint that if x∗L2 ∈ D is to be accepted as a solution of oL2(x) then
oL1(x∗L2) ≤ oL1(x∗1),∀x∗1 ∈ LS1. In other words, as the optimization progresses, at the
ith iteration (1 < i≤ m), we wish to preserve the best found values of the previous, more
important, i−1 objectives. Considering that at step i we aim to minimize Osng(x) = oLi(x)
and that LSi contains the solutions of this minimization, the iterative optimization process
stops either after the mth iteration or when optimizing oLi(x) does not yield a solution. In
case of the former, LSm will hopefully contain some of the solutions of the original MOOP
and, in case of the latter, these best-so-far solutions will be aggregated in LSi−1.

Among lexicographic methods, those approaches where authors recommend applying
more relaxed constraints (so called hierarchical methods) deserve special mention [27]
[28]. Early MOO methods based on lexicographic orderings are examined in depth in [29].

In [7], Miettinen states that the goal programming method introduced by Charnes et al.
in [30] and [31] is one of the first techniques “expressly created” for MOO. In it’s simplest
form it requires the DM to specify (optimistic) attainment levels (i.e., goals) for each of the
simple-objective functions that are part of the MOOP. All these values are aggregated into a
vector of goals (not: g) such that gi is the optimization goal of oi(x) from (2.1). The idea is
to minimize the total deviation from these goals, i.e. to optimize ∑

m
i=1 |δi|, where δi is the

deviation of oi(x) from gi. Taking into account that goal programming traces its roots in the
field of linear programming, a quite convenient way of handling the absolute values is to
split them into positive and negative deviations. As such, given that δi = gi−oi(x), δi can
be either positive or negative depending on how the goals have been defined. Regardless
of sign, we can model them as δi = δ

−
i − δ

+
i , with δ

−
i ≥ 0, δ

+
i ≥ 0 and δ

−
i δ

+
i = 0 for

all i ∈ {1, . . . ,m}. We mark with δ
−
i a negative deviation or underachievement [i.e., the

case when gi ≥ oi(x)] and with δ
+
i a positive deviation or overachievement [i.e., the case

when gi ≤ oi(x)]. The fact that δ
−
i δ

+
i = 0 generally holds implicitly (as there can not be

non-negative underachievements and overachievements at the same time) and this restriction
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is usually not included in the formulation of the method in order to avoid nonlinearity.
Summarizing, the goal programming method redefines the original MOOP as:

Osng(x) =
m

∑
i=1
|δ−i −δ

+
i |

subject to oi(x)+δ
−
i −δ

+
i = gi

δ
−
i ,δ+

i ≥ 0 for all i ∈ {1, . . . ,m} .

(2.12)

The basic formulation from (2.12) can be improved such as to allow the DM to express
preferences for certain (types of) deviations through weighting: w−i and w+

i . More flexibility
can also be provided by enabling the DM to specify preference (not: pi) for certain goals
using priority factors. These priority factors are conceptually different than regular weights
as their role is to construct a “combined approach” [7] that also features a “lexicographic”
(“hierarchical”) order among the objectives. This, more general, goal programming method
can be formulated as:

Osng(x) =
m

∑
i=1

pi|w−i δ
−
i −w+

i δ
+
i |

subject to oi(x)+δ
−
i −δ

+
i = gi

δ
−
i ,δ+

i ,w−i ,w
+
i ≥ 0 for all i ∈ {1, . . . ,m} .

(2.13)

Preferences can also be formulated using products instead of objective-wise sums. For
example, in their 2004 review [23], Marler and Arora mention that a weighted product
approach could be used in order to ensure that, in the absence of any transformation
functions, objectives with different orders of magnitude have similar importance:

Osng(x) =
m

∏
i=1

[oi (x)]wi. (2.14)

The weights wi from (2.14) are used to assign the relative significance of the objectives.
However, Marler and Arora also mention that this approach is not extensively used and that
this might be the result of potential nonlinearities and consequent computational difficulties.

Far more popular product formulations for Osng(x) can be found in approaches related
to multi-atribute utility theory. In these, the key to solving the MOOP is to construct a
good utility function that is able to correctly capture the DM’s preference structure. It is
widely mentioned (e.g., [13] [22]) that designing good utility functions generally requires
great effort on behalf of the DM. However, there are also utility-inspired approaches that
are rather simple. One of the them is based on acceptability functions and was proposed
by Wallace et al. in [32]. Using the notations from Section 2.1, this method requires the
DM to assign an acceptability function to every single-objective of the original MOOP (not:
ai : R→ [0,1], i ∈ {1, . . . ,m}). For a fixed ui ∈ R such that ui = oi(x∗), ai(ui) will equal 1
if the DM considers that ui is completely acceptable (i.e., close to/equal to the true optimum
of oi) and, complementary, ai(ui) will equal to 0 if the DM considers that ui is completely
unacceptable. For values of ui that are between completely unacceptable and completely
acceptable, ai(ui) will take values inside (0,1). Under the assumption of a deterministic
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assignment of performance4, ai[oi(x∗)] can thus be interpreted as the probability of accepting
x∗ as the solution of the original MOOP based solely on the performance achieved by this
parameter vector with regard to the ith objective. The global probability of accepting x∗ is
equal to ∏

m
i=1 ai(x∗). As such, Osng(x) can be defined as:

Osng(x) =−
m

∏
i=1

ai[oi(x)]. (2.15)

In their 1996 paper, Wallace at al. also give hints on how to design good acceptability
functions that are able to “drive design”, i.e., ensure a good formulation of (2.15) by being
sufficiently discriminant.

2.2.5 MOO with A Progressive Articulation of Preferences
MOO methods that allow for a progressive articulation of preferences are also known as
interactive methods. They are motivated by the assumption that the DM is unable to correctly
articulate (global) preferences before the start of optimization due to the complexity of the
MOOP. At the same time, because of the same complexity, the DM has good reasons to
believe that the more simple MOO approaches that require no articulation of preferences
would not be able to deliver very good results.

Nevertheless, a good compromise can be achieved by allowing the DM to interact with
the optimization process. The idea is that as the search advances, the DM learns more about
the problem at hand and, based on this new insight, (s)he is able to steer the optimization
process. Usually, this steering is based on (local) preferences that are developed/adapted
based on the interplay between previous expectations and results achieved so far. Several
sources (e.g., [7],[22], and [13]) argue that one of the major advantages of using interactive
methods is that, because of the very active involvement in the resulting search-MCDM cycle,
the DM is more likely to accept the final solution returned at the end of the MOO procedure.

In a different light, the requirement for a constant interaction between the DM and
the optimization process can also be a major disadvantage, especially for MOOPs that are
computationally intensive (see Section 3.1.2). This happens because the search-MCDM
cycle is paused while waiting for the DM to express new preferences and this adds con-
siderable strain either on the DM’s work schedule, or on the already lengthy (expected)
total duration of the optimization. Another disadvantage is that most interactive MOO
approaches5 also explicitly or implicitly demand a general consistency with regard to the
iteratively specified preferences. As such, even though an adaptation of previously expressed
preferences is expected, a total shift (that might be caused by changing the DM during a
lengthy search process or by very important new insight) would normally require a restart
of the optimization process.

Concretely, interactive MOO approaches are usually constructed around modifying an a
prori technique in order to allow the DM to change the initial weights or to progressively
reduce the search space by enforcing new objective-derived constraints.

4Evaluating oi(x) yields an exact result, not a value sampled from a predefined/known probability.
5Variations of the reference point method [33] form a notable exception.
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The interactive weighted Tschebycheff approach proposed in [34] and refined and
adapted in [7] works by progressively adapting the weights from (2.10). With regard to the
used weighting vectors, viz. w= (w1, . . . ,wm), w∈Rm, this method requires that 0<wi < 1
and ∑

m
i=1 wi = 1. At every step, (2.10) needs to be minimized p times, each time using a

different weighting vector. After this, the p potential solutions are presented to the DM.
(S)he can either decide to select one of them as the final solution of the MOOP or to focus
(and proceed to the next step of) the search by automatically generating p more weighting
vectors that are well-dispersed around some of the presented potential solutions. Methods
for generating the initial set of p weighting vectors and for generating the subsequent
DM-focused weighting vectors are discussed in [7]. Compared to all the other methods
presented so far, this approach is much more computationally demanding as it requires
performing s · p optimizations of Osng(x) [as defined by (2.10)] , where s is the total number
of steps required by the DM.

The STEM algorithm (also known as STEP in some sources) is a classical example
of progressive articulation of preferences via search space reduction. STEM also uses the
weighted Tschebyscheff approach to find a potential solution. After this, some objectives
(that are deemed as having been acceptably optimized) are progressively relaxed in order
to allow for improvements to objectives that remain fixed (i.e., these are those objectives
that are deemed as having been unacceptably optimized). The relaxation of a certain
objective oi(x) translates into modifying the Tschebyscheff formulation by setting the
weight corresponding to oi(x) to 0 (i.e., removing oi(x) as an objective) an by adding oi(x)
as an additional hard constraint. The upper bounds of the new oi(x)-derived constraint (i.e.,
the acceptable upper-bound of the relaxation) as well as the reason for which oi(x) was
selected for relaxation are subject to the DM’s preferences. In a successful STEM run, after
at most m−1 relaxation stages, the method returns a solution that is fully acceptable for
the DM. If this is not the case, STEM fails and the DM might consider restarting it after
adjusting her or his expectations.

2.2.6 MOO with A Posteriori Articulation of Preferences
Methods that enable the a posteriori articulation of preferences are explicitly aimed at
presenting the DM with a PF that is as close as possible to the PFtrue of the MOOP. Hence,
these approaches are the only ones that are truly aimed at solving the MOOP as a whole
and not just at finding a few interesting solutions in (the vicinity) of PFtrue. Obviously, the
major advantage of these approaches is that, on the condition that the obtained solutions
are well-spread and sufficiently accurate, the DM is presented with a global picture of the
specific trade-offs between the objectives of the current problem.

An apparently simple way of obtaining a posteriori methods is to run several indepen-
dent optimization runs of a weighted a priori approach and to use a different weighting
vector for each run. The general restriction imposed on the weighting vectors is that all
the weights must be non-negative. Most authors recommend imposing stronger (convex)
restrictions on the weights. At the end of the process, by collecting all the obtained solu-
tions, in theory, the DM should obtain an accurate discretization of the PN. At least two
prerequisites are necessary for obtaining good results:
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• the specific way in which the objectives are combined inside the weighted approach
must be suitable for the MOOP at hand;

• the set of weighting vectors must be chosen such as to generate searches that are
evenly spread across PFtrue;

With regard to the first prerequisite, it is well known (see [7] for details) that a linear
combination of the objectives [like the one described in (2.9) with the extra restrictions:
∑

i≤m
i=1 wi = 1,wi ≥ 0] cannot produce solutions on non-convex parts of the Pareto front. For

MOOPs that have non-convex regions in the PF , the ε-constraint method proposed by
Haimes et al. in [35] is more suitable. The idea of the ε-constraint approach is to minimize
only one objective (the most important one) and to transform all the other objectives into
constraints that are bound by individual thresholds:

Osng(x) = oi(x), i ∈ {1, ...,m}
subject to o j(x)≤ ε j for j ∈ {1, . . . ,m} and j 6= i

(2.16)

By varying the threshold values [i.e., ε j from (2.16)], one can potentially obtain multiple
Pareto non-dominated solutions. Usually a preliminary analysis is required in order to
discover proper values/ranges for the thresholds.

Even though better suited for MOOPs that have concave regions in their PF , like the
basic weighted approaches, the ε-constraint method does not ensure finding PNs that are
well spread even when systematically varying the weight or threshold vectors. In contrast,
more advanced weighting-based strategies like the normal boundary intersection (NBI)
method proposed by Das and Dennis in [36] and the normal constraint (NC) method
introduced by Messac et al. in [37] can be used to generate PNs that are well spread on
condition that the provided weights are systematically varied.

2.2.7 Remarks Regarding Classical MOO Approaches

It should be by now self-evident that the classification of MOO approaches from Sec-
tion 2.2.2 can also be used to rank the methods according to their computational complexity.
As such, while methods that require no articulation of preferences and a priori methods
(excepting the lexicographic ordering) are reductions of the original MOOP to one single-
objective optimization problem, the interactive articulation of preferences involves solving
at least a few separate single-objective problems and the a posteriori methods essentially
decompose the original MOOP in many single-objective optimization problems, each of
which targeted at discovering a single solution in a specific section of the PF .

Nevertheless, the major disadvantage of all the MOO methods mentioned in the previous
subsections and of a posteriori methods in particular is that, besides their internal strategy,
the success of these methods in providing acceptable solutions is fully based on the ability
to accurately solve the single-objective optimization problem(s) obtained from the original
MOOP. In fact, some of the obtained single-objective problems have proven so complicated
(multi-modal, false global optima, etc.) that practitioners of MOO and DMs were forced to

17



CHAPTER 2. MULTI-OBJECTIVE OPTIMIZATION

employ unorthodox and less mathematically-grounded optimization methods (e.g., evolu-
tionary algorithms and other population-based metaheuristics) in order to solve them. The
gap from using standard evolutionary algorithms to solve the individual single-objective
problems to designing special evolutionary algorithms able to solve the original MOOP
directly was quickly bridged and multi-objective evolutionary algorithm research began to
flourish as these approaches rapidly became state-of-the-art (a posteriori) methods in the
field of MOO. For more information on this topic, please see Section 2.3.2.

Because of technical limitations, a posteriori methods have been somewhat neglected
in the initial years of MOO research. Two major disadvantages were generally associated
with this type of approaches. Unsurprisingly, the first one regarded the large computational
burden incurred by a posteriori methods. The second one was concerned with the fact that
when using them, the DM might be overwhelmed with too many potential solutions to
choose from.

With regard to the computational burden, although quite upsetting in several early a
posteriori approaches, more modern strategies, like the previously mentioned evolutionary-
based ones, and ever more powerful computers have managed to mitigate this setback for
most types of MOOPs. Nevertheless, CIMOOP, which are the focus of the present research,
remain a noteworthy counter-example and still impose very long optimization run times on
a posteriori approaches.

In our opinion, obtaining a very large number of solutions in the PN of a given MOOP is
a false problem nowadays as the alleged disadvantage can be easily offset by the wide range
of MCDM strategies that can be used to “navigate” (order/filter) the solutions in the PN. In
fact, in several real-life applications, like the electrical drive design problems we solve in our
day-to-day activities, having a clear global picture of the trade-offs between the objective
functions of the MOOP is of the utmost importance for both the DM (i.e., the electrical
drive engineer) and the final client (i.e., the commercial/company partner). Thus, there is a
very strong push to use methods that enable the a posteriori articulation of preferences even
for the CIMOOPs that are common in mechatronics (please see Section 3.1.2 for details).
All these aspects, in turn, largely motivate the present work that is aimed at presenting
improvements of existing as well as new a posteriori approaches that can solve CIMOOPs
more efficiently.

2.3 Multi-Objective Evolutionary Algorithms

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) reunite a large family of nature-inspired problem solving
techniques constructed around a theoretical framework that can be traced back to the
pioneering works of the renowned English naturalist Charles Darwin who laid the foundation
of the modern theory of evolution.

In his most influential work, the book “On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life” from 1859 [38],
Darwin theorizes that evolution surely occurs in nature, that it is a gradual process that takes

18



2.3. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

place over thousands or millions of years and that the main driving force behind evolution is
the process of natural selection, which, in turn, is based on two principles:

1. Heredity - in sexually reproducing species no two individuals are perfectly identical
and this variation (i.e., specific traits) can be passed on to respective offspring.

2. Survival of the fittest - in populations with a relatively stable size over time, the
individuals that display the “best” (most desirable) characteristics are more likely to
survive, while individuals that exhibit undesirable characteristics are not so likely to
survive.

In its simplest form, (i.e., a direct combination of the above two principles) the theory of
natural selection postulates that genetically transferable “desirable” characteristics are very
likely to survive as they are passed on to the offspring that will form the future generation.
By contrast, “undesirable” characteristics are not so likely to survive since the individuals
that display them do not have the chance to procreate sufficiently. As evolution progresses,
generation after generation, desirable characteristics are very likely to become dominant
within the entire population.

In natural environments, evolution and natural selection are tools of the utmost impor-
tance that enable a given species to survive (the primary goal/instinct of any living organism)
by developing and retaining in the general population characteristics that enable the species
to overcome various changes in the environment. As such, on a broad level, evolution can
be seen as a natural search mechanism aimed at finding the genetic makeup (inheritable
genotype) most likely to ensure the survival of the species.

The fact that evolution is a process that is proven to work (generally and eventually)
even without knowing an exact “recipe” of how to reach its goal (which steps to take and
in what order), makes it a very powerful and universal search strategy6. In fact, in his
1950 seminal paper on artificial intelligence titled "Computing Machinery and Intelligence"
[40], Alan Turing speculates that a machine capable of passing the “The Imitation Game”7

could be systematically designed and improved (i.e., taught) by means of an “education
process” that displays “an obvious connection” to evolution. Furthermore, Turing even
proceeds to explicitly suggest the following associations:

“Structure of the child machine = Hereditary material
Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter”

The previously mentioned observations have led other pioneers like John Holland [41],
Ingo Rechenberg [42], Hans-Paul Schwefel [43], John Koza [44] and many others to lay
the ground for problem solving techniques like the genetic algorithm (GA), evolutionary
strategies (ES) and genetic programming (GP) that are based on applying the principles

6For an interesting perspective on this matter from the field of evolutionary biology, please see “The Blind
Watchmaker” by Richard Dawkins [39]

7Nowadays this procedure is known as the “Turing test” and constitutes one of the best known challenges
from the field of artificial intelligence.
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of evolutionary biology to computer science. In time, the term evolutionary algorithms
(EAs) has become a commonly accepted general reference for evolutionary-inspired search /
optimization methods and these methods have become quite popular in the past two decades
as, in the words of John Holland [45], “computer programs that ‘evolve’ in ways that
resemble natural selection can solve complex problems even their creators do not fully
understand”.

Generally, an EA operates with a population of individuals that are actually represen-
tations of solution candidates for the optimization problem to be solved. By simulating
various operations inspired from natural evolution (e.g., selection, recombination, mutation,
survival), the algorithm creates new offspring individuals / solution candidates that (can)
replace their parents inside the population set. Usually, the genetic operations are steered by
considering the relative performance with regard to the given optimization goals (i.e. their
fitness). As this process generates new individuals, at the same time, it explores the search
space and, after several such iterations, the hope is that it finds individuals that encode good
solutions of the problem to be solved.

More specifically, although characterized by a generally simple structure (as shown in
Algorithm 1), EAs have proven extremely successful in tackling very complicated (real-
life) non-linear optimization problems by generally being able to discover acceptable
solutions in reasonable time [46] [47] [48][49]. The words “generally”, “acceptable”, and
“reasonable” must be emphasized because, like natural evolution itself, an EA is a stochastic
process that can not provide any guarantees with regard to global solution optimality,
success ratio and time required for convergence. Nevertheless, in most cases, even after
basic parameter tuning, the stochastic behavior of an EA can be controlled to a certain extent
(range-bound).

It is important to note that the description of the EA process from Algorithm 1 is by no
means a standard within the field. We propose it because it provides a truly general template
that, when implemented, allows for a rapid specialization towards different techniques /
paradigms (e.g., GAs, ESs, GP), different goals (e.g., single objective optimization, multi-
objective optimization, tracking of population behavior) and different flavors of simulating
evolution (e.g., generation-wise, steady-state, variable degrees of elitism).

There are six auxiliary methods used across Algorithm 1 that we shall now describe in
order to provide a more in depth understanding of the search strategy proposed by EAs:

• INITIALIZEPOPULATION(popSize, problem) - this function returns a set containing
a number of popSize individuals ( = solution candidates) that have been created in
a manner suitable for the problem at hand. The two things that must be considered are
(I) choosing the correct codification (= solution representation) for the individuals
and (II) making a choice between a random initialization and a strategy/heuristic-
based one. In the case of GAs and ESs, the standard codification options are fixed
or variable-sized vectors (arrays) consisting of binary, integer or real numbers. In
the case of GPs, syntax trees are the preferred solution representation option. As a
general rule, regardless of the problem one wishes to solve, the codification must
be simple enough to allow for the design of useful genetic operators, but it must be
comprehensive enough to also allow the storage of all the data required for evaluating
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Algorithm 1 The possible structure of a general Evolutionary Algorithm
1: function EA(problem, popSize, genSize, stopCrit)
2: P← INITIALIZEPOPULATION(popSize, problem,)
3: O←Φ

4: BestSolSet←Φ

5: EVALUATEFITNESS(P, problem)
6: BestSolSet←EXTRACTBESTSOLUTION(P, BestSolSet, problem)
7: while stopCrit 6= true do
8: i← 0
9: while i≤ genSize do

10: S← SELECTPARENTS(P)
11: O

′ ← CREATEOFFSPRING(S)
12: O← O∪O

′

13: i← i+ |O′|
14: end while
15: EVALUATEFITNESS(O, problem)
16: BestSolSet←EXTRACTBESTSOLUTION(O, BestSolSet, problem)
17: P← SELECTFORSURVIVAL(P, O)
18: end while
19: return BestSolSet
20: end function

the quality of the individual. Furthermore, in order to accommodate simplicity and
generality inside Algorithm1, we presume that the solution representation of our
individuals also allows for the storage of any fitness-related information and any
secondary meta-information required by the genetic operators (e.g., selection flags,
generational tracking data, etc.).

• EVALUATEFITNESS(Set, problem) - this method computes the problem-specific
fitness function (= quality estimation) for every individual from Set and stores
the associated fitness value(s) within the corresponding individual. In fact, the
only major requirement imposed on a given search / optimization problem in order
to be solvable via EAs is that one should be able to suitably encode candidate
solutions (as individuals) and to evaluate the quality of any individual that can be
generated during the evolutionary process. The role of the fitness function is to
perform the latter requirement by measuring how close a certain individual is to the
true goal(s)/solution(s) of the problem. Since for many problems, the (exact) true
solution is unknown, fitness functions are usually designed such as to quantify how
“desirable” are the characteristics of a given individual by measuring: (I) how far it
is from (an artificial) anti-ideal solution or (II) how good it is when comparing to
previously generated individuals.

• EXTRACTBESTSOLUTION(SolSet, CurentBestSolSet, problem) - the purpose of
this function is to find and return a set containing the elite individual(s) that is/are the
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best at solving the current problem. The search for these elite individuals is conducted
in the union set of SolSet (the set that generally contains newly evaluated individuals)
and CurrentBestSolSet - the set that contains the best solution(s) found so far during
the evolutionary run.

• SELECTPARENTS(Set) - this function selects and returns a limited number of in-
dividuals from the current population stored in Set. These individuals will be used
as a base (i.e., parents) for creating new individuals. The actual number of parent
individuals that will be returned depends on the specific type of EA. In the case of
GP, two parents are usually required. In the case of ESs, one parent is enough. For
GAs, generally two parents are required, but some paradigms can require up to six
or more parents. There are numerous strategies for deciding how the parents should
be selected. The most simple one is to select them without considering any fitness
information (i.e., random selection). Another popular option is to select the parents
with a probability that is directly proportional to their fitness (i.e., roulette selection).
A combination of the previous two approaches (i.e., tournament selection) is also
widely used. In the latter, several individuals are initially selected randomly and the
fittest one is finally selected as a parent individual. For more details regarding various
parent selection techniques and the reasons for choosing one over the other, please
see the highly valuable introductory overviews by Goldberg [50] and Mitchell [51].

• CREATEOFFSPRING(ParentSet) - is the function responsible for creating new (off-
spring) solutions based on the (genetic) information encoded in the individuals from
a given ParentSet. The actual creation process usually involves two (genetic) op-
erations: (I) crossover/recombination and (II) mutation. These genetic operators
can be applied separately or they can be chained: e.g., using crossover to obtain
offspring and then applying mutation on these offspring is a very popular approach.
Specific paradigms, like ESs, generally rely on a mutation-driven evolution (where
the crossover operation is marginal or even not used), while most EA approaches
recommend a careful balance between the crossover operator (= the main genetic
operator responsible for ensuring a good global search / diversification) and the
mutation operator. The latter is generally seen as a secondary but nevertheless very
important operator that is responsible for both local search / intensification (on an
individual level) as well as for diversification - introduction of new genetic material
in the global genotype (on a population level). Usually the previously mentioned
balance between the two operators is achieved by assigning rates for their usage. For
example, a crossover rate of 0.9 means that the crossover operator is used with a
90% probability to obtain offspring. A mutation rate of 0.05 means that there is a 5%
probability that an individual (usually a crossover obtained offspring) will undergo a
mutation operation. Applying / designing crossover and mutation operators that are
suitable for the problem at hand is one of the main requirements for a successful EA.
Literature provides many examples of very successful genetic operators - some of
them are highly specialized (problem specific) while others are quite generic.

• SELECTFORSURVIVAL(ParentSet, O f f springSet) - this function selects and re-
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turns the set of individuals that will form the next generation of the EA. These
individuals are selected from those of the current generation (i.e., the ParentSet)
and from those that have been recently created using genetic operators (i.e., the
O f f springSet). The selection strategy can range from something very simple like
(I) accept all the offspring and disregard the parent individuals (i.e., generational
replacement) or (II) rank all the individuals and select the best according to fitness
(i.e., elitism) to (III) complex approaches designed to also maintain a good spread
over the search space and genetic diversity. With regard to the size of the returned set
of individuals, most EAs are based on the assumption that the size of each generation
is constant (i.e. = |ParentSet|), but variants based on variable population sizes have
also been proposed [52] [53].

The design of the offspring computation cycle (i.e., lines 9-14 from Algorithm 1) also
deserves some extra clarifications. The primary idea behind it is to allow for two main
paradigms:

1. generational evolution - each population of individuals is (largely) replaced in a single
step by a new population containing their respective offspring. Using the notations
from Algorithm 1, generational evolution happens when genSize = popSize.

2. steady-state evolution - only one new offspring is generated at a given time and,
depending on the selection for survival criterion, it can be added to the current
population – where it will replace an existing individual. Using the notations from
Algorithm 1, steady-state evolution happens when genSize = 1.

Although minor at a first glance, the difference between the generational and steady-state
evolutionary models can have a substantial impact on several classes of algorithms and
problems (as we shall present in detail in Chapter 5).

The secondary reason for the presented offspring computation cycle is that it also allows
for the implementation of the previously mentioned evolutionary strategies that rely on
variable population sizes.

We end this short introduction into the field of evolutionary computation with the
mention that for a specific flavor of EAs (i.e., fixed length binary-encoded generational
GA with an infinite population, proportional selection, single-point crossover and bit flip
mutation), in [41], Holland proved the now famous Schema Theorem (also known as the
Fundamental Theorem of Genetic Algorithms) – a mile stone result (formal model) that
explains the general effectiveness of the GA/EA search process. A schema can be defined
as a binary-coded matching pattern that contains well-specified loci (i.e., positions in the
binary string) and wildcard loci . The well-specified loci are marked by “1”s or “0”s and the
wildcard loci are marked with “*”. Inside the population of the GA a given schema is said
to ”represent" all the individuals with whom it shares identical values of the well-specified
loci. The fitness of a schema is computed as the average fitness of all the individuals in the
population that it represents. The order associated with a schema is the total number of
well-specified loci and the length of a schema is the difference between the positions of the
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last and the first well specified loci. For example, under the assumption that the length of
the binary-encoded individuals in the population is 10, some possible schemata might be:

s1 = (1,0,∗,∗,1,∗,∗,∗,∗,1) with order = 4 and size = 10−1 = 9
s2 = (∗,∗,1,∗,0,1,1,∗,∗,0) with order = 5 and size = 10−3 = 7
s3 = (∗,∗,∗,0,0,0,∗,∗,∗,∗) with order = 3 and size = 6−4 = 2

,

Holland’s theorem states that small, low-order schemata of above-average fitness in-
crease exponentially in successive generations. In plain language, the Schema Theorem
gives mathematical proof that the design of the (analyzed) evolutionary process ensures that
“desirable characteristics” present at a certain moment in the population are highly likely to
be transferred (and multiplied) in future generations.

2.3.2 Extensions to Multi-Objective Optimization Problems
The first applications of EAs in the field of multi-objective optimization were aimed to use
the good global optimization performance displayed by these heuristic methods in order to
solve MOOPs that were reduced in advance to single objective optimization problems using
the objective-aggregation techniques presented in Section 2.2.7. One of the first examples
of such usage can be found in Rosenberg’s PhD thesis from 1967 [54].

David Schaffer is widely regarded as the first to have proposed an EA that incorporates
some type of multi-objective optimization logic inside the evolutionary cycle. His approache
is called the Vector Evaluated Genetic Algorithm (VEGA) [55] and is considered the very
first multi-objective evolutionary algorithm (MOEA). The specific MOO logic is found
inside the parent selection procedure (line 10 in Algorithm 1) that, at each generation,
starts by creating m equal sub-populations – where m is the number of objectives to be
optimized, as defined in (2.1). Each of these sub-populations is obtained by performing
proportional selection (on the current population of the GA) according to a specific objective
function [i.e., o1 . . .om from (2.1)]. In a final step, the niched sub-populations are shuffled
together to obtain the new parent population that will produce offspring via crossover and
mutation. These offspring, in turn, will form the population of the next generation. The
main problem of VEGA is that its niching mechanism is too coarse and solutions that have
an acceptable performance but are not the best w.r.t. any of the m objectives cannot survive
(for long) under the proposed selection scheme. This means that very promising trade-off
solutions (i.e. non-dominated solutions) tend to be disregarded and thus, in some cases, like
MOOPs with concave PFs, the overall VEGA population is prone to speciation: division in
sub-populations that are particularly strong in only one objective.

In [50] Goldberg suggests that genetic algorithms aimed at solving MOOPs should
employ a mechanism based on non-dominated ranking inside the parent selection procedure.
Goldberg proposes a ranking method that would assign the highest rank to the individuals
that are not Pareto-dominated by any other individuals in the population. The second
highest rank would be assigned to the individuals that become non-dominated when the
previously ranked individuals would not be considered. The ranking would continue in a
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similar fashion until the entire population is processed. In order to prevent the algorithm
to converge to a single solution, Goldberg also suggests to combine the ranking with a
niching technique, like his previously proposed fitness sharing [56] scheme. Although he
does not provide an implementation for his method, Goldberg postulates that the resulting
evolutionary paradigm would gradually move the population of the GA towards the PF and
would be able to main solutions all along the non-dominated frontier.

The ideas put forward by David Goldberg quickly gained ground and, when considering
all the MOEA developments from the last 25 years, one could also easily argue that
they became canonical within the field. Some of the most successful early proposals that
followed and validated Goldberg’s recipe were (in decreasing order of perceived performance
according to [57]):

• the Multi-Objective Genetic Algorithm (MOGA) [58];

• the Niched-Pareto Genetic Algorithm (NPGA) [59];

• the Nondominated Sorting Genetic Algorithm (NSGA) [60];

The last, but by no means least, early contribution to MOEA development is credited to
Zitzler and Thiele with the introduction of elitism as a key part of the evolutionary process
in their 1999 proposal of the Strength Pareto Evolutionary Algorithm (SPEA) [61]. More
specifically, Zitzler and Thiele proposed to store the non-dominated individuals found during
the entire evolutionary process inside an secondary / external population (or archive). The
reasons for such an approach are quite intuitive as an individual that is non-dominated inside
the current population of the EA is not necessarily non-dominated with respect to all the
individuals that have been generated during the evolutionary cycle. Nevertheless, at the
end of the run, it is highly desirable to provide the user solutions that are non-dominated
with regard to any other solution found during the run. In the basic definition, the external
archive can be seen as an updatable array where:

• a new solution is inserted into the archive only if it is not Pareto dominated by any
individual currently in the archive;

• if a solution that is newly inserted in the archive Pareto dominates existing solutions,
than the latter are removed form the archive.

After the publication of SPEA, many most researchers started to integrate elitism into
their MOEAs and the importance of the concept became even more evident in 2000 when
Rudolph and Agapie showed that elitism is a theoretical requirement for guaranteeing the
convergence of a MOEA [62]. Apart from SPEA, the Pareto Archived Evolutionary Strategy
(PAES) [63] is another well known early employer of the elite external archive mechanism.

Nevertheless, outfitting the MOEA with an external archive is not the only way to
implement elitism. The other popular contender is the (µ + λ ) selection (for survival)
strategy . This general EA concept demands that, at every generation, all µ parent individuals
of the current population must compete with all their λ offspring to form the population (of
size µ) of the next generation. In the context of single-objective problems, this competition
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can be settled by a simple fitness-based ranking. In the case of MOOPs, the winners are
selected using a Goldberg-inspired schema based on a non-domination criterion (i.e. Pareto-
based elitism) that is usually coupled with a distribution of solutions metric (i.e. a niching
criteria). From a structural point of view, implementing elitism via the (µ +λ ) strategy is
far more straightforward than managing an external archive as it only requires the concrete
implementation of the SELECTFORSURVIVAL function from Algorithm 1. Apart from
this, implementing elitism via the selection for survival operation is, in many cases (some
of which we shall present in detail in the next sections), computationally efficient.

With the hope that the previous paragraphs were able to at least capture the key stages
of MOEA inception, we would like to kindly direct the reader interested in more details to
an excellent historical overview of the field (till 2005) by Carlos A. Coello Coello [64].

Before proceeding with the detailed description of some of the most well-known and
widely used MOEAs, we mention that the implementation of such an algorithm on the EA
template from Algorithm 1 is usually quite simple as, apart from specialized strategy related
aspects, it would only generally require:

• a basic (natural) codification of individuals either as binary arrays (in very specific
cases) or, usually, as n-dimensional real-valued arrays [i.e., x = (x1,x2, . . . ,xn),xi ∈
Di, i ∈ {1, . . . ,n} ] provided that the MOOP is defined as described in (2.1);

• no special actions during the generation of the initial population (i.e., the INITIAL-
IZEPOPULATION method) as this can be done randomly and independently for each
component of the real-valued arrays that encode the candidate solutions;

• a straightforward implementation of the EVALUATEFITNESS method that, when ap-
plied on a given individual x, computes (and stores) the individual objective functions,
viz. o1(x), . . . ,om(x), associated with the MOOP to be solved;

• that at every generation t > 0, the EXTRACTBESTSOLUTION function returns the
PN of the union between the current best solution [i.e., the PN extracted only from
P(t)] and the newly generated offspring [i.e., O(t)].

2.3.3 NSGA-II and SPEA2
In 2002 the research group of Kalyanmoy Deb proposed the Nondominated Sorting
Genetic Algorithm II (NSGA-II) [65] as an improved version of the original NSGA
approach. The new method was much more computationally efficient and displayed such a
good performance that it quickly became a landmark in the field and even present MOEAs
(i.e., 2011 - 2014) are still being compared to it across various benchmark MOOPs.

Since NSGA-II is a reference in the field and has also inspired the development of
several other well-known MOEAs, we shall now proceed to describe it in more detail
using the general EA structure from Algorithm 1 as a basis. We mention that in Deb’s
original (generational) proposal, |P|= |O| and therefore, when considering the notations
from Algorithm 1, genSize = popSize. However, this equality restriction is by no means
mandatory.
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Preserving previous notations, at each generation t, NSGA-II operates with a parent
population P(t) and an offspring population O(t). The selection for survival mechanism
constructs population P(t + 1) by selecting the best popSize = |P(t)| individuals from
the combined population C(t) = P(t)∪O(t). In order to discriminate between different
solutions, NSGA-II proposes a Goldberg-inspired fitness assessment mechanism that uses
two metrics. The first one is based on the classification of the individuals from the combined
population C(t) into non-dominated fronts. The highest-level front F1(t) contains all the
individuals that form the PN of C(t). The next (lower-level) fronts Fj(t), j > 1 are obtained
by iteratively removing higher level Pareto fronts from C(t) and extracting the Pareto
optimal set from the remaining individuals. For example, Fj(t), j > 1 contains the PN from
C(t)\

⋃ j−1
k=1 Fk(t). Individuals from a higher-level front are assigned a higher fitness than

those in a lower-level front and are preferred during the selection for survival procedure.
In order to differentiate between individuals that are part of the same front, NSGA-II
a secondary fitness metric, namely the crowding distance. For each individual still in
contention, this secondary metric is used in order to estimate the local solution density by
computing the average distance in objective space between the current solution and the two
closest neighbors that surround it on each objective axis. Higher fitness values are assigned
to individuals from less densely populated areas (i.e., the crowding distance is applied as a
niching strategy). A graphic overview of the NSGA-II process through which population
P(t +1) is evolved from population P(t) is presented in Figure 2.3.

In the year 2002, Zitzler et al. also proposed a much improved version of their 1999
MOEA. The most important novelty of the Strength Pareto Evolutionary Algorithm
2 (SPEA2) [66] is also an elitist Goldberg-inspired selection for survival strategy - the
environmental selection operator. Since we shall reference this particular strategy extensively
in other parts of this work (predominantly in Chapter 6), we mark the environmental selection
operation with Esel(Set,count), with the understanding that we refer to the procedure
described in [66] through which one can select a subset of maximum count individuals
from an original Set. In the context of Algorithm 1, at a given generation t, by applying the
environmental selection strategy as P(t +1) = Esel(P(t)∪O(t), |P(t)|), we obtain a direct
implementation of line 17. We mention that, unlike in NSGA-II, the creators of SPEA2
generally recommend that genSize < popSize which directly translates into |O|< |P|.

Environmental selection works by assigning a general rank to every individual x ∈ Set
and then by selecting those individuals that display the lowest values. This general rank
is a sum of two metrics, the raw rank r(x) (2.17) – a non-domination measure – and the
density d(x) (2.18) – a solution density measure that acts as a niching strategy. The raw
rank is computed by initially assigning a strength value s(x) to every individual x ∈ Set.
This value quantifies the number of individuals from Set that are Pareto-dominated by x and
is inspired by a similar mechanism proposed earlier in MOGA [58]. The raw rank assigned
to x is obtained by summing up the strengths of all the individuals in the population that
Pareto-dominate individual x, i.e.,

r(x) = ∑
y∈Set : y�x

s(y). (2.17)

The density d(x) associated with individual x is computed as the inverse of the distance to
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Figure 2.3: Example of the selection for survival strategy of NSGA-II for a toy example
consisting of a MOOP with two objectives and a population of size 10

the k-th nearest neighbor, i.e.,

d(x) =
1

distE(x,k)+2
(2.18)

where distE(x,k) is the Euclidean distance in objective space between individual x and its
k-th nearest neighbor, where k =

√
|Set|.

When wishing to adapt the original computation cycles to the general EA template from
Algorithm 1, both NSGA-II and SPEA2 generally require:

• a random selection of the parents inside the SELECTPARENTS function since the
highly elitist nature of both algorithms does not demand an increased selection
pressure;

• the usage of two specialized genetic operators (proposed by Deb), simulated binary
crossover (SBX) [67] and Polynomial Mutation polynomial mutation (PM) [68],
inside the CREATEOFFSPRING function.

28



2.3. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

• a SELECTFORSURVIVAL function that implements the appropriate highly elitist
Goldberg-inspired selection strategy.

After more than a decade since their emergence, both NSGA-II and SPEA2 have fully
proven their effectiveness and are still widely used in various application domains. In our
opinion, these two algorithms are, by far, the most representative approaches of successful
early-day / classical MOEAs that are exclusively centered around the implementation
of elitism via the (µ + λ ) selection for survival strategy. Moreover, both approaches
propose similar, two-tier, selection for survival strategies that combine Pareto ranking (as the
primary quality measure) and solution crowding indices (as equality discriminants). These
Pareto-based selection for survival strategies / operators, viz. non-dominated sorting (for
NSGA-II) and environmental selection (for SPEA2), have themselves become undeniable
landmarks within the MOEA field as they have been incorporated in several other successful
algorithms.

Some special attention is also owed to the SBX and PM operators since they also became
extensively used by MOEAs and single-objective EAs alike.

The SBX operator must be applied on two parent individuals (not: xa and xb) in order
to obtain two offspring (not: ya and yb). The stated design goal of SBX is to replicate on
real-valued arrays a key characteristic displayed by the single-point crossover operator when
applied on binary encoded individuals: “the common interval schemata that exist between
the parents are preserved in the offspring” [69], i.e., the spread (in objective space) that
exists between xa and xb is likely to be preserved between ya and yb. SBX is based on a
continuous probability distribution P(α,β ) given by:

P(α,β ) =

{
α+1

2 β α , if β ∈ [0,1]
α+1

2
1

β α+2 , if β > 1
(2.19)

where the non-negative parameter α is the crossover index that controls the shape of the
probability distribution function. A large value of α (e.g., > 5) gives a higher probability
for creating near-parent offspring, a small value of α (e.g., <2) allows for the frequent
creation of offspring that are farther away from their parents and values of the crossover
index between 2 and 5 help SBX replicate the search behavior (i.e., probability distribution)
of the single-point crossover operator. The SBX crossover procedure contains three steps:

1. a number u ∈ [0,1] is randomly generated

2. the parameter δ is determined such that:

∫
δ

0
P(α,β )dβ = u (2.20)

3. the individual variable values of the offspring encoding are determined using the
formulae:
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ya
i =

1
2
(xa

i + xb
i −δ |xa

i − xb
i |)

yb
i =

1
2
(xa

i + xb
i +δ |xa

i − xb
i |)

where i ∈ {1, . . . ,n}

(2.21)

In time, applying SBX with a crossover index of 20 has become the standard in both
NSGA-II and SPEA2. This is because creating near-parent solutions is advantageous in the
context of a highly elitist selection for survival mechanism both in the initial part of the
algorithm, (when the parents are spread, the generated offspring will be too→ exploration),
as well as towards the end of the optimization run (when the parents are close, the generated
offspring will have the overall effect of intensifying the search).

The PM operator is applied on a given individual x in order to obtain a changed (mutated)
encoding xmut. The mutation rule for every real-valued component (variable) i ∈ {1, . . . ,n}
in the encoding is:

xmut
i =

{
xi +ψi(uDi− lDi) , with probability pmut

xi , with probability 1− pmut
(2.22)

where

ψi =

{
(2r)

1
γ+1 −1 , if r < 0.5

1− (2−2r)
1

γ+1 , otherwise
(2.23)

and r is a random number uniformly distributed in [0,1], lDi and uDi are the lower and upper
bounds of Di – the domain of variable xi, γ is the mutation distribution index and pmut is the
mutation rate. The literature recommended values for γ and pmut in NSGA-II and SPEA2
are 20 and 1/n.

2.3.4 DEMO and GDE3
differential evolution (DE) was introduced by Storn and Price in [70] as a very efficient,
population-based, global stochastic optimization method. By design, DE is especially
suitable for optimization problems that have real-valued objective functions.

When comparing with most other evolutionary paradigms, DE is motivated more by
practical aspects than by biological ones. As such, DE proposes the replacement of the
standard evolutionary model (parent selection→ recombination→ mutation) with a more
streamlined approach able to deliver both faster convergence and robustness. At each
generation, mutation and crossover are applied in order to obtain one offspring (trial vector)
for each member of the current population (i.e., no parent selection is required). Generally,
in order to construct a trial vector for a given parent individual x, three or more individuals
are chosen from the current population. The only constraint is that they must be different
than the parent x. Then, a special DE mutation operator is applied on the selected individuals
in order to create a mutant individual. Finally, a standard crossover operator (binary or
polynomial) is applied on the resulting mutant and on the original parent x in order to
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produce the trial vector (i.e., the offspring). If the fitness of the offspring is better than that
of its parent, the former will replace the latter in the population of the next generation.

Given the “outstanding” results displayed by DE on single-objective optimization prob-
lems [71], several researchers attempted to exploit the very good search performance exhib-
ited by some DE operators and introduce MOEAs that incorporate DE strategies. Among
them, the most noteworthy early attempts were Differential Evolution for Multiobjec-
tive Optimization (DEMO) ([72]) and the third version of the Generalized Differential
Evolution Optimization (GDE3) method ([73]). The approaches are very similar as they
both propose the replacement of the SBX and PM operators with various DE variants,
while maintaining the elitist Pareto-based selection for survival mechanisms introduced
by NSGA-II and SPEA2. Some convergence benchmark tests, like [72] and [74], have
show that even this rather straightforward application of DE in MOEAs helps to explore the
decision space far more efficiently for several classes of MOOPs.

Given the mentioned particularities of the DE evolutionary model, the implementation
of the DEMO and GDE3 computational models using the general EA template from
Algorititm 1 would require:

• a generational strategy ensured by the setting popSize = genSize;

• a SELECTPARENTS function that at every call (during a given generation) will
return a different member of the parent population and the individuals required for
construncting the mutant and the trial vectors;

• a CREATEOFFSPRING function that uses DE mutation and crossover operators to
create an offspring trial vector and that will return (I) either this offspring individual
if it Pareto-dominates its parent, (II) either the parent individual if it Pareto-dominates
the offspring, or (III) both offspring and parent individuals if they are in a Pareto
non-domination relationship;

• a SELECTFORSURVIVAL function that implements either the non-dominated sorting
procedure of NSGA-II or the environmental selection mechanism proposed by SPEA2.

2.3.5 MOEA/D
As it may have become obvious by now, the emergence of usable MOEAs in the early 90’s
has also started a veritable rift in the MOO community. Some chose to exclusively focus on
these new stochastic approaches as they generally proved able to deliver quality PNs after
single runs, while others continued to work and develop the more classical solving methods
described throughout Section 2.2.

Although some attempts to bridge the two communities have been made over the years
(e.g., the MOGLS approach from 2002 of Jaszkiewicz [75]), the first very successful
approach that combined methods from both sides was the Multiobjective Evolutionary
Algorithm based on Decomposition (MOEA/D) proposed by Zhang and Li in 2007 [76].
The algorithm explores the traditional a posteriori MOO strategy of decomposing the original
MOOP into several single-objective sub-problems that are obtained by applying objective
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aggregation methods that use different weighting vectors. However, MOEA/D applies this
strategy inside an evolutionary computation framework that tries to simultaneously solve
all the single-objective sub-problems during the run. The idea is that each individual in the
population is interpreted as the solution to one or more of these sub-problems and after the
end of the optimization, provided that the weighting vectors were well chosen, the union of
all these individuals (i.e., the current population) should offer a good approximation of the
PS. One key feature of the evolutionary cycle of MOEA/D is that it imposes neighborhood
restrictions on potential parent individuals meaning that a given sub-problem SPi is optimized
by only considering those individuals who represent solutions to sub-problems defined using
weighting vectors that are in the vicinity of the weighting vector that defines SPi. The
vicinity of each weighting vector is determined based on the Euclidean distance.

It is noteworthy that MOEA/D proposes a totally different paradigm to multi-objective
optimization than most of the previous evolutionary approaches as its computation cycle is
not directly regulated by a Goldberg-inspired elitist selection for survival scheme. Instead,
MOEA/D relies on:

1. suitable objective aggregation functions like weighted sum (2.9), weighted Tscheby-
cheff (2.10) or the boundary intersection method proposed in [36] for defining mean-
ingful sub-problems that lead the search towards the PS of the MOOP;

2. well chosen weighting vectors and neighborhood sizes for niching the search and
discovering well-spread PNs.

When it comes to the genetic operators used during the search, the first MOEA/D
proposal mentions SBX and PM, while in [77], the authors also describe a DE based variant,
namely MOEA/D-DE. The general optimization framework proposed by MOEA/D has
proven quite successful, especially when dealing with problems with complicated Pareto-
optimal sets, and a version of MOEA/D-DE [78] won the CEC2009 Competition dedicated
to multi-objective optimization. As such, this MOO optimization method is considered
state-of-the-art by many researchers in the field.

Apart from the DE related aspects, a concrete (but by no means optimal) implementation
of MOEA/D-DE given the general EA template from Algorithm 1 demands:

• a codification of individuals that stores both the typical n-dimensional binary / real-
valued variable array as well as the weighting vector used for aggregating objectives
and thus for defining the sub-problem the individual is meant to solve;

• an INITIALIZEPOPULATION method that initializes both the random initial popula-
tion (i.e., P(0)) as well as all the (evenly spread) weighting vectors required during
the search process;

• a DE-based SELECTPARENTS function that is neighborhood-bound;

• a DE-based CREATEOFFSPRING function that assigns to each offspring trial vector
the weighting vector of its parent;
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• an EVALUATEFITNESS method that, based on the corresponding weighting vector,
computes the fitness value associated with an individual via the preselected objective
aggregation function;

• a SELECTFORSURVIVAL function that admits offspring trial vectors in the popu-
lation of the next generation, provided they are better at solving the defined sub-
problems than current members of the population (N.B. After the selection process,
each original weighting vector must be represented in the population of the next
generation).

2.3.6 Remarks Regarding MOEAs
The introduction in 2002 of what Coello Coello [64] labeled as “second generation”
MOEAs, viz. NSGA-II, SPEA2 and PAES, also marked the start of an age where these
MOO solvers became ever more poplar in a wide range of application domains [47]. Since
any application of a general MOEA on a given real-life scenario usually highlights the
need for improvements, modifications, hybridization with other search techniques, the wide
spread usages of MOEAs triggered a veritable publishing boom in the field. Therefore,
by December 2014, Google Scholar reports over 12.900 citations for NSGA-II, over 4200
citations for SPEA2, over 550 citations for GDE3 and DEMO combined and over 1000
citations for MOEA/D. Furthermore, in the time period taken to conduct the research re-
ported in this thesis (i.e., 2011-2014), Google Scholar reports over 450 new publications
that contain either “multi-objective evolutionary algorithm”8 or “MOEA” in their title.

Obviously, when confronted with such a scholarly deluge, one could not hope to cover
in the few pages of the previous sections all the trends and flavors in the field. However,
we have tried to present the three major directions and milestones of MOEA research (i.e.,
Pareto-based elitism, DE-based search, decomposition-based EAs) by describing their most
well-known and successful exponents via a unitary EA template. The primary aim of this
approach was to familiarize the reader with the current state-of-the-art in MOEA design and
to provide a rather simple but nevertheless accurate placement of these methods within the
much larger family of evolutionary-inspired optimization techniques.

The secondary aim of our MOEA presentation layout was to try to separate the gen-
eral underlying (Darwinian-inspired) search/optimization strategy from the particularities
imposed by the MOO application domain. This is because the domain-specific parts (i.e.,
Goldberg-inspired selection for survival strategies, external archives, simultaneously solving
linked decomposition problems, etc) can also be fitted on top of other well-known population
based (bio-inspired) global optimization paradigms like ant colony optimization [79] particle
swarm optimization (PSO) [80] and artificial immune systems (AIS) [81]. A posteriori
multi-objective optimization solvers have also been developed on top of trajectory-based
stochastic methods like simulated annealing (SA) [82] and some successful MOO strategies
even use burst (i.e., random search) algorithms [83] as solution generators.

While two of the three MOO enhancements we propose are specifically tailored for the
much more popular MOEA paradigm, the on-the-fly surrogate-modeling improvements

8We also considered the alternative spelling “multiobjective”.

33



CHAPTER 2. MULTI-OBJECTIVE OPTIMIZATION

we discuss in Chapter 4 are inherently suitable for virtually any MOO solving strategy
(including the classical methods presented in Section 2.2). The new solution assessment
strategy we describe in Section 3.3 can also be used to evaluate numerous (a posteriori)
MOO techniques. In order to mark the difference between MOEA-specific parts and more
general ideas, whenever referring to an a posteriori general MOO solver, we shall use the
term multi-objective optimization algorithm (MOOA).
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Chapter 3

Test Problems and Performance
Evaluation

3.1 Test Problems

3.1.1 Artificial Test Problems
Over the years, several artificial MOOPs sets have been proposed by various practition-
ers/scientists from the field of multi-objective optimization with the goal of providing
general benchmarks for evaluating the (comparative) performance of MOOP solvers. In
time, some of these artificial problems have become a more or less standard way of evalu-
ating the general performance of any new MOOA and its behavior with regard to specific
domain challenges like concave PFtrues, disconnected PFtrues, biased search spaces, etc.

The main advantage of using an artificial problem is that the PFtrue (or an equivalent
near-perfect finite approximation) is known and that the level of difficulty can be well
estimated, if not even fully understood. As such, several artificial problems can be easily
aggregated in order to construct "meaningful" problem sets for benchmarking MOOAs. The
importance of having "meaningful" test scenarios is quite intuitive as several authors (e.g.,
[84] and [13]) warn that results obtained on "pedagogical"/"academic"/"toy" problems offer
very little insight into real-world performance. A good benchmark MOOP problem set
should contain problems with various PF characteristics and with wide-ranging degrees of
difficulty.

For the purpose of evaluating the multi-objective optimization techniques used through-
out this work, we rely on MOOPs from a set of 25 artificial problems that we have selected
from five different well-known1 sources. These problems are:

• KSW10 - a classic (but not trivial) MOOP based on Kursawe’s adaptation [85] of two
functions provided by Ackley and Schwefel;

• ZDT3 and ZDT6 from the problem set described in [86];

1In December 2014, the articles describing these MOOP problem sets had over 4500 citations (in total)
according to Google Scholar.
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Table 3.1: Characteristics of the first 16 artificial MOOPs we compiled in the benchmarking
set

MOOP V
ar

ia
bl

e
#

O
bj

ec
tiv

e
#

Se
pa

ra
bi

lit
y

M
ul

tim
od

al
ity

Geometry Challenges

DTLZ1 7 3 3∗ 3 linear surface many-to-one
DTLZ2 12 3 3∗ 5 concave surface many-to-one
DTLZ3 12 3 3∗ 3 concave surface many-to-one
DTLZ4 12 3 3∗ 5 concave surface biased, many-to-one
DTLZ6 12 3 3 5 concave 3D curve biased, many-to-one
DTLZ7 22 3 3 3 disconnected surfaces -
KSW 10 2 3 3 concave, disconnected -
WFG1 6 2 3 5 convex, mixed biased
WFG2 6 2 5 3 convex, disconnected -
WFG3 6 2 5 5 line -
WFG4 6 2 3 3 concave -
WFG7 6 2 3 5 concave biased
WFG8 6 2 5 5 concave biased
WFG9 6 2 5 3 concave biased
ZDT3 10 2 3 3 disconnected 2D curve -
ZDT6 10 2 3 3 concave curve biased, many-to-one

• DTLZ1, DTLZ2, DTLZ4, DTLZ6, and DTLZ7 from the problem set proposed in
[87];

• WFG1, WFG2, WFG3, WFG4,WFG7, WFG8, and WFG9 from the problem set
proposed in [88];

• all nine problems (LZ09-F1, LZ09-F2, ..., LZ09-F9) from the problem set described
in [77];

and they are meant to provide a rather high average degree of difficulty although neither
problem contains any result-related constraints – i.e., constraints of the type (2.2) or (2.3).
The constrained problems we use in our tests are the five real-life industrial MOOPs
described in the next section. We have chosen this segregated approach because we mainly
employ the artificial problems to test the general/default search behavior of the studied
MOOAs without considering the impact of various constraint handling strategies. This
is because many of these strategies (like the very widely used penalty functions [89]) are
algorithm-independent [90] and can be retrofitted with ease to nearly all MOOP solvers.

In Table 3.1, we compiled from [88] six general characteristics to provide insight into
the complexity of each of the first thirteen artificial problems we integrated in our problem
set. The characteristics we selected are:
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1. Variable # - the length of the variable vector (i.e., n - the size of the decision space).

2. Objective # - the number of objectives featured by the MOOP [i.e., m from (2.1)].

3. Separability - as defined by Huband et al.2 in [88], is the property of the MOOP
to contain only single-objective functions that can be individually minimized by
independently (one at a time) optimizing each variable xi ∈ x, i ∈ {1, . . . ,n} , x ∈ Dn .
In [88], the authors state that "finding at least some points on the Pareto optimal
front for a separable problem tends to be simpler than for an otherwise equivalent
nonseparable problem."

4. Multimodality - is the property of the MOOP to contain at least one single-objective
optimization function that has several local optima (i.e., that is multimodal). Multi-
modal MOOPs are generally considered more difficult to solve than problems that
only feature unimodal objective functions.

5. Geometry - concerns the shape of the PFtrue. This can be: linear, convex, concave,
disconnected, 2D/3D curve, surface. Some MOOAs are known to have difficulties
exploring concave and disconnected PFs so it is very important to integrate MOOPs
with these types of fronts when constructing challenging problem sets.

6. Challenges - are specific design features that make finding good PNs harder. The most
common challenges are biased search spaces (vectors are more densely distributed
around certain parts of the PS or further away from the PS) and many-to-one mappings
(O(xa) = O(xb) with xa,xb ∈ Dn and xa 6= xb).

In [88] it is stated that although DTLZ1 – DTLZ4 have non-separable objectives, the
objectives of these problems are classified as separable because optimizing them one variable
at a time will identify at least one of the multiple global optima from PFtrue that are induced
by the many-to-one characteristic.

In literature, very little information is provided about the shape (spatial distribution) of
the PSs corresponding to the MOOPs from Table 3.1 although for some (e.g., the ZDT set
from [86]) the PSs are known to have very simple shapes.

Okabe et. al. [93], were the first to argue the need to construct MOOPs with specifically
designed PSs. Li and Zhang were some of the few who built on this idea and in [77] they
proposed nine MOOPs with arbitrarily prescribed complicated PS shapes: the LZ09 problem
suite. N.B. The fact that problems from this test suite generally display complicated PSs
does not necessarily mean that they also display a complicated geometry of their PFtrue
shapes.

The problem LZ09-F6 has three objectives and all the other problems have two. The
problems LZ09-F7 and LZ09-F8 have 10 variables, while the rest have 30. The PFtrue shape
of LZ09-F1 – LZ09-F5, LZ09-F7, and LZ09-F8 is a convex 2D curve. The PFtrue shape of
LZ09-F9 is a concave 2D curve in [0,1]2, the PFtrue shape of LZ09-F6 is a concave surface

2In EA literature (e.g.,[91], [92]) separability is usually defined in a less restrictive form by demanding
that the objective functions should not contain any non-linear interactions between variables.
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in [0,1]3, and the PFtrue shapes of the other 7 problems are convex 2D curves in [0,1]2.
Although separable (according to the definition in [88]) and easy to solve analytically, the
LZ09 problems have proven extremely difficult for iterative approximation methods and
they are quite challenging for most state-of-the-art MOOAs. Because of this, we have added
the entire LZ09 suite to our problem set.

3.1.2 Industrial Test Problems
Because our research efforts are primarily motivated by practical applications of multi-
objective optimization, analyzing MOOA performance on artificial problems is mainly
intended to help with the algorithm design/prototyping and parameter tuning stages. The
final goal is to obtain robust methods that are able to successfully tackle real-life MOOPs.

As mentioned in Chapter 1, the main motivation of this work lies in trying to improve
the design process of electrical machines. This process generally contains at least an opti-
mization of the geometric dimensions for a pre-selected topology. For example, Figure 3.1
presents the cross-section of an electrical drive featuring a slotted stator with concentrated
coils and an interior rotor with buried permanent magnets. Some of the geometric param-
eters of this assembly (e.g., dsi,bst ,bss, etc.) are also presented. Depending on the actual
design goal, some of these parameters need to be varied in order to achieve a cost-efficient
motor that displays good operational behavior. In other cases, because of the fast moving
international raw materials market, motor manufacturers want to investigate the behavior
of target parameters with regard to different types of materials. Sometimes, a comparative
analysis of different motor topologies is also required during the design stage. As a result,
we are dealing with industrial multi-objective optimization scenarios where, apart from sev-
eral conflicting objectives, there is also an increasing number of input parameters (variables)
an electrical engineer needs to consider when optimizing a motor.

Industrial MOOPs from the field of electrical drive design are particularly challenging
because of the way the performance of a design is assessed. Thus, even though the physics
behind the process is known for centuries, the behavior of the materials used to construct the
electrical drive cannot be modeled linearly and the evaluation of an elicited design is done
via one or more computationally-intensive FE simulation. These simulations are solving
non-linear differential equations in order to obtain the values of the target parameters
associated with the design parameter vector (i.e., x ∈ Dn). These target parameters are the
objectives functions [as defined in (2.1)] and the constraints [as defined in (2.2) and / or
(2.3)] of the optimization. Before performing the FE simulations, an intermediate modeling
stage is required in order to construct, starting from the design parameter vector, a 2D or 3D
model and the corresponding mesh. This mesh of the electrical drive will act as input for the
no-load FE simulation and several FE simulations where various current-load configurations
are considered. Some problem-dependent post-processing is also required in order to obtain
the values of the target parameters. The full evaluation process is presented Figure 3.2 and
can take from 2 minutes to 20 minutes even when computing all the required FE simulations
in parallel.

In all our industrial MOOPs tests, we used the software package FEMAG™[94] to
perform the FE simulations (i.e., calculation of 2D problems on electromagnetics) – all the
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(a) Stator cross-section for IndMOOP1 (b) Rotor cross-section for IndMOOP1

Figure 3.1: Cross-sections with the geometric dimensions of the stator and the rotor for a
motor with an interior rotor topology with embedded magnets

tasks with light red backgrounds from Figure 3.2.
For the present thesis, we consider five electrical drive design MOOPs. While the first

one describes, a more or less, standard problem in the field and we can provide more detailed
information regarding it, the other four regard current "work in progress" at the LCM which
can lead to patent applications or commercial products. Therefore, we can only give limited
information concerning the latter industrial problems.

IndMOOP1 features a motor with an interior rotor topology with embedded magnets.
The stator and rotor cross-sections are presented in Figure 3.1. The corresponding design
parameter vector has a size of 6 and is given by:

x =
(

hm, αm, er, dsi, bst , bss
)

(3.1)

where all parameters are illustrated in Figure 3.1 except for αm, which denotes the ratio
between the actual magnet size and the maximum possible magnet size as a result of all other
geometric parameters of the rotor. The goal is to simultaneously optimize four unconstrained
objectives:

o1(x) = −ηed(x) – where ηed(x) is the efficiency of the electrical drive. Since we
have formulated (2.1) as a minimization problem, the simplest option is to minimize
negated efficiency values.

o2(x) = TcogPP(x) – the peak-to-peak value of the motor torque for no current excita-
tion. This parameter shows the behavior of the electrical drive at no-load operation
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Figure 3.2: The general stages of the electrical drive performance evaluation process in the
case of the considered industrial MOOPs.
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and should be as small as possible in order to minimize noise and vibrations that are
the result of torque fluctuations.

o3(x) = TC(x) – the overall cost of the materials necessary for building the motor.
Minimizing this objective is a common task in most electrical drive MOOPs we deal
with.

o4(x) = TrippPP(x) – the equivalent of TcogPP(x) at load operation. The values of this
objective should also be as small as possible.

The evaluation of one motor design in the case of IndMOOP1 requires 6 FE simulations,
each with a different current-load.

IndMOOP2 concerns a motor with an exterior rotor. The design parameter vector
contains 7 geometric dimensions. The aims of the optimization is to minimize the total
losses of the system at load operation [o1(x)] and the total mass of the assembly [o2(x)].
Simultaneously, other characteristics like cogging torque and manufacturing costs must
be maintained below a certain threshold. In the case of this MOOP, the first objective is
constrained [i.e., internal result-related constraint as described in (2.2)] and the second
is unconstrained. The problem also contains an external result-related constraint, c1(x)
imposed on the overall manufacturing costs of a given design [as described in (2.3)].

IndMOOP3 is also related to a motor topology that features an exterior rotor. The
design parameter vector has a size of 10 and the problem features four constrained objectives:
the total axial length of the assembly [o1(x)], the total mass of the assembly [o2(x)], the
ohmic losses in the stator coils [o3(x)] and the total losses as a result of material hysteresis
and eddy currents in the ferromagnetic parts of the motor [o4(x)].

IndMOOP4 and IndMOOP5 are both formulated for the same motor that features an
interior rotor topology. Apart from the size of the considered search space Dn, the only
major difference between the two MOOPs is that the first one evaluates the performance of
the assembly at 1500 rotations per minute (RPM) and the second one evaluates it at 3000
RPM. In both cases the parameter vector contains 22 real-valued variables that must be
configured in order to optimize four unconstrained objectives that regard efficiency and
production costs. The evaluation of each design for IndMOOP4 and IndMOOP5 requires
18 different current-load FE simulations.

All the five industrial MOOPs suffer (some more than others) from the formalization
constraints described in Section 2.1.2. This means that, under various conditions, the result
of the performance evaluation process described in Figure 3.2 can also be the labeling of
the input variable vector as an error / infeasible design.

3.2 Performance Measures for MOOPs

3.2.1 Primary PN Quality Indicators
From a mathematical perspective, in the case of single-objective optimization problems,
assessing the performance of (iterative) solving techniques largely requires just to analyze
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the best value found during the searches – i.e., the minimal value in the case of minimization
problems. When using most of the classical MOO optimization methods discussed in
Section 2.2.7 – with the notable exception of a posteriori techniques, performance analysis
was also as simple as the DM having to decide if the resulting solution presented the
acceptable trade-offs.

When considering a posteriori MOO methods, since the expected general solution of
the MOOP is more complicated as it comes in the form of a set of trade-off solutions (the
PS) that must be approximated, assessing performance is also far more challenging. The
goodness of a PN approximation produced by a MOOA boils down to two characteristics of
its objective space representation (i.e., the corresponding PF):

1. Convergence - shows how close (in Euclidean space, for instance) is the PF to the
PFtrue of the problem to solve.

2. Diversity - indicates how well-spread across the PFtrue are the solutions from the
given PF .

Figure 3.3 gives a summary illustration why simultaneously achieving both good conver-
gence and good diversity is of the utmost importance in the case of MOOAs.

Over the years, several quality indicators aimed at measuring the two criteria have been
proposed. In [95], the authors propose a classification showing that some indicators are
designed to predominantly quantify convergence or diversity and a few take into account
both criteria. In light of this, the Pareto quality indicators that, over the years, have gained
the strongest foothold in the MOO community can be labeled as:

• convergence quantifiers: the epsilon measure (not: Indε ) [96], the generational
distance (not: IndGD) [97];

• diversity quantifiers: the spread metric (not: IndS) [69] and the generalized spread
metric (not: IndGS) [98]

• both convergence and diversity quantifiers: the inverse generational distance (not:
IndIGD) [97] and the IndH [99].

Let us consider an arbitrary MOOP, defined as in (2.1), with a known Pareto-optimal set
PS, whose objective space representation is PFtrue with |PFtrue|= u and a candidate Pareto
non-dominated set PNc, whose objective space representation we mark by PFc with |PFc|=
v. The previously listed primary quality indicators determine if PNc is a good approximation
of PS in the following manner:

• The epsilon measure aims to quantify the smallest distance ε ∈ R needed to translate
every solution from PFc such that it Pareto dominates at least one solution from PFtrue.
More formally:

Indε(PFc) = inf{ε ∈ R | ∀p∗ ∈ PFtrue, ∃pc ∈ PFc : pc �ε p∗}
where pc �ε p∗ ⇐⇒ pc

i < ε + p∗i ∀i ∈ {1, . . . ,m}
(3.2)

A value as small as possible of Indε(PNc) is obviously preferred as it indicates a very
high quality Pareto non-dominated set.
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Figure 3.3: Example of PFs corresponding to three different PNs of 21 individuals and
the way they compare to the PFtrue of the MOOP: the PF corresponding to PN no. 1
displays good convergence and bad diversity, the PF corresponding to PN no. 2 displays
bad convergence and good diversity, and the PF corresponding to PN no. 3 displays both
good convergence and good diversity.

• The generational distance indicator measures how far from PFtrue are the individuals
that make up PFc by computing:

IndGD(PFc) =

√
∑pc∈PFc distE(pc,PFtrue)

v
(3.3)

where distE(pc,PFtrue) is the Euclidean distance in objective space between the vector
pc and its nearest neighbor from PFtrue. Smaller values of IndGD are also preferred
and a value of 0 indicates that all the members of the examined PN are also members
of PFtrue.

• The IndS indicator is generally used to compute the spread of Pareto fronts when
considering MOOPs with only two objective functions via the formula:

IndS(PFc) =
e1 + e2 +∑

v−1
i=1 |di− d̄|

e1 + e2+(v−1)d̄
(3.4)
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where di, i < v, is the distance between any two vectors from PFc that are neighbors, d̄
is the average of these values and e1 and e2 are the distances between the correspond-
ing best (extreme) objective-wise values of PFtrue and PFc . Figure 3.4 contains a
graphical representation of all the individual components required for the computation
of IndS when considering the usual Euclidean distance measure.

Figure 3.4: An illustration of the various distances required to compute IndS.

• The IndGS indicator is an extension of IndS for MOOPs that have more than two
objective functions and is computed using the formula:

IndGS(PFc) =
∑

m
i=1 d(p{∗,i},PFc)+∑p∗∈PFtrue |d(p

∗,PFc)− d̄|
∑

m
i=1 d(p{∗,i},PFc)+u∗ d̄

(3.5)

where
d(p∗,PFc) = min

p∗∈PFtrue,pc∈PFc,p∗ 6=pc
||p∗−pc||2 (3.6)

and

d̄ =
1
u ∑

p∗∈PFtrue

d(p∗,PFc). (3.7)

The vector p{∗,i} ∈ PFtrue is the one that displays the best value for the single objective
oi(x),x ∈ Dn. The distance d(p{∗,i},PFc) is computed in a similar fashion to (3.6).
As with the original IndS, smaller values of IndGS are preferred.

• The IndIGD indicator computes the distance between PFtrue and PFc as:

IndIGD(PFc) =

√
∑p∗∈PFtrue distE(p∗,PFc)

u
(3.8)

where distE(p∗,PFc) is the Euclidean distance between the Pareto-optimal objective
vector p∗ and its nearest neighbor from PFc. Smaller values of this indicator signal a
better performance.
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• The basic hypervolume indicator (not: Indb
H) measures the amount (volume) of

objective space that is dominated by PFc. This is achieved by constructing a union of
the individual volumes of objective space that are dominated by each member of PFc.
For an arbitrary pi ∈ PFc, i≤ v, the individual objective space volume it dominates
can be defined as the hypercube hi that has pi and pref as its diagonal corners. pref is
called an anti-optimal reference point and it has the property that either pref � pnad

or pref = pnad. Formally:

Indb
H(PFc) = volume

(
v⋃

i=1

hi

)
(3.9)

When dealing with a MOOP with only two objectives, the visualization of Indb
H is

easy, as shown in Figure 3.5. In this particular case, the hypercube components are
rectangles in objective space and the hypervolume associated with PNc is the area
dominated by this approximation set.

Since the numeric value of Indb
H is heavily dependent on the choice of the anti-optimal

reference point pref, it makes sense to compute a normalized version (not: IndH) as
suggested by Veldhuizen in [57]:

IndH(PFc) =
Indb

H(PFc)

Indb
H(PFtrue)

(3.10)

In the case of IndH , a value of 1 denotes the fact that PFc is a perfect approximation
of PFtrue while a value of 0 indicates very bad convergence (i.e., every element in
PFc is dominated by the chosen reference point pref). IndH(PFc) = 0.73 shows that
73% of the objective space volume that is dominated by PFtrue is also dominated
by PFc. A 2003 study of Fleischer [100] shows that, besides being able to consider
both the convergence and diversity criteria, IndH also presents the added advantage of
having a monotonic convergence behavior. This means that there is a mathematical
proof that the higher the IndH associated with a PF the closer that front approximates
PFtrue. To our knowledge, at present time, this is the only primary quality indicator
for which such a valuable theoretical result exists.

Since all the primary quality indicators rely in some manner on Euclidean distances, it
makes sense to apply them on normalized objective values.

It is also important to remark that all of the above indicators are applied on a single
candidate PF in order to provide an estimation of the latter’s quality (i.e., similarity to
PFtrue). Because of this they became known in MOO as unary quality indicators.
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Figure 3.5: Given an arbitrary reference point pref, the hypervolume associated with PFc is
shaded in gray – darker shades correspond to regions that are dominated by more points
from PFc. The area that is dominated by PFtrue and not by PFc is shaded in red.

3.2.2 Considerations regarding MOO Quality Assessment

Since non-deterministic techniques have proven to be the best a posteriori MOO solvers,
using only the previously described primary quality indicators for measuring algorithmic per-
formance does not suffice. This is because multiple executions of the same non-deterministic
algorithm over the same problem can produce different results. Therefore, a general single-
objective EA standard was also adopted by the MOO community. It advocates that the
base performance of a particular stochastic algorithm over a given problem is given
by quality indicator results averaged over several independent runs (at least 30, usually
100). Furthermore, when comparing between different algorithms, some sort of statistical
analysis should usually be applied in order to see if the observed differences between the
central tendencies are significant or just the result of inherent randomness.

Unfortunately the direct translation of performance assessment principles from stochastic
single-objective optimization to MOO is not as complete / meaningful as one would have
hoped. This is because most quality indicators can not be implicitly used to make a clear
comparison / choice between different PNs. For example, when given two possible PS
approximations, PFa and PFb, a study from 2003 of Zitzler et al. [101] provides compelling
arguments that no unary quality indicator is able (from a mathematical perspective) to
undisputedly determine a winner. This means that even if Indε(PFa)< Indε(PFb) and / or
IndIGD(PFa)< IndIGD(PFb) and / or IndH(PFa)< IndH(PFb), we cannot say (based solely
on these indicator values) that PNa “is better than” PNb – i.e., that every element of PNb is
Pareto-dominated by at least one element from PNa and PNa 6= PNb. In order to make such
a hard statement, a visual inspection (or a specialized point by point comparison) of the two
PNs must also be carried out.

Nevertheless, the same study by Zitzler et al. [101] also shaded some new light on
the usefulness of IndH . In accordance with its unique monotonic property, the IndH does
provide the highest comparative strength among all unary indicators in the sense that:
given the two sets, PNa and PNb, if IndH(PNa)> IndH(PNb), one is assured that PNa “is
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not worse than” PNb, i.e., there are elements in PNa that are not Pareto-dominated by
any element in PNb. Coupled with the highly practical interpretation of this metric that
higher values indicate that larger sections of objective space are being dominated by the
analyzed PF , the above summarized findings have made many researchers – including us –
to consider the IndH as the main / most trustful unary PN quality indicator. In light of this,
most of the comparisons made throughout this thesis are based on the scalar values
produced by the IndH indicator.

Confronted with the fact that unary performance indicators didn’t seem suitable for
ranking competing PFs, many scientists also investigated binary quality indicators. Having
been specifically designed for comparing the quality of two different fronts, quantifiers
like the binary ε-indicator [101], the binary hypervolume indicator [99] and the coverage
indicator [102] are generally considered better metrics for MOO by several researchers
[101] [64]. The major downside is that when applying these indicators on a given PN pair,
two values must be computed because usually the result obtained when comparing PNa with
PNb is different than the one obtained when comparing PNb with PNa (i.e., binary indicators
are sensitive to the input order). This means that the number of indicator values that must be
considered during a comparison is not linear but quadratic in the number of PNs one wishes
to compare. On top of this, most binary measures are far more costly to compute than their
unary counterparts. When also factoring the general demand to perform several independent
runs for each experiment (optimization) and to perform statistical significance tests, it is
easy to see why the usage of binary quality indicators, although more widely spread, has
not become generalized within the community.

Apart from the quality of the generated solution (i.e., PN and associated PF), two
other common criteria also need to be considered when analyzing the performance of a
posteriori MOOAs:

• convergence speed - the physical time required by the algorithm to reach a PN of
acceptable quality;

• generality - the ability of the algorithm to display a good convergence behavior over
a wide range of MOOPs.

These three quality criteria can be used to evaluate all MOOAs. For example, the best
solution to any MOOP can be obtained by performing a very fine-grained grid search over
the entire variable space Dn. Grid searches also score very high on the generality scale as
they can be applied in any optimization context. However, the excessively poor convergence
speeds they exhibit, make them useless in nearly all cases. The very good MOOAs display
a carefully crafted balance across all three quality criteria.

When only considering iterative optimization methods, and especially non-deterministic
ones, there is a well established trend to measure convergence speed through the number
of (fitness) evaluations (not: nfe) that must be performed during the optimization in order
to reach good solutions. This approach generally makes sense as it can help to abstract
from the performance analysis factors like, the quality of the software implementation, the
general speed of implementation language, differences between hardware configurations,
etc. In the case of CIMOOPs, the huge physical time required for solving the problems is
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exclusively due to the very long duration of the fitness evaluation process. Hence, actively
trying to reduce the necessary nfe is the stated general goal of two of our three proposed
enhancements, namely the ones described in Chapter 5 and Chapter 6. When developing,
testing and fine tuning the new MOEAs proposed in Chapter 6, we were confronted with
the need for a fast and yet comprehensive strategy for evaluating the relative performance of
several algorithms over benchmark problem sets that contained several (>15) MOOPs. In
the end, because of the scarcity / lack of literature on the particular topic, in [1] we proposed
a nfe-centered methodology for assessing the general relative convergence performance of
MOOAs over large problem sets. In the next section we present an updated and slightly
improved version of this methodology.

3.3 A New Methodology for Evaluating MOOAs

3.3.1 Motivation

In Chapter 1 we stated that improving the general convergence speed of MOEAs used to
solve CIMOOPs is the main goal of this thesis. Now is the time to explain in detail what we
mean by this.

In the previous section we saw that measuring the convergence speed of a MOOA is
often reduced to the simple task of counting the nfe required to reach a PN of “acceptable
quality”. However, we have also seen that quantifying the quality of a PN is by no means
trivial. Consequently, deciding if a PN displays an “acceptable quality” is even more of
a challenge since this choice is also highly domain-dependent and subject to the DM’s
experience, tastes and feelings.

For instance, in the case of most publications from the field of (evolutionary) MOO,
acceptable quality means finding a PN that provides a near perfect approximation of PFtrue
whenever dealing with artificial test problems and known solutions. The quality of the
approximation is evaluated based on several quality indicators (like IndIGD, IndH , IndGS)
and some type of statistical significance testing. On a different note, when considering
real-life MOOPs, a newly found PN is likely to be labeled as “acceptable” if it contains a
few solutions that are not dominated by any other known Pareto-approximation that has
ever been discovered for the considered problem (i.e., if it expands the region of knowledge
/ feasibility). This is the case even if the new PN is actually a poor approximation of the
(yet) unknown PFtrue.

Given the computationally-intensive nature of the industrial MOOPs we aim to solve,
our opinion on PN acceptability is motivated by deeply practical considerations: a given
PNt produced by a MOOA after n f et fitness evaluations is acceptable if “is not worse than”
any other Pareto approximation that might have been obtained by a different algorithm after
also performing n f et fitness evaluations. Based on this statement and considering n f emax
the maximal number of fitness evaluations we are able (willing) to perform, enabling a
MOOA to produce acceptable PNs over a wide range of MOOPs for every n f et < n f emax
can be considered as a more explicit description of our main research goal.
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Although vague and somewhat scientifically naive3 at a first glance, starting from
this application-motivated perspective on PN quality assessment, in [1] we developed a
general ranking framework for multi-objective optimization algorithms. that can offer MOO
scientists and practitioners valuable insight regarding the relative performance of different
MOOAs and of different parameterization settings for a given MOOA.

3.3.2 Hypervolume-ranked Performance Curves
In order to introduce the new ranking strategy, we consider a toy scenario that contains four
MOOAs – Alg-A, Alg-B, Alg-C, and Alg-D – and test set of four artificial MOOPs – P1,
P2, P3, and P4. The goal is to evaluate the comparative performance of the four solvers on
the mini benchmark set. Focus shall fall on the convergence behavior of the four methods.
For each MOOA-MOOP pair we performed 25 independent runs and we allowed for 50000
fitness evaluations to be performed during each run.

The more or less standard approach for evaluating the comparative convergence of the
four MOOAs is to compute averages over the scalar results returned by a quality indicator
applied on intermediate run-time results. An intermediate result is the best-so-far PN
discovered by the solver – e.g., the current parent population / archive of an elitist MOEA.
Let us assume that the plots from Figure 3.6 display the average run-time IndH-measured
performance of the four algorithms on each individual MOOP. The measurements were
performed after every 100 fitness evaluations. Since the individual plots show that the
analyzed solvers perform quite differently across the considered problems, in order to
quickly evaluate the general performance of the MOOAs, in Figure 3.7 we also present
the average IndH-measured performance over the entire problem set. This latter plot is
extremely useful because usually it quickly indicates:

• the algorithm that generally tends to converge faster (i.e., Alg-D in this case);

• the algorithm that displays the best average performance at the end of the optimization
(e.g., Alg-C);

• which algorithms have a similar convergence behavior during (a certain part of)
the optimization run. In our case, Alg-D and Alg-B converge quite fast (average
IndH ≥ 0.7 after 15000 fitness evaluations) while Alg-A and Alg-C converge slower
but reach slightly better average results at the end of the runs (after 50000 fitness
evaluations).

The last remark is particularly important in the case of CIMOOPs. In practice, given a
limited nfe that can be performed, we would prefer Alg-D or even Alg-B over Alg-C and
Alg-A. On the other hand, if the execution of optimization run would not face any time / nfe
-wise restrictions, we would prefer Alg-C.

Nevertheless, the IndH plot from Figure 3.7 is also misleading as, like the result of any
averaging operation, it masks very good or very bad performance. For example the fact that

3Our redefined research goal seems to ignore the famous No Free Lunch Theorem of Wolpert and Macready
[103].
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Figure 3.6: Run-time IndH-measured performance on the four MOOPs from the toy bench-
mark set

all four MOOAs are eventually able to “fully converge” (i.e., reach a IndH value of ≥ 0.99
for nfe=50000) 4 on one MOOP is totally concealed by the averaging plot. The plot also
indicates that after 40000 fitness evaluations all four MOOAs reach IndH values between
0.85 and 0.91. Hence, we might be led to believe that all methods generally produce largely
similar Pareto approximations for nfe=40000. In fact, at this stage of the optimization runs:

• the very good performance of Alg-A on P1, P2 and especially P3 masks the poorer
performance of this MOOA on problem P4;

• the very good performance of Alg-B on P1, P2 and P4 masks the very poor perfor-
mance of this MOOA on problem P3;

Of course, on our toy benchmark set, both shortfalls can easily be overcome by perform-
ing a visual / numerical inspection of all the individual MOOA-MOOP IndH values after
40000 and 50000 fitness evaluations. Nevertheless, when rigorous performance compari-
son contexts (with tens of MOOPs and several MOEAs) are concerned, this case-by-case
comparison quickly becomes very cumbersome, especially when wanting to factor in the

4We use this rather lax and arbitrary definition of convergence because small differences between a Pareto
approximation and PFtrue, even though statistically significant, are of very little practical importance, especially
when considering CIMOOPs with unknown solutions.
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Figure 3.7: Averaged run-time IndH-measured performance over the entire toy benchmark
set

analysis more than one primary PN quality indicator. Furthermore, towards the end of the
runs, the case-by-case and simple averaging perspectives are not always very meaningful.
This is because , on several MOOPs, by this stage, most good solvers find PNs of roughly
similar quality and, when relying only on plotted values, it is hard to tell apart when the
small differences in PN quality matter (e.g., the performance of the four algorithms on P2
after 35000 fitness evaluations) and when they don’t (e.g., Alg-B, Alg-C and Alg-D on P4
after 35000 fitness evaluations). In order to make such distinctions, a second analysis based
on statistical significance testing is required leading to a much lengthier and complicated
performance analysis process.

Our application-motivated main idea aimed at simplifying the comparison process
is centered on interpreting the run-time hypervolume performance plots as results of a
multi-stage race between competing MOEAs. The main goal of this race is to achieve
full convergence (e.g., IndH≈ 1) after the lowest possible nfe. The secondary goals are to
have the highest IndH values at the end of each stage in the race. Consequently, it makes
sense to envision a simplistic ranking strategy that, at the end of each stage, assigns ranks to
the analyzed algorithms in ascending order of their IndH values: firstly, the worst performer
is assigned the highest rank, then the second worse performer is assigned the second highest
rank, etc. Special bonus or penalty ranks can also be assigned to excellent or very bad
performers.

For example, let us consider eleven equidistant comparison stages for our toy scenario.
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The first one (numbered with 0) takes place before the actual start of the optimization
runs and is intended to evaluate the random initializations (initial populations) of the four
MOOAs. The next ten comparison stages are placed 5000 fitness evaluations apart. In
Figure 3.6, each of these 11 stages of the race is marked with a vertical solid line. With
regard to the ranking schema, we adopt a basic strategy that, at each stage, assigns the rank 4
to the MOOA with the smallest IndH value, the rank 1 to the MOOA with the highest value
and appropriate in-between values for the other two algorithms. We also adopt a bonus /
penalty system that:

• assigns the rank 0 to a MOOA if the latter is able to achieve a IndH value higher than
0.99 (i.e., “fully converge”). This means we reward with a special rank value the
algorithms that are able to discover Pareto approximations that cover more than 99%
of the objective space covered by PFtrue;

• assigns the rank 5 (i.e., total number of evaluated algorithms plus one) to the MOOA
that, at a certain stage, has not yet produced a relevant Pareto approximation that
covers more than 1% of the objective space covered by PFtrue. This means that rank 5
is assigned only if IndH(PFc)< 0.01 where PFc is the Pareto front of the best-current
PN of the MOOA.

The ranks we obtained after applying the aforementioned schema are presented in
Table 3.2. For each analyzed algorithm, the table also contains four important average ranks:

• µP - the average rank achieved by the MOOA on an individual MOOP. The closer the
value of this average rank is to 0, the better the MOOA performs on the considered
problem. Hence, µP can be used to rapidly / automatically identify those problems on
which a MOOA performs very well (small µP values like those of Alg-B on P4 and
Alg-D on P4 ) or very poorly (µP values close to the number of algorithms that are
analyzed like those of Alg-A on P4 and Alg-B on P3).

• µS - the average rank across the entire problem set at a given stage (i.e., after a fixed
nfe). These ranks are especially useful as we shall later combine them in order to
display the dynamics of the relative MOOA performance over time.

• µF - the average rank achieved by an algorithm across the entire problem set in
the final stage (i.e., at the end of the experiment). The MOOA that displays the
smallest value of µF was able to “fully converge” or discover higher quality Pareto
approximations on more problems than any of its competitors. In our case Alg-C and
Alg-D share the best µF values.

• µA - the overall average rank achieved by the MOOA during the comparison (i.e., the
average of all individual ranks). The value of µA can be used to single out the MOOAs
that tend to generally outperform their counterparts. In our case, µA indicates Alg-D
as the best overall performer.

In the left-side plot from Figure 3.8 we used the µS values to plot the hypervolume-
Ranked Performance Curves (HRPCs) associated with our (toy) comparison scenario. The
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Table 3.2: Ranks corresponding to the run-time IndH plots presented in Figure 3.6. For each
algorithm, the highlighted values are used to create the left-side plot from Figure 3.8.

Rank computation stages based on IndH values
Pb. 0 1 2 3 4 5 6 7 8 9 10 µP

Ranks achieved by Alg-A
P1 5 5 5 5 4 4 3 3 3 2 2 3.73
P2 5 1 1 1 1 1 1 1 1 1 0 1.27
P3 5 2 1 1 1 1 1 1 1 2 2 1.64
P4 5 5 5 5 4 4 4 4 4 4 4 4.36
µS 5.00 3.25 3.00 3.00 2.50 2.50 2.25 2.25 2.25 2.25 2.00

µA = 2.75, µF = 2.00
Ranks achieved by Alg-B

P1 5 5 5 2 2 2 2 2 2 3 3 3.00
P2 5 4 4 4 4 4 4 4 4 4 4 4.09
P3 5 5 4 4 4 4 4 4 4 4 4 4.18
P4 5 1 0 0 0 0 0 0 0 0 0 0.55
µS 5.00 3.75 3.25 2.50 2.50 2.50 2.50 2.50 2.50 2.75 2.75

µA = 2.95, µF = 2.75
Ranks achieved by Alg-C

P1 5 1 1 3 3 3 4 4 4 4 4 3.27
P2 5 5 3 3 3 3 3 2 2 2 2 2.82
P3 5 5 3 3 3 3 3 3 3 1 1 3.00
P4 5 5 3 3 3 3 3 0 0 0 0 2.27
µS 5.00 3.50 2.50 3.00 3.00 3.00 3.25 2.25 2.25 1.75 1.75

µA = 2.84, µF = 1.75
Ranks achieved by Alg-D

P1 5 5 2 1 1 1 1 1 1 1 1 1.82
P2 5 2 2 2 2 2 2 3 3 3 3 2.64
P3 5 1 2 2 2 2 2 2 2 3 3 2.36
P4 5 2 0 0 0 0 0 0 0 0 0 0.64
µS 5.00 2.5 1.5 1.25 1.25 1.25 1.25 1.5 1.5 1.75 1.75

µA = 1.86, µF = 1.75

plots confirm the general result hinted by the µA and µF ranks that Alg-D is by far the best
performer among the four MOOAs for the entire duration of the optimization. However,
this observation somehow contradicts our earlier choice (made after consulting Figure 3.7)
of preferring Alg-C in the late stages of the run. This is due to the fact that the basic
ranking schema we have previously introduced favors the MOOA that is able to perform
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very well on the highest number of MOOPs and totally ignores the magnitude of the existing
differences. As such, if we would have only two algorithms competing over two MOOPs
and one algorithm would constantly outmatch its counterpart on the first problem by 10%
and would constantly be outperformed on the second problem by 0.5%, the basic schema
would rank them as perfect equals with µA = 1.5 and µF = 1.5 for both (we also assume
that no penalty or bonus ranks are assigned). Obviously this strategy is not always preferred,
but one of the main advantages of our racing-based comparison is that small adjustments of
the ranking schema are able to easily outline desired performance characteristics.
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Figure 3.8: HRPCs obtained when applying the racing-based ranking methodology on the
toy benchmark set

For example, in our toy scenario, we can focus the MOOA comparison on analyzing
if there are large differences in performance between the tested algorithms by imposing a
ranking threshold that only allows rank improvements if the difference between consecutive
hypervolumes is higher than th%. According to this modification, even when maintaining
the aforementioned bonus / penalty system, we obtain a quite pessimistic ranking schema
that, for th = 0.1 would rank five MOOAs that have IndH values of 0.64, 0.78, 0.84, 0.985
and 0.995 with 4, 3, 3, 1 and 0. The HRPCs obtained when applying the pessimistic ranking
schema with th = 0.1 are presented in the right-side plot from Figure 3.8 and they highlight
that at the end of the experiment there is at least one MOOP on which Alg-B performs
much worse than its competitors (final objective space coverage smaller by at least 10%).
In contrast, the differences between Alg-C and Alg-D near the end of the runs don’t appear
to exceed this threshold value for any of the four test problems. By applying the pessimistic
ranking with different values of the threshold th, one is expected to get an even better
overview of the comparative performance of the studied MOOAs.

Considering a fixed value as the ranking threshold, is not the only option. Since the
ranks are computed on indicator values that are averaged over several independent runs,
it would make a lot of sense to also impose a statistical ranking schema that only allows
rank improvements if the differences between consecutive values are statistically significant
– given a one-sided Mann-Whitney-Wilcoxon test [104] with a considered significance level
of 0.025, for example. Throughout the thesis, whenever using this statistical ranking schema,
we maintained the bonus / penalty ranking criteria.
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In is very important to understand that our racing-based evaluation methodology is
primarily aimed to facilitate a fast comparative performance analysis of multiple algorithms
across multiple problems. In these cases, when using HRPCs with well crafted comparison
schemata, one can quickly gain insight what algorithm (if any) performs better or worse than
the average of its tested counterparts. Nevertheless, because of the design (and intended
purpose) of the new ranking methodology, when using it, one should be careful how
to interpret the results. Consider for instance the comparison (e.g., µF results) of three
MOOAs: Alg-X, Alg-Y and Alg-Z over a set of 10 MOOPs. Let us assume that Alg-X
has a convergence behavior that is generally very similar but always slightly better [e.g.,
0.01 < [IndH(Alg-X) − IndH(Alg-Y)]< 0.02] than that of Alg-B across all test problems.
Alg-Z has a different convergence behavior: it performs well on 5 problems where Alg-X
and Alg-Y do not and it performs worse than both Alg-X and Alg-Y on the other 5 problems.
In all cases |IndH(Alg-Z) − IndH(Alg-X)|= 0.05. Assuming a basic ranking schema with
no bonuses and penalties, Alg-X (µF = 1.5) is ranked much better than Alg-Z (µF = 2.0)
because Alg-X is assigned a rank of 2 (as it is still better than Alg-Y) on the five problems
where it performs poorly while Alg-Z is assigned rank of 3 on the five problems where it
performs poorly. In other words, the presence of a mediocre algorithm that has a strongly
biased convergence behavior (i.e., Alg-Y) impacts the entire comparison. The removal
of Alg-Y from the comparison, would result in Alg-X and Alg-Z being ranked as equals
(which is in fact the truth). In light of these considerations, throughout this thesis:

• we shall compare more than two MOOAs via HRPC plots only in order to get a rough
idea of the average comparative performance of the algorithms (across large problem
sets);

• we shall use HRPC plots of only two algorithms in order to display a more focused
and accurate image of the comparative performance of the analyzed MOOAs across
large problem sets.

All in all, we strongly believe that the new numerical (i.e., µP, µF , µA) and graphical
(i.e., HRPCs based on different ranking schemata) tools / methods presented in this section
can be extremely useful for MOO scientists and practitioners as they enable them to rapidly
evaluate the general comparative performance of their MOOAs (especially on benchmark
sets that contain many MOOPs).

Naturally, the general racing-based evaluation methodology we envisioned can be
modified / improved to work with different base indicators like (3.8) or (3.5), different
ranking schemata and different bonus / penalty criteria. The concrete version we have
chosen to describe is adapted to the particularities of our considered CIMOOPs and our
stated research goal.

3.3.3 Using HRPCs to tune MOEA/D
Whenever performing comparative tests between NSGA-II, SPEA2, GDE3, DEMO and
other algorithms that implement a (µ +λ ) selection for survival mechanism centered on
Pareto-based elitism, using the same population (and or archive) size across al MOEAs and

55



CHAPTER 3. TEST PROBLEMS AND PERFORMANCE EVALUATION

all MOOPs (one wishes to evaluate them on) is considered quite fair. For example, it is
quite common to report results obtained with the above described MOEAs when using a
fixed population size of 50, 100 or 200 individuals despite the fact that the population size is
one of the key settings in most EAs and carefully tuning this parameter can yield significant
result improvements.

In the case of decomposition-based approaches like MOEA/D, choosing a good pop-
ulation size [that would also result in a fair comparison with (µ + λ ) MOEAs] is a bit
more complicated. This is because the population size determines the number of single-
objective sub-problems the original MOOP is decomposed into and thus critically influences
the search behavior of MOEA/D. For example, in [77], the authors recommend running
MOEA/D with a population size of 300 for MOOPs with 2 objectives and with a population
of 595 for MOOPs with 3 objectives. However, when adjusting the population size based
on the definition of the problem, one is creating an unfair advantage when comparing
to algorithms that run with a fixed population on all MOOPs since the latter approaches
should also be (at least roughly) tuned in order to best match population sizes and MOOP
specifications.

Since MOEA/D is considered by many in the field as one of the best a posteriori MOO
methods, we wanted to tune MOEA/D to deliver a very good general performance when
using a fixed population size for all the 25 artificial (benchmark) MOOPs mentioned
in Section 3.1.1. More precisely, we considered the MOEA/D-DE version and, while setting
most of the parameters as suggested in [78], we wanted to check what fixed population
size (i.e., number of weighting vectors) would deliver the best convergence behavior when
setting a limit of 50000 fitness evaluations. The goal was to obtain a black-box MOEA
(MOEA/D-DE version) able to deliver a solid performance on the entire benchmark set
without any parameterization. The reasons for wanting to create such a “robust” version of
MOEA/D-DE (or of any other MOEA for that matter) are discussed at length in Chapter 6.

In order to determine the best population choice, we used the newly proposed race-
based MOEA evaluation methodology to estimate the relative performance achieved by
MOEA/D-DE (on the 25-MOOP benchmark set) when using different population sizes: 100,
200, . . . ,900. The HRPCs obtained when applying the basic ranking schema (with ranking
stages after every 1000 fitness evaluations) are found in the top left plot of Figure 3.9. The
HRPCs obtained when applying a th = 0.05 pessimistic ranking schema5 are shown in the
top right plot of the same figure. These two sets of HRPCs indicate that the results obtained
with populations of 100, 200 and 300 individuals are sensibly worse than those obtained
with larger population sizes for nfe≥ 5000. Also, when using population sizes ≥ 600, the
convergence speed in the initial phase of the runs (i.e., until ranking stage 10) is negatively
impacted.

Considering our application domain, where (at present) MOEAs are usually allowed to
perform at most 10000-15000 fitness evaluations per run, we would prefer a MOEA/D-DE
configuration that does not clearly underperform in the initial (and key-interest) parts of
the run. Therefore, we chose to inspect the performance achieved when using populations

5That requires a minimum IndH-measured PN improvement of at least 5% in order to apply a rank
improvement.
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Figure 3.9: HRPCs obtained when testing the impact of applying MOEA/D-DE with various
population sizes.

of 400 and 500 individuals more closely by constructing HRPCs only for these two cases.
The results are presented in the bottom plots of Figure 3.9 an both the th = 0.05 pessimistic
ranking schema and the statistical ranking schema indicate that using a fixed population size
of 500 is the better choice for MOEA/D-DE.

In Figure 3.10 we present an HRPC-based analysis of the comparative performance of
the literature recommended settings for MOEA/D-DE (i.e., population size of 300 for bi-
objective MOOPs and 595 for problems with three objectives) and the previously determined
best-fixed-population setting. The HRPCs show that the fixed-population version performs
slightly worse only for nfe≤ 5000. Therefore, we shall generally use this (fairer) version of
MOEA/D-DE with a fixed population of 500 for most of the comparative tests performed
throughout Chapter 6.
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Figure 3.10: HRPCs obtained when comparing the MOEA/D-DE version with problem-
depended population size and the MOEA/D-DE version with a fixed-to-500 population
size.
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Chapter 4

On-the-Fly Surrogate Modeling

4.1 General Idea

4.1.1 Approach and Performance Baseline

One of the best known approaches for improving the general run time of optimization runs
and analytic frameworks that must use a computationally-intensive performance evaluation
procedure is to construct metamodels / surrogate models that can approximate the results
of using the original quality assessment method at a fraction of the computational cost
[105] [106] . Other well documented studies on surrogate based analysis and optimization
can also be found in [107] and [108].

With regard to our concrete MOO application domain, of particular importance is the
recent (2013) PhD Thesis of Martin Pilát [109] that exclusively focuses on improving the
performance of MOEAs via surrogate modeling. Pilát argues that there are at least two ways
to augment an EA with surrogate models:

• pre-selection - in this case the surrogate model is used to pre-screen individuals in the
population and the individuals that seem promising will be evaluated using the real
(computationally -intensive) fitness function;

• local search - in this case the surrogate model is used as support (i.e., fitness es-
timator) by a local search strategy (e.g., gradient descent) that aims to improve
the best current solution(s) in the population. Pilát mentions that the generational
approach to surrogate modeling (in which the trained surrogate model is used
to replace the original computationally-intensive fitness estimation function for
several generations) can be regarded as a special case of local search.

Depending on how the surrogates are integrated within the MOOA one can distinguish
between:

• standard regression models - that try to provide a numerical approximation of the
results that would be obtained when applying the original fitness evaluation method;
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• aggregated surrogate models (ASM) introduced in [110] - that directly estimate
(without computing individual objective values) if a new individual lies in the sub-part
of the objective space that is not Pareto-dominated by the current PN of the MOOA.
Given this behavior, ASMs are primarily coupled with pre-selection based strategies.

Regression surrogates are by far the most popular approaches, but the newly introduced
ASMs have produced impressive results in [111] and [112] (mainly on artificial problems)
and are likely to gain more acceptance in the near future.

Within the large category of regression-intended surrogates, one can also differentiate
between:

• global models - that aim to accurately estimate optimization objectives and constraints
when considering vast sections of (or even the entire) variable space;

• local models - that aim to roughly estimate results in the limited area of variable space
that contains (is centered on) the current PN of the MOOA. Local models are usually
applied to create memetic (evolutionary) algorithms, as shown in [113].

Considering the nature of the CIMOOPs we generally aim to solve, we have chosen
to systematically explore a generational application of global surrogate models. The
main motivation for this is that:

• although fairly simple, the approach does have the potential to notably reduce the
overall duration of our MOEA-based optimizations;

• in the long run, by obtaining accurate global approximation models for every objective
and constraint proposed by our CIMOOPs, we will be able to (re-)construct fast-to-
evaluate artificial MOOPs that display domain realistic fitness landscapes. These
realistic MOOPs can then be used to perform valuable experiments that are not
possible given the duration of real-life CIMOOPs optimization runs.

• investigating how to obtain good global surrogate regression models is of general
(practical) interest for the mechatronics community as these global regression models
can also be (re)used in other stages of the electrical drive design process like tolerance
/ sensitivity analysis [114].

Therefore, our plan is to substitute the computationally-intensive performance evaluation
process described in Figure 3.2 with very-fast-to-evaluate surrogate design performance
evaluators based on high-quality regression models. These surrogate models would act
as direct mappings between the design parameters [e.g., x ∈ Dn where x is given in (3.1)]
and the electrical drive target parameters which should be estimated [e.g., o1(x) = ηed(x),
o2(x) = TcogPP(x) and various types of result-related constraints]. One important require-
ment of our application domain / environment is that, in order to be effective in their role
of reducing the overall duration of the optimization runs, the surrogate models need to be
constructed on-the-fly, automatically, during the run of the MOOA. The reason for this
is that the required surrogate models are fairly specific for each considered CIMOOPs and
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target parameter and they generally cannot be reused across different problems. Furthermore,
the surrogate creation process should not require any human interaction in order to achieve
(rapid) acceptance from the DMs involved in the electrical drive design process.

Since we are using regression models, it is obvious that their creation process will require
some sort of training data. This training data is usually structured as a set of individual
samples / records and each such sample must contain both the initial electrical motor design
parameter values [as, for example, listed in (3.1)] and the corresponding target (objective
and constraint) values computed using the process outlined in Figure 3.2. The "on-the-fly"
restriction severely restricts the potential sources of such data samples to:

• applying a multi-dimensional sampling strategy to create individuals based on the
concrete specifications of the given CIMOOP’s n-dimensional domain;

• running the MOOA for a limited number of generations.

Our decision is to favor the second option since we believe that the samples (designs
/ individuals) that are the byproduct of the MOOA have a better chance of covering the
“interesting sections” of the search space (i.e., those parts of Dn that encompass PS). Never-
theless, whenever applying evolutionary MOO approaches on CIMOOPs we also apply a
multi-dimensional sampling technique, namely the Latin hypecube sampling (LHS) [115],
to create the initial population of the MOEA.

Since the surrogate-based evaluation of a design is virtually instantaneous (when com-
paring to the FE-based one), the idea is to switch the MOOA to a surrogate-based fitness
function that would enable it to solve CIMOOPs (i.e., explore the search space) much faster.
However, because of some practical considerations, the resulting surrogate-enhanced MOO
algorithm is slightly more complicated and we present it in more detail in the next section.

The performance baseline we generally aim to improve upon consists in a rather conven-
tional application of a generational MOEA on CIMOOPs that are similar to those presented
in Section 3.1.2. Throughout this chapter, we shall refer to this straightforward MOEA-based
electrical drive design approach as ConvOpt. Concretely, the ConvOpt experiments were
performed with a generational version of NSGA-II that used a population of size 50 and, a
crossover probability of 0.9 and a standard parameterization of the SBX and PM genetic
operators (please refer back to Section 2.3.3 for more details). During each optimization
run, the algorithm was allowed to evolve 100 generations. The new surrogate-enhanced op-
timization approach also uses NSGA-II as its support MOEA1 and was termed HybridOpt.
The optimization runs we used for all the tests described in this chapter were performed
on the first three CIMOOPs described in Section 3.1.2, viz. IndMOOP1, IndMOOP2 and
IndMOOP3.

Before proceeding with the more in depth description of HybridOpt, we must mention
that, even though the proposed surrogate methodology is fairly general and thus suitable to
different a posteriori MOO approaches, for the remainder of this chapter we shall adopt a
terminology that is in line with the general scope of this thesis – i.e, “MOEA” instead of

1Any MOEA could have been used. Our choice was influenced by the fact that we had a lot of valuable
historic ConvOpt results obtained with NSGA-II and we wanted to make the surrogate-based approach as
comparable as possible to the baseline.
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“MOOA”, “fitness evaluation” instead of “performance evaluation”, “individuals” instead of
“design variable vectors”, etc.

4.1.2 Overview of the Surrogate-enhanced MOEA Framework
Figure 4.1 contains a comparative sketch of the conventional MOEA-based optimization
process (ConvOpt) and of the new surrogate-enhanced version (HybridOpt) when wanting
to run an optimization for tGen ∈ N generations. This sketch also puts into perspective the
six major functional parts of our hybrid a posteriori MOO approach:

1. The FE-based MOEA execution stage – an initial and preferably low number of
generations f eGen ∈ N, with f eGen < tGen, is evolved by the support MOEA using
the fitness function based on FE simulations. All the individuals computed in these
f eGen generations will form the (training set) samples used to create the surrogate
models.

2. The surrogate model construction stage – appropriate surrogate regression models
are trained for all the considered target parameters according to a strategy that tries to
balance model training time and model prediction quality.

3. The surrogate-based MOEA execution stage – using the newly trained surrogates
to guide the search, the MOEA evolves at least2 sGen = tGen− f eGen generations.
Since the surrogate-based fitness function is much faster than its FE-based counterpart,
enabling the predication of all the elicited target values within milliseconds, we also
tried to gain a rapid improvement of final PF quality by:

(a) increasing the total number of generations the MOEA computes during the run –
i.e., choosing sGen such that sGen > tGen− f eGen;

(b) increasing the size of the population with which the MOEA operates during the
surrogate-based execution stage;

4. The surrogate-based PN computation stage – a preliminary PN is extracted exclu-
sively from the set of individuals evaluated using the surrogate models without taking
into consideration the FE-evaluated individuals from the first f eGen generations. The
idea behind this approach is to make the surrogate-only PN less prone to instabilities
induced by highly likely surrogate prediction bias.

5. The FE-based re-evaluation stage – all the individuals from the surrogate-only PN
are re-evaluated using the time consuming process that relies on FE simulation. The
motivation for this is twofold:

(a) During the fitness evaluation process presented in Figure 3.2, the check for
geometric errors is done in the “2D/3D model construction” phase. This check

2In order to obtain a final PN that is based on the same total nfe as ConvOpt.
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Figure 4.1: Diagram of a conventional optimization process ( ConvOpt) and of the surrogate-
enhanced hybrid optimization process (HybridOpt)

is done inherently inside a third party computer aided design (CAD) application
and helps to remove most of the formalization constraints (described at the end
of Section 2.1.2) by triggering the fail of the entire fitness evaluation process
for design vectors that contain infeasible geometric combinations (e.g., magnet
width larger than the rotor width). Since this modeling phase is also very
time consuming and its main product – the 2D/3D meshes – is not used when
performing a surrogate-based evaluation, it makes a lot of sense to also remove
this phase of the fitness evaluation process when using surrogate models. This
means that there is a high chance that some of the individuals represented in the
surrogate-only PN are in fact infeasible (geometrically invalid).

(b) Regardless of the perceived quality level, any surrogate (approximation) model
is bound to display some sort of prediction error when compared to the FE
simulation results it aims to emulate. However, at the end of the optimization,
the DM expects all the designs presented as Pareto optimal to display the same
approximation error (i.e., the internal estimation error of the FE simulation
software FEMAG™).

6. The final PN computation stage - the final PN of the optimization run is extracted
from the combined set of all FE-evaluated designs, i.e., individuals from the first
f eGen generations and FE-re-evaluated surrogate-based individuals.

It is important to note that the proposed HybridOpt process redefines the purpose of
conducting FE simulations during the optimization run. As such, these very accurate
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but extremely time intensive operations are no longer used for exclusively guiding the
evolutionary optimization process. Instead, FE simulations are employed in the first and
final phases of the run. In the beginning of the optimization process, they are used to initially
steer the search process down the right path and to construct the training set necessary for
constructing the surrogate models. In the final stage of the optimization, FE simulations are
used for analyzing only those individuals (designs) that seem the most promising (i.e., are
Pareto-optimal) when applying a surrogate-based fitness evaluation. As such, during the
middle and especially final parts of the optimization process, when improvements generally
come at a much higher computational cost, the surrogate models are used to guide the
MOEA towards the interesting regions of the design space.

4.2 Constructing On-the-Fly Global Surrogate Models

4.2.1 Design Decisions
When considering the HybridOpt flow chart from Figure 4.1, there are at least three important
general decisions that must be made when wishing to construct on-the-fly global surrogate
models for fitness approximation:

1. What is better: to generate one single surrogate model that is able to predict all the
elicited targets or to model each target parameter independently?

2. Which are the most appropriate regression techniques for creating surrogate models?

3. What is the best value of f eGen – the number of initial generations that must be
computed using the FE-based fitness evaluation function?

In our case, the first design decision is also the simplest. Firstly, because (regression)
methods that are inherently able to approximate multiple targets using only one model
are notably scarce3. Secondly, and most importantly, because the target parameters of
our CIMOOPs are usually highly conflicting (i.e., price vs. performance vs. reliability)
and exhibit different degrees of non-linearity. Therefore, it is quite reasonable to create
a dedicated surrogate model for each separate target – as also described in [116], for
instance – and to envision a two-tier modeling approach:

• In the first stage we rapidly construct surrogate estimators based on simple linear
regression models for all the elicited targets of the CIMOOP.

• In the second stage, for the targets on which the linear estimators do not display a
good prediction performance, we construct more advanced surrogate models using
non-linear modeling techniques.

This modeling approach also cuts into the second design decision and thus focuses it on
determining which non-linear (regression) modeling technique is better suited for creating

3Neural network architectures that feature multiple output nodes are the most well known exponents.
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our surrogates. There is a wide range of methods to choose from and in Section 4.2.5
we report off-line surrogate modeling results obtained with techniques like: feed-forward
artificial neural networks (ANNs) [117], support vector regression (SVR) [118] and radial
basis function networks (RBFNs) [119]. The pre-selection of these three methods is
motivated by the fact that they are widely regarded [120] [121] as very powerful and general
modeling tools. In order to gain more insight into the nature of the three studied CIMOOPs,
we also performed tests with a regression orientated adaptation of the instance based (i.e.,
k-nearest neighbor) learning algorithm IBk [122] - a method that is generally not held in
such high regard as the first three options.

All the off-line results from Section 4.2.5 clearly indicate that a specific type of ANNs
known as multi-layer perceptrons (MLPs) generally display the best training time and
quality performance when applied on the non-linear surrogate modeling targets. In light
of this, we have adopted MLPs as the main non-linear modeling method to be used in
HybridOpt. In Sections 4.2.3 and 4.2.4 we provide details regarding MLPs and how they
can be used to generate very useful global surrogate approximation models.

The third design-related question is very important because the value of f eGen is directly
correlated to the size of the data set used to train the surrogates. If the training set is too
small, or not well distributed over the search space, one is likely to obtain surrogate models
that do not generalize well. Conversely, if the training set is too large, the training time
of the surrogate model is likely to increase considerably and one would perform far more
FE simulations than necessary. More details and several possible answers can be found in
Sections 4.2.6 and 4.4.1.

4.2.2 Data Sets and Target Parameters
The data sets we used for experimenting with surrogate model construction are byproducts
of (legacy) ConvOpt MOO full runs on the electrical drive design problems IndMOOP1,
IndMOOP2 and IndMOOP3. For each MOOP, data sets were obtained by aggregating every
feasible individual (i.e., non-error design parameter vector) that was generated (evolved)
together with its associated FE-computed target values. In particular, in Sections 4.2.5 and
4.2.6 we present our off-line surrogate modeling results on the three data sets that are the
result of the best ConvOpt runs for each considered industrial MOOP.

Since each ConOpt run evolved a population of size 50 over 100 generations, we
evaluated 5000 individuals (electrical drive designs) during each optimization. Because
some of these designs were labeled as infeasible by the performance evaluation process,
the actual size of the data sets when only considering the designs evolved in the first xGen
generations is smaller than xGen×50. The number of feasible individuals generated during
the selected ConvOpt runs after 25, 33, 50, 75 and 100 generations is presented in Table 4.1.

As previously mentioned, for each CIMOOP the individual objectives and any external
result-related constraints constitute the targets of the surrogate modeling process. In order
to simplify referencing in forthcoming descriptions, all the eleven targets contained in the
three considered CIMOOPs have been labeled with T1, T2, ... , T11. The first two columns
of Table 4.3 contain the mapping between these target labels and the concrete electrical
drive design objectives and constraints defined in Section 3.1.2.
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Table 4.1: The number of feasible designs generated during the best ConvOpt runs.

Problem
Feasible designs after generation
25 33 50 75 100

IndMOOP1 1214 1595 2412 3599 4743
IndMOOP2 850 1197 1912 2831 3713
IndMOOP3 806 1103 1725 2586 3533

The three specific CIMOOPs were selected because the results of several ConvOpt MOO
runs on them were available and because the DMs we closely collaborated with throughout
our research endeavors considered that, together, these problems offer a good overall image
of the standard degrees of difficulty one should expect from most electrical drive design
MOOPs.

4.2.3 Structure and Training of MLP Surrogate Models
ANNs have been among the popular options for constructing surrogate models since more
than a decade, as shown by the approaches in [123] and [124]. This comes as no surprise
since ANNs are some of the most well-known and well-studied machine learning / prediction
/ statistical learning algorithms. They are generally used to estimate or approximate functions
(of usually unknown form) that depend on several inputs. Their popularity is largely owned
to the fact that they are proven to posesss the universal approximation capability [125] and
they are known to perform well on non-linear and noisy data [126].

As briefly mentioned before, the particular type of ANN we experimented with is called
a multi-layer perceptron (MLP). The MLP paradigm, although quite simplistic, is widely
used and, over the years, has been successfully employed to create high quality prediction
models in many applications fields as demonstrated in [127] and [128].

Like with many other statistical learning methods, the application of a MLP predictor as
a surrogate model is straightforward. This is because, by design, the input of a MLP is a
data sample (i.e., a variable vector) and its output comes in the form of one or more scalar
values – the associated prediction(s). Throughout this section we shall mark an arbitrary
data sample that is to be used as input by the MLP by x. N.B. This notation has been chosen
deliberately since throughout the present work x ∈ Dn denotes (I) an electrical drive design
parameter vector and (II) an individual evolved during the run of a MOEA that is a potential
solution candidate of the CIMOOP to be solved.

Generally, the MLP architecture contains one layer of input nodes (i.e., processing
units), one layer of outputs units and one or more intermediate (hidden) layers. Please see
Figure 4.2 for reference. MLPs use a feed-forward information flow principle that passes
the input data from the units in the input layer to the unit(s) in the output layer indirectly, via
the units from the hidden layer(s). Any connection between two nodes of the MLP, ni and
n j, has an associated weight wi j that represents the strength of that respective connection.
Connections are not permitted between nodes from the same layer of the network.
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Figure 4.2: MLP model with one hidden layer and one output unit

A concrete MLP prediction model is fully defined by its specific architecture (number
of hidden layers, number of nodes in each layer, number of output nodes, graph of connec-
tions between nodes) and by all the values of the associated connection weights. Usually,
architecture related choices are made either:

• subjectively - as they depend on the experience and preferences of the person who
carries out the MLP-based modeling.

• automatically - being the result of a (grid, stochastic, directed, undirected, etc) search
between several possible options.

With regard to the associated connection weights, there are also several methods of
discovering appropriate values and we shall proceed to describe the (standard) approach that
we use in the case of our surrogate models. First and foremost, though, we must provide a
little more information regarding the inner-workings of the MLP’s nodes.

Given the node ni, the set Pred(ni) contains all the nodes n j that connect to node ni –
i.e., all the nodes n j in the MLP for which w ji exists. Similarly, the set Succ(ni) contains all
the nodes nk to which node ni connects to – i.e., for which wik exists.
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Each node ni of the MLP is responsible for computing an output value based on a set of
specific inputs. Given the fact that the MLPs we use are fully connected4, it is obvious that,
apart from the input data sample (i.e., x), the output value of several nodes also depends on
W – the set which reunites all the connection weights. In light of this, in order to explicitly
state these dependencies on weights and input, we note the function that computes the
output value of an arbitrary MLP node ni with f (x,W,ni). Based on the concrete definition
of this output function, a MLP contains two types of nodes:

1. Input nodes - all the nodes in the input layer. The role of these nodes is to simply
propagate into the network the appropriate values from the input data sample. In the
case of our surrogate models, we always use as many input nodes as design variables
in the data sample and thus f (x,W,ni) = xi for all i ∈ {1, . . . ,n}, where xi is the ith

variable of x ∈ Dn.

2. Sigmoid nodes - all the other nodes in the network. These nodes perform a two-step
operation. Firstly, they compute a weighted sum of all the connections flowing into
them (4.1). Secondly, the output is calculated via a non-linear logistic (sigmoid
shaped) activation function (4.2):

S(x,W,ni) = ∑
n j∈Pred(ni), w ji∈W

f (x,W,n j)w ji (4.1)

f (x,W,ni) =
1

1+ e−S(x,W,ni)
(4.2)

Since we model each target parameter independently, the output layers of our MLP
surrogate models only contain one node. We marked this node with a since its output value
– i.e., f (x,W,a) – is also the final approximation result of the entire MLP model (i.e., the
predicted regression value of the surrogate). Computing f (x,W,a) for a given data sample
x ∈ Dn is a simple and very fast feed-forward process that starts by requiring all the input
nodes of the MLP to activate – i.e., compute their simplistic output function. Afterwards,
the feed-forward process continues in a stepped manner that requires each sigmoid node in
the MLP to compute its output value using (4.1) and (4.2) as soon as all its inputs become
available.

Having a better understanding of the importance of the connections weights (i.e., W ), it
is time to describe how to find appropriate values for them. Typically, all the connection
weights of the MLP are initialized with small random values and then they are subse-
quently adjusted through a training process. The main idea of the training process is to
adjust W such as to improve the accuracy of the predictions made by the MLP.

Given the general MOOP definition from (2.1), let us train a surrogate model for the
target parameter o1(x), x∈Dn. This training process requires the usage of a (training) data
set (not: T ∈Dn). The main requirement we impose on T is that for every data sample x∈ T ,
we also know the value of o1(x). This is because the prediction accuracy of a MLP can be

4For every hidden or output node ni, Pred(ni) contains all the nodes in the previous layer of the network.
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estimated by passing every x ∈ T through the network and then computing a cumulative
error metric over the entire training set5 (i.e., we consider a batch learning approach). Given
previous notation conventions and the squared-error loss function, a convenient form of the
cumulative error metric over T is:

E(W ) =
1
2 ∑

x∈T
[o1(x)− f (x,W,a)]2 (4.3)

The standard approach in the field of ANNs for adjusting W based on E(W ) is the
backpropagation method proposed by Paul J. Werbos in his 1974 PhD thesis [129]. In
essence, backpropagation is a gradient-based iterative (optimization) method. At each
iteration t, the first step is to compute the error metric Et(W ) over the training data set T
using (4.3). Afterwards, each weight wi j(t) ∈W in the MLP will be updated6 according to
the following formulae:

∆wi j(t) =−ηδ (n j) f (x,W,ni)

wi j(t) =

{
wi j(t)+∆wi j(t) , if t = 1
wi j(t)+∆wi j(t)+α∆wi j(t−1) , if t > 1

(4.4)

where η ∈ (0,1] is a constant called the learning rate and with α ∈ [0,1) we mark the
control parameter of the empirical backpropagation enhancement known as momentum.
Using an appropriate momentum setting can help the gradient-based method to converge
faster and to avoid some local minima. The function δ (n j) denotes the gradient and shows
the cumulative impact that the weighted inputs flowing into node n j have on Et(W ). δ (n j)
is computed differently depending if n j is an output or hidden node:

δ (n j) =


∑

x∈T
{ f
(
x,W,n j

)[
1− f

(
x,W,n j

)][
f
(
x,W,n j

)
−o1 (x)

]
} , if n j = a

∑
x∈T
{ f
(
x,W,n j

)[
1− f

(
x,W,n j

)]
∑

nk∈Succ(n j),w jk∈W
w jkδ (nk)} , otherwise

(4.5)
The hoped-for result of the training process is that the resulting MLP model (architecture

+ weight values) can approximate accurately the value of o1(x),∀x ∈ Dn. This means that
for a new data sample y ∈ Dn that is not necessarily part of T , f (y,W,a)≈ o1(y).

Like most iterative methods, the backpropagation-based training supports several stop-
ping criteria. The most popular options are imposing limitations on t – the number of
performed iterations, imposing limitations on the total computation time of the training
process and setting a minimum error threshold for Et(W ). In the case of our surrogate
modeling tasks, we have chosen to adopt an early stopping mechanism that terminates
the execution whenever the prediction error computed over a validation subset V does

5A lower value of the error metric indicates a higher prediction accuracy.
6The update procedure starts with the weights of the connections that lead into the output node and then

continues backwards (hence the name) with the weights of the connections that lead into the previous hidden
layer etc.

69



CHAPTER 4. ON-THE-FLY SURROGATE MODELING

not improve over 200 consecutive iterations. This validation subset is constructed at the
beginning of the training process by randomly sampling (with removal) 20% of the instances
from the training set T . Adopting this validation-based stopping criterion is a well known
practice in the field of machine learning / modeling and various empirical results suggest
that it may have a benefit in helping to prevent the overfitting7 of the trained models [130].

4.2.4 An Automatic Selection Procedure for MLP Surrogate Models

As mentioned in Section 4.1, decisions pertaining to the concrete architecture of each MLP
model must be made automatically.

In order to reduce the search space of possible MLP architectures, we firstly refer to
two important theoretical results. In [131] the authors show that MLPs with two hidden
layers can approximate any arbitrary function with arbitrary accuracy and in [132], George
Cybenko proves that any bounded continuous function can be approximated by a MLP with
a single hidden layer and a finite number of hidden sigmoid nodes. Secondly, although we
have not performed a detailed mathematical analysis of the (interactions between all the)
physical phenomena that govern the targets parameters involved in the CIMOOPs we deal
with, all the modeling experiments we have carried out8 provide strong empirical evidence
that our general modeling tasks do not require the usage of MLPs with two hidden layers.
N.B. This choice (restriction) does not alter the generality of the model selection procedure
we describe in this section.

Given the general MLP architecture and the previously mentioned limitations (i.e., one
output node, a single hidden layer, full connections between neighboring layers), the most
important model-pertinent decision remaining is to determine how many nodes to place in
the hidden layer of the MLP. Of course, this choice also affects the learning rate (η) and
momentum (α) values that must be selected in order to obtain a successful training process.
In practice, finding the right parameter combination boils down to experimentation, usually
combined with some sort of expert knowledge.

In the case of our surrogates, in order to automatically determine the number of hidden
units and appropriate values for η and α , we first construct a fairly large set of models
for different parameter value combinations obtained via a best-parameter grid search
(please see Section 4.2.5 for exact settings). Secondly, we apply a non-standard selection
strategy aimed at finding a high-quality robust surrogate model. Such a surrogate model
should simultaneously display:

• an appropriate structural complexity – for many machine learning / prediction /
statistical learning paradigms (including MLPs), a rather high structural complexity of
the trained model is often positively correlated with unwanted effects like overfitting

7Simplistically, a regression model exhibits overfitting if it does not generalize well, – i.e., it does not
display the expected prediction accuracy when applied to (unseen) data samples different than the ones in
its training set. For a more accurate description of this and other statistical machine learning principles,
like validation sets and approximation bias, please see the excellent introduction and overview by Hastie,
Tibshirani and Friedman [130]

8On the five problems presented in Section 3.1.2 as well as on several others.
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and longer training and evaluation times. In our case, a MLP model is considered to
be less complex than another if the former has fewer units in the hidden layer. Ties
are broken in favor of the model that requires less computation time to train.

• a stable predictive behavior – the ability to generate Pareto-consistent predictions
across the entire domain of its intended inputs.

In order to clearly describe what we understand by the syntagm “Pareto-consistent
predictions” let us consider a very simple toy MOOP with two objectives [marked as o1(x)
and o2(x)] and four surrogate models (2 for each objective): SM1, SM2, SM3 and SM4. In
Table 4.2 we present ten data samples (variable vectors) – marked by xa,xb, . . . ,xi – and
their associated true (e.g., FE-computed) objective values and surrogate-estimated objective
values.

Table 4.2: Examples of true and surrogate-approximated target values for ten variable vectors
corresponding to a toy MOOP. Highlighted values mark perfect surrogate approximations

Sample
Values for objective o1 Values for objective o2
true SM1 SM2 true SM3 SM4

xa 1.0 15.0 2.0 3.0 7.0 3.1
xb 2.0 15.2 2.0 2.0 6.0 3.1
xc 3.0 15.7 3.0 1.0 2.0 3.2
xd 4.0 15.8 4.0 11.0 24.0 11.0
xe 5.0 16.1 5.0 12.0 27.0 12.0
xf 6.0 20.0 6.0 13.0 30.0 13.0
xg 7.0 21.0 7.0 14.0 32.0 14.0
xh 8.0 21.5 1.7 15.0 33.0 3.0
xi 9.0 22.3 1.8 16.0 37.0 2.9
xj 10.0 23.0 1.9 17.0 41.0 2.8

After skimming the tabular data it is easy to observe that surrogate models SM1 and
SM3 have a general tendency (bias) to produce approximation values that are much higher
than their corresponding true target values. Surrogate models SM2 and SM4 seem to be far
better predictors and for 6 data samples in the case of SM2 and 4 samples in the case of
SM4 they produce perfect approximations of the corresponding true target values. These
empiric observations are easily confirmed by any error metric that relies on a squared-error
loss function like the popular mean squared error (MSE) or the cumulative error metric
(4.3) we defined earlier. For instance, when applying the latter we obtain the cumulative
error values 29.28 for SM1, 8.89 for SM2, 34.50 for SM3 and 16.18 for SM4. In light of
all this evidence, one might be tempted to select SM2 and SM4 as the most appropriate
surrogate pair for the toy MOOP. This in fact is the worst possible choice since if one would
want to extract a Pareto non-dominated set from xa,xb, . . . ,xi,:

• based on the true objective values, one would choose PNtrue = {xa,xb,xc};
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• based on the SM2 and SM4 surrogate approximated objective values, one would
choose PN(SM2,SM4) = {xh,xi,xj};

When considering the real Pareto ranking of the ten data samples, PN(SM2,SM4) is not just a
bad choice, it is the worst possible one. This is because it labels as Pareto non-dominated
the three variable vectors that based on their real / true objective values are in fact the three
worst performers (i.e., most Pareto-dominated) of the entire sample set. Hence, even though
SM2 and SM4 seem to be far more accurate than their counterparts, the predictions of
SM2 and SM4 are anything but Pareto consistent as they do not preserve the (real) Pareto
relation.

One of the most important observations based on the above-described scenario is that
a squared-error loss function can be expected to provide a somewhat misleading es-
timation of surrogate approximation quality (usefulness) inside a Pareto comparison
context. Furthermore, when considering a generational applications of (global) surrogate
modeling (like the one in HybridOpt), making larger approximation errors that share the
same overall trend (i.e., are well correlated) with the true target values is far more important
than making smaller approximation errors that minimize a square-loss function but are not
trend-consistent and finally alter the Pareto ordering (and the MOEA search behavior during
the surrogate-based stage of the run). For instance, when applying a goodness-of-fit measure
that is bias invariant, like the well-known Pearson’s coefficient of determination (not: R2),
to the same surrogate approximations from Table 4.2, we obtain the values 0.95 for SM1,
0.01 for SM2, 0.99 for SM3 and 0.29 for SM4. Since values of R2 closer to 1 indicate a
stronger positive correlation, values closer to -1 indicate a stronger negative correlation
and values closer to 0 indicate no correlation, based on these new R2 results, one would
clearly choose SM1 and SM3 as the best surrogate pair for the given problem. The resulting
PN(SM1,SM3) = {xa,xb,xc} is a perfect match of PNtrue, thus providing a good example
why a correlation-based approach is to be preferred when estimating the quality (use-
fulness) of global surrogate models that are used inside Pareto comparison contexts.

Given these considerations, our choice to estimate surrogate prediction quality via a
Pareto-consistent metric like R2 should become obvious, especially when taking into account
the importance of selecting and re-evaluating good designs during the surrogate-based PN
computation and the FE-based re-evaluation stages of HybridOpt. More precisely, in order
to estimate the quality of a MLP surrogate model, we employ a well-known 10-fold cross-
validation data partitioning strategy [130] and we compute the R2 values obtained by the
surrogate over each of the individual 10 folds (when the respective fold is used for testing
during the cross-validation process). The quality estimate assigned to the surrogate model
at the end of the cross-validation procedure is given by:

qm = µ(R2)−σ(R2) (4.6)

We use observed standard deviation of R2 over the 10 cross-validation folds as a penalty in
(4.6) because we want to favor models that, on average, exhibit a stable predictive behavior
across the entire sample space (i.e., domain of possible inputs). The reasoning behind this is
that a significant value of σ(R2) indicates that the surrogate model is not producing equally
good (Pareto-consistent) predictions across all regions of the sample space. In our case, the
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existence of such locally-biased surrogate models is fairly probable given the origins of their
training data sets – i.e., byproducts of highly elitist evolutionary processes that disregard
unfit individuals and thus avoid exploring apparently uninteresting regions of the (design
parameter) sample space.

It is of paramount importance to emphasize the fact that although our choice of the
final surrogate models is based on R2-estimated prediction quality (usefulness) rather than
MSE-estimated prediction accuracy, all the surrogate models are trained by actively trying to
maximize accuracy (as we described in detail for MLPs in the previous section). This means
that extreme cases like the one illustrated in Table 4.2 are highly unlikely. Therefore, all the
surrogate models generated during the grid searches that display very good (high) values
of R2 (and especially qm) also generally display some of the best (lowest) MSE results.
Nevertheless, since the overall goal is to find the surrogates that are the most useful for
speeding-up the MOEA-based search, we prefer to reference the high “quality of surrogate
predictions” with the understanding that we primarily address the good Pareto-consistency
of these predictions but also keep in mind their extremely likely high accuracy.

Having explained how the application domain (i.e., building surrogates over MOEA-
generated data sets) influences our preferences regarding the interplay between model quality
(Pareto-based comparison usefulness), model accuracy and model (structural) complexity,
we can now provide the details of our proposed automatic selection procedure for global
MLP surrogate models. In the first step, all the surrogate models obtained during the best-
parameter grid search are ranked according to their quality, as estimated by (4.6). Afterwards,
a quality threshold is computed as the mean estimated quality of the best performing pq%
of all surrogate models9. The finally selected surrogate is the least structurally complex
model that has an estimated qm value higher than the quality threshold. Figure 4.3 contains
a graphical description of the selection procedure that should confirm the gut feeling one
might have by now that we indeed treat the surrogate selection process as a MOOP in its own
right: the (conflicting) aims are the quality and the structural simplicity we demand from the
generated surrogates. Furthermore, the selection strategy we have previously described can
be seen as an adaption of the ε-constraint principle from (2.16) as we minimize structural
complexity subject to a quality-based (ε) threshold.

The general idea of our proposed model selection procedure (i.e., balancing estimated
model quality and complexity) also bears similarities to a model selection strategy for
regression trees proposed by Breiman et al. in [133]. The major difference is that we use a
pessimistic (deviation adjusted) correlation measure and we compute the selection threshold
using a broader model basis in order to avoid the cases where the quality standard would be
set according to a single highly complex (and likely overfitted) model that only displays a
marginally higher qm value.

For the comparative results of the newly proposed model selection procedure vs. the
much simpler (and standard) option of just choosing the model that displays the best 10-fold
cross-validation R2 performance please see the results reported in Section 4.4.2.

It is noteworthy to mention that our automatic model selection procedure can easily be

9For the tests reported in Sections 4.2.6 and 4.3.2 we used the setting pq = 2 and in Section 4.4.1 we also
experiment with the setting pq = 5.
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Figure 4.3: An illustration of the proposed surrogate model selection strategy when consid-
ering the predictors obtained after the best-parameter grid search.

adapted when opting for another surrogate modeling method. The only requirement is to
select another (method-dependent) indicator (or set of indicators) for measuring complexity.
For example, when opting for SVR-based surrogates, one might consider the C parameter
and/or the number of required support vectors as suitable complexity indicators.

4.2.5 Comparative Performance of MLP Surrogate Models
In order to assess the predictive performance of the four non-linear modeling methods we
have pre-selected as viable options for constructing global surrogate models, we performed
off-line regression experiments with the three (ConvOpt-generated) data sets presented in
Section 4.2.2 and the eleven target parameters they contain in total.

Given our general strategy of enhancing MOOAs using on-the-fly global surrogate
prediction models, we considered that the most appropriate challenge was to:

• partition each of the three data sets into training subsets (that contained individuals
from the first 33 generations) and test subsets (that contained the individuals of the
remaining 67 generations);

• construct surrogates with each modeling method using only data from the training
subsets;

• estimate the predictive performance of the “best” surrogate constructed (trained) with
each modeling method by computing its R2 over the associated test subsets.

The sizes of all training and test subsets can be inferred from Table 4.1. For each non-
linear modeling method, the “best” performing model for each target was determined by
applying a best-parameter grid search and by choosing the highest-quality model based on
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average R2 performance during 10-fold cross validation. We adopted this standard model
selection procedure instead of the one previously proposed in Section 4.2.4 because we do
not want the general comparison to be influenced by the fact that our MLP-tailored selection
procedure could not be (or was not) fully adapted to the particularities of the other non-linear
modeling techniques and would thus be perceived as hindering their real performance.

In the case of the MLP surrogates, the best-parameter grid search was conducted as
follows:

• the number of hidden units was varied between 2 and 2×n (where n is the number
of design variables in the modeled CIMOOP) – i.e., n = 6 for IndMOOP1, n = 7 for
IndMOOP2 and n = 10 for IndMOOP13);

• the learning rate (η) was varied between 0.05 and 0.40 with a step size of 0.05;

• the momentum parameter (α) was varied between 0.0 and 0.7 with a step size of 0.1.

This means that we constructed 704 surrogate models for each target parameter proposed
by IndMOOP1, 832 models for each target parameter proposed by IndMOOP2 and 1216
models for each target parameter of IndMOOP13. During the backpropagation-based
training processes we employed the validation-based termination criterion described at the
end of Section 4.2.3. Whenever the early stopping criterion was not reached, the training
process was stopped after 5000 iterations.

In the case of the SVR-based surrogates, we created 675 surrogate models for each
target parameter as, during the grid search, we varied:

• the values of the general complexity parameter (C) between {2−4,2−3, . . . ,29,210};

• the values of the (width) controlling parameter of the RBF kernel (γ) between
{2−5,2−4, . . . ,22,23};

• ε from the ε-intensive loss function between {0.001,0.005,0.01,0.025,0.05}.

During the grid searches conducted for RBFNs we constructed 918 models for each
target parameter as we varied the number of clusters between {2,3,4,5,10,20, . . . ,500} and
the allowed minimum standard deviation inside the cluster between {0.25,0.5,1,2, . . . ,15}.

When training the IBk-based surrogates, we created 900 surrogates during each best-
parameter grid search. We varied the number of nearest neighbors between 1 and 300 (with
a stept size of 1) and we also experimented with three different distance weighting options:
weight by 1 / distance, weight by 1 - distance and no weighting.

In order to offer some insight into the “degree of difficulty” associated with each
modeling experiment, we also report the results obtained with surrogates based on linear
regression models (also trained using the individuals from the first 33 generations). The
MLP, SVR and RBFN implementations we used are largely based on the ones provided by
the WEKA open source machine learning platform [134].

The obtained surrogate (regression) modeling results are presented in Table 4.3. The
performance of the linear regression models indicate that there are several target parameters
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for which non-linear modeling is required. Given the motivations from the previous section
regarding the importance of Pareto-consistent predictions and several empirical observations
regarding our CIMOOPs, after the first stage of our two-tier surrogate modeling strategy,
we mark a target parameter as non-linear if a linear regression model is not able to achieve a
training R2 value of at least 0.95. The three CIMOOP-based data sets contain a total of six
non-linear targets: T1, T2, T4, T5, T10 and T11.

Table 4.3: Linear and non-linear surrogate (regression) modeling results on data sets that
resulted from ConvOpt runs on three CIMOOPs. The best results for each individual target
or average over individual targets are highlighted.

CIMOOP
obj./constr.

Target Classif.
R2 on test data

Linear MLP SVR RBFN IBk

IndMOOP1-o1(x) T1 non-lin 0.7353 0.9864 0.9330 0.9029 0.8744

IndMOOP1-o2(x) T2 non-lin 0.6048 0.9530 0.9540 0.8992 0.9040

IndMOOP1-o3(x) T3 linear 0.9777 0.9992 0.9997 0.9999 0.9660

IndMOOP1-o4(x) T4 non-lin 0.6390 0.9674 0.9640 0.9099 0.9044

IndMOOP2-o1(x) T5 non-lin 0.8548 0.9923 0.9960 0.9859 0.9749

IndMOOP2-o2(x) T6 linear 0.9916 0.9997 0.9997 0.9998 0.9904

IndMOOP2-c1(x) T7 linear 0.9990 0.9999 0.9998 0.9999 0.9254

IndMOOP3-o1(x) T8 linear 0.9970 0.9999 0.9997 0.9999 0.9689

IndMOOP3-o2(x) T9 linear 0.9514 0.9998 0.9995 0.9999 0.8822

IndMOOP3-o3(x) T10 non-lin 0.8526 0.9799 0.9839 0.9804 0.8791

IndMOOP3-o4(x) T11 non-lin 0.8355 0.9564 0.9552 0.9521 0.8794

Average over the 5 linear targets 0.9830 0.9997 0.9997 0.9997 0.9466

Average over the 6 non-lin. targets 0.7540 0.9720 0.9640 0.9384 0.9026

Average over all the 11 targets 0.8580 0.9847 0.9802 0.9664 0.9226

Rank over the 6 non-lin. targets 5 1 2 3 4

Since IBk is not widely regarded as a very robust modeling method, the fact that it is
not able to generally match the modeling performance of the other three methods does not
come as a surprise. However, the data from Table 4.3 shows that IBk is generally able to
outperform by a large margin the linear regression models when only considering the six
targets labeled as non-linear (average R2 of 0.9026 for IBk and 0.7540 for linear regression).
The notable exceptions are targets T10 and T11, both belonging to IndMOOP3. One may
conjecture that the reason for this is a mixture of three conditions.

1. IndMOOP3 seems to be a MOOP heavily affected by the formalization constraints
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mentioned in Section 2.1.2 as Table 4.1 indicates that nearly one third of the designs
generated by ConvOpt (i.e., NSGA-II) when trying to solve it were infeasible.

2. As indicated in Section 3.1.2, IndMOOP3 proposes only constrained optimization
objectives, meaning that the evolutionary process converges slower (individuals that
violate the constraints of the problem are ignored / quickly disregarded by ConvOpt
and thus do not contribute at all to the evolutionary process).

3. The domain of the problem is larger (n = 10) than the ones of the other two considered
CIMOOPs.

Furthermore, it makes a lot of sense to assume that the combined effect of all these conditions
is that the data set corresponding to IndMOOP3 provides a much sparser representation of
the sample space (i.e., CIMOOP domain) and that this is in fact the real reason for which
a k-nearest neighbor method like IBk delivers a quite poor performance. An important
observation regarding IndMOOP3 results is that MLPs and SVR appear to deal much better
with sparser representations of CIMOOPs domains.

In fact, when considering only the six non-linear targets, our tests show that, on average,
MLPs and SVR produce the best non-linear surrogate models (with a slight advantage
towards the MLPs models). RBFNs perform worse, especially on the target parameters
proposed by IndMOOP1, viz. T1, T2 and T4. On these three targets, RBFNs has a
performance that is quite similar to that of IBk.

In Section 3.1.2 we briefly mentioned that in order to significantly speed-up the run time
of our optimization algorithms we try to parallelize as much as possible of the FE-based
electrical drive performance evaluation process. Concretely, we use a high throughput
computer cluster system managed using HTCondor™ [135]. Since best-parameter grid
searches are a very important part of the surrogate construction process, we wanted to
also obtain a basic estimate of the duration of these (usually computationally-intensive)
operations for MLPs, SVR and RBFNs. As such, when distributing the grid searches
over the computer cluster system, we measured the total wall-clock time required by each
modeling method to perform all the six grid searches for the non-linear targets. When using
at most 25 computation nodes:

• the MLPs searches required 178.79 minutes in total, resulting in an average training
time of 0.67 minutes per model;

• the SVR searches required 220.86 minutes in total, resulting in an average training
time of 1.09 minutes per model;

• the RBFNs searches required 224.40 minutes in total, resulting in an average training
time of 0.81 minutes per model.

It should be mentioned that given the quite heterogeneous nature (i.e., highly diverse
hardware performance) of the nodes (i.e., computers) in the cluster and the fact that we
exercised no special control regarding the composition of the execution pool or the job
scheduling protocol, the results synthesized above should only by interpreted as very
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rough estimates of the true computational requirements associated with the grid-searches.
Nevertheless, the obtained results do suggest that the MLP-based modeling tends to be
faster when compared with SVR or RBFN (given the particularities of our CIMOOPs,
software implementation and best-parameter grid searches defined for each method).

In light of the presented quality and time-wise results, after performing these tests, we
adopted MLPs as our default global surrogate modeling method for non-linear targets.

4.2.6 The Stability over Time of MLP Surrogate Models

Having decided on modeling each target parameter independently and applying a two-tier
approach that uses linear and MLP-based regression models, the only major surrogate-
design decision left (from those outlined in Section 4.2.1) is to choose an appropriate value
for f eGen – the parameter that denotes after how many FE-evaluated generations (i.e., or
more generally, FE-evaluated individuals), we should start the on-the-fly surrogate creation
process required by the HybridOpt architecture (proposed in Section 4.1.2).

As we wanted to select a good value for f eGen, we performed several experiments aimed
at quantifying the influence of this parameter on the quality and stability of the resulting
global MLP-based surrogates. We only report results that concern MLPs as experiments
have shown that the size and design space coverage of the training data sets (both of which
are directly influenced by the value of f eGen) do not have a very serious impact on the
prediction quality of global linear regression models applied on linear targets10.

For each of the considered 11 target parameters we constructed 50 different surrogate
modeling scenarios. For scenario number i, the MLP surrogate was trained only using
the individuals evolved in the first i generations (of the ConvOpt run). The corresponding
approximation quality (i.e., R2) was estimated using a separate test set that reunited all the
individuals from the remaining (100-i) associated generations. For each modeling scenario,
we applied our proposed on-the-fly MLP-construction methodology11 in order to obtain a
high-quality robust surrogate model.

In Figure 4.4 we plot the individual R2 values that were obtained for each experiment.
The charts show that, for all the 11 targets, the MLP-based surrogates display a stable
logarithmic saturation behavior. Furthermore, when focusing on the 6 non-linear targets,
viz. T1, T2, T4, T5, T10 and T11, the plotted values also suggest that there is a promising
search range for f eGen between 20 and 30 as choosing a value from this interval ensures
the creation of very high-quality surrogate models for all the considered targets.

In order to try and single out the most appropriate value for f eGen, we conducted a
second series of tests only with the surrogate models from the aforementioned promising
search range. In these tests we wanted to inspect a little closer the stability of surrogate
approximations and, for each surrogate model, we computed individual R2 values over each
(test) generation whose individuals were not part of the training process. For example, for

10For the linear modeling situations, a setting of f eGen = 10 would be sufficient when considering all the
CIMOOPs we have ever experimented with.

11This consists of the best-parameter grid search for MLPs presented in Section 4.2.5 and the automatic
final model selection procedure described in Section 4.2.4
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Figure 4.4: Evolution of the coefficient of determination computed over the remaining
100− f eGen generations for the best MLP surrogate models trained using the first f eGen≤
50 generations

surrogates trained with the setting f eGen = 22 we computed 78 generational R2 values,
starting with the one for the individuals evolved in 23rd generation of the original ConvOpt
run and ending with the one for the individuals evolved in the 100th generation of the
ConvOpt run. Figure 4.5 contains the plots of the generational R2 values obtained for T2
and T11, the non-linear targets that, according to the results from Table 4.3, are the most
challenging to model.

Our final decision was to fix f eGen = 25 since this was the smallest value for which
the surrogate models exhibited both a very high predictive quality and stability. This
conclusion was made after taking into consideration the generational R2 values obtained for
generations 31 to 100 over all six non-linear targets. Since we analyzed 11 surrogate models
for each target (i.e., MLPs trained using the first 20 generations, the first 21 generations,
. . . , the first 30 generations) we obtained a total of 70× 6× 11 = 4620 generational R2

results. From the 420 generational R2 associated with the six surrogate models constructed
with the setting f eGen = 25, 397 values (i.e., 94.52%) are higher than 0.9. From the 2100
generational R2 values associated with surrogate models constructed with f eGen < 25, only
892 values (42.48%) are higher than their matching counterparts constructed with f eGen =
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Figure 4.5: Evolution of the generational coefficient of determination for MLP surrogate
models trained using the first 20 to 30 generations for the most difficult to model targets

25. From the 2100 generational R2 values associated withe surrogate models constructed
with f eGen > 25, only 1207 values (57.48%) are higher than their matching counterparts
constructed with f eGen = 25. Lower settings of f eGen obtain fewer generational R2 results
higher than 0.9 and for f eGen > 25 one does not notice much (or even any) improvement
with regard to the three mentioned performance indicators (percentages).

Obviously, the choice f eGen = 25 is fairly subjective, even though the procedure at the
end of which it was made can be considered quite general. Nevertheless, having a rough
estimate for the last open surrogate design question enabled us to perform (more interesting)
on-line comparative tests.

4.3 MLP-enhanced NSGA-II

4.3.1 Algorithmic Description
In Algorithm 2 we present a more concrete description of HybridOpt – the surrogate-
enhanced MOEA framework initially described in Section 4.1.2. We mention beforehand
that, in order to simplify (and shorten) the presentation, apart from method calls and the
normal assignment operator (i.e., “←”), we also use a special binding operator denoted by
“≡”. The role of the latter is to mark a link between an arbitrary variable and a specific
method with the implied meaning that all future references to the variable will be redirected
to the associated method.

Algorithm 2 contains two methods. The main function is called HYBRIDOPT( ) and
incorporates the base logic of our proposed approach. The secondary function is called
NSGA-II-SEARCH( ) and is responsible for implementing the particular MOEA search
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Algorithm 2 Surrogate-enhanced NSGA-II
1: function HYBRIDOPT(problem, popSizeFE , popSizeS, f eGen, sGen)
2: P← INITIALIZEPOPULATION(popSizeFE , problem)
3: f itnessEval ≡ FE-EVALUATOR(x, problem)
4: 〈P,FeasibleFE〉 ← NSGA-II-SEARCH( f eGen, popSizeFE ,P, f itnessEval)
5: Con f igurations← INITIALIZEMLPGRIDSEARCH(problem)
6: BestSurrogates← /0
7: for all target ∈ problem do
8: Models← /0
9: for all c ∈Con f igurations do

10: Models←Models∪ TRAINMLPSURROGATE(c, target,FeasibleFE)
11: end for
12: BestSurrogates← BestSurrogates∪ SELECTBESTMODEL(Models)
13: end for
14: f itnessEval ≡MLP-EVALUATOR(x, problem, BestSurrogates)
15: 〈P,FeasibleMLP〉 ← NSGA-II-SEARCH(sGen, popSizeS,P, f itnessEval)
16: OptimalSetMLP← EXTRACTPN(FeasibleMLP)
17: f itnessEval ≡ FE-EVALUATOR(problem)
18: OptimalSetMLP← EVALUATEFITNESS(OptimalSetMLP, f itnessEval)
19: return EXTRACTPN(FeasibleFE ∪OptimalSetMLP)
20: end function

21: function NSGA-II-SEARCH(xGen, popSize, InitialPopulation, f itnessEvaluator)
22: t← 0
23: Ps← InitialPopulation
24: Ps← EVALUATEFITNESS(Ps, f itnessEvaluator)
25: FeasibleIndividuals← φ

26: while t < xGen do
27: Os← CREATEOFFSPRING(Ps, popSize)
28: Os← EVALUATEFITNESS(Os, f itnessEvaluator)
29: FeasibleIndividuals← FeasibleIndividuals ∪ Os
30: Ps← NONDOMINATEDSORTING(Ps∪Os, popSize)
31: t← t +1
32: end while
33: return 〈Ps,FeasibleIndividuals〉
34: end function

strategy we have chosen to experiment with. As the name suggests, we are using a (genera-
tional) version of NSGA-II that only contains minor (domain-required) modifications of the
standard approach presented in Section 2.3.3. The most important of these modifications is
that the return value consists is an ordered pair (2-tuple) that contains the last parent popu-
lation (i.e, Ps) and a set of all the feasible individuals that have been generated during the
search. Apart from this, the specific FE-based or MLP-based fitness assessment procedure
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that must be applied during the evolutionary cycle is provided as an input parameter (not:
f itnessEvaluator). The other three input parameters of NSGA-II-SEARCH( ) are:

• xGen – the number of generations to be computed;

• popSize – the size of the population with which the MOEA operates;

• InitialPopulation – a set containing the starting population of the evolutionary search
process. N.B. If popSize 6= |InitialPopulation| the necessary adjustments will be
made automatically during successive executions of the NONDOMINATEDSORT-
ING( ) function;

The main HYBRIDOPT( ) function contains the following input parameters:

• problem – the description of the CIMOOP to be solved including information regard-
ing design parameters and optimization target;

• popSizeFE – the size of the NSGA-II population during the FE-based part of the run;

• popSizeS – the size of the NSGA-II population during the secondary surrogate-based
part of the run;

• f eGen – the number of generations to be computed in the FE-based part of the run;

• sGen – the number of generations to be computed in the surrogate-based part of the
run.

Inside Algorithm 2, EVALUATEFITNESS(Set, evaluator) is an auxiliary method of
particular importance. Its inputs are a Set of unevaluated individuals (i.e., parameter vectors
that encode electrical drive designs) and an evaluator that is bound to a concrete fitness
assessment function. The main operations performed by EVALUATEFITNESS( ) are to
apply the evaluator on every individual x ∈ Set and to return a filtered subset containing
only the individuals from the original Set that have been flagged as feasible. Naturally, each
individual in the returned set also contains values for all the target parameters of the problem
to be solved. N.B. The knowledge regarding the problem resides inside the concrete (FE or
surrogate-based) fitness assessment function that is bound to the evaluator input parameter.

Apart from EVALUATEFITNESS( ), there are nine more auxiliary methods that are
referenced throughout Algorithm 2:

1. INTITIALIZEPOPULATION(popSize, problem) – this function initializes a total of
popSize individuals according to a Latin hypercube sampling strategy applied on the
n-dimensional domain of the problem to be solved.

2. FE-EVALUATOR(x, problem) – this function computes all the problem-specific
target parameter values of a given individual x using the FE-based performance
evaluation sketched in Figure 3.2. If x is unfeasible, this evaluator will flag it corre-
spondingly.
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3. INITIALIZEMLPGRIDSEARCH(problem) – this function returns a set containing
all the MLP training configurations that are to be tested during the best parameter grid
search. The number of specific configurations is problem-dependent as previously
described in Section 4.2.5.

4. TRAINMLPSURROGATE(con f iguration, target, Set) – based on the supplied pa-
rameter con f iguration and training Set, this function creates a MLP model for the
given target using the backpropagation-based process presented in Section 4.2.3.

5. SELECTBESTMODEL(Set) – given a Set of MLP surrogate models, this method
applies the automatic model selection procedure described in Section 4.2.4 to select
and return a high-quality robust surrogate.

6. MLP-EVALUATOR(x, problem, Set) – this function computes all the problem-spe-
cific target parameter values of a given individual x using a Set of target-specific
surrogate models. In light of the arguments presented in Section 4.1.2, all individuals
processed by this surrogate-based fitness evaluator are flagged as feasible.

7. EXTRACTPN(Set) – this method extracts and returns the PN from a given Set of
individuals.

8. CREATEOFFSPRING(Set, count) – starting from a parent Set of individuals, this
function generates a given count of offspring via the standard NSGA-II mutation
operators, viz. SBX and PM, described in Section 2.3.3.

9. NONDOMINATEDSORTING(Set, count) – this method restricts an initial Set of in-
dividuals to a certain count via the non-dominated sorting strategy proposed by
NSGA-II.

4.3.2 Comparative Performance on CIMOOPs
In order to check the success of hybridizing MOEAs with global surrogate models given
the particularities of our industrial MOOPs, we performed on-line ConvOpt and HybridOpt
tests on IndMOOP1, IndMOOP2 and IndMOOP3.

We remind the reader that in the case of ConvOpt (i.e., domain-adapted NSGA-II) we
used a population size of 50, we ran an optimization for 100 generations and we extracted
the PN from all the feasible individuals generated during the run. In the case of HybridOpt,
we implemented Algorithm 2 and ran the main HYBRIDOPT( ) function with different call
arguments.

For each experiment, we analyzed the final PN obtained at the end of the run using
the hypervolume (IndH) and the generational spread indicators (IndGS) introduced in Sec-
tion 3.2.1. Since we are dealing with real-life MOOPs with unknown solutions, the PFtrue
required in (3.10) to compute the hypervolume indicator was obtained by aggregating (I)
best-performing legacy design solutions and (II) expectations of various DMs involved in
the electrical drive design process. In the case of IndMOOP3 neither optimization run was
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able to truly fulfill the DMs’ expectations and this is reflected in the generally low IndH
values obtained for this problem.

For these on-line experiments, we also present information regarding the average wall-
clock time (in minutes) required by ConvOpt and HybridOpt to perform the optimiza-
tions when distributing the fitness and grid-search computations over an average of 40
HTCondor™-managed computation nodes. The notation used for this new time-related
performance indicator is: Indtime

During the initial HybridOpt tests we used the settings: popSizeFE = 50, popSizeS = 50,
f eGen= 25 and sGen= 75. We mark this HybridOpt parameterization option as ParSet−A.
In Table 4.4 we present the comparative performance of ConvOpt and HybridOpt ParSet−A.
The results are averaged over five independent runs for each MOOP and they indicate that
the performance of our surrogate-enhanced optimization strategy is very good for problems
IndMOOP1 and IndMOOP2. In these two cases, on average, the HybridOpt PNs have
comparable IndH values (≈ 1.5% worse), better IndGS values and were computed 2.72 times
faster (IndMOOP1) and 3.61 times faster (IndMOOP2) than their ConvOpt counterparts.
In other words, HybridOpt is able to reduce the average wall-clock optimization time by
≈ 63% for IndMOOP1 and ≈ 72% for IndMOOP2 while maintaining overall solution (i.e.,
PN) quality.

Table 4.4: The averaged performance over five runs of the MOEA-based conventional and
hybrid MOO processes. For each problem, we highlight the best result for each performance
indicator.

Indicator
IndMOOP1 IndMOOP2 IndMOOP3

ConvOpt HybridOpt
ParSet-A

ConvOpt HybridOpt
ParSet-A

ConvOpt HybridOpt
ParSet-A

IndH 0.9532 0.9393 0.8916 0.8840 0.4225 0.3691
IndGS 0.7985 0.6211 0.8545 0.8311 0.4120 0.4473
Indtime 2696 991 3798 1052 4245 2318

On the highly constrained problem IndMOOP3, the surrogate-enhanced optimization
process performs worse as, on average, its reported IndH values are ≈ 13% lower than those
of ConvOpt. The data from Table 4.4 also indicates that for IndMOOP3, ConvOpt also
produces solutions (PNs and associated PFs) that display better IndGS values. Nevertheless
there are also two benefits associated with the HybridOpt ParSet−A runs:

1. the wall-clock duration of the optimizations is reduced by ≈ 46%;

2. the surrogate-enhanced evolutionary process is still able to discover valuable (electri-
cal drive) designs for IndMOOP3 in regions that have turned out to be very interesting
to the DMs. For instance, in Figure 4.6 we present two different comparative 2D pro-
jections of the best PFs (according to IndH) discovered by ConvOpt and HybridOpt
ParSet−A and we highlight two regions of interest, as defined by DMs.
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(a) 2D PF projection no. 1

(b) 2D PF projection no. 2

Figure 4.6: 2D Projections of final PNs obtained after applying ConvOpt and HybridOpt on
IndMOOP3. We highlighted and magnified two regions (from objective space) that were of
special interest to the DMs.

The overall mediocre performance of HybridOpt ParSet−A on IndMOOP3 can largely
be attributed to the aforementioned fact that this MOOP is very affected by the formalization
constraints mentioned in Section 2.1.2. These constraints determine a very high ratio of
geometrically invalid individuals to be generated during the surrogate-based part of each
run. Consequently, during the FE-based re-evaluation stage of HybridOpt, many designs
from the surrogate-only PN are marked as invalid.

Wanting to improve on these initial HybridOpt results, we performed extra experiments
with two more parameter configurations:
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1. ParSet−B : popSizeFE = 50, popSizeS = 100, f eGen = 25 and sGen = 75

2. ParSet−C : popSizeFE = 50, popSizeS = 100, f eGen = 25 and sGen = 175

The obvious idea behind these HybridOpt configurations was to allow for more designs to
be generated (and tested) during the surrogate-based part of each run.

Table 4.5 presents obtained results and they indicate that this basic tactic of generating
more designs during the surrogate-based execution is rather successful. One noticeable
downside of this brute-force approach, especially for MOOPs with several (i.e., > 3)
objectives, is that the resulting surrogate-only PNs also tend to become larger as they are
extracted from a much larger set of evaluated individuals. This directly translates into a
longer FE-based re-evaluation stage that reduces the average speed improvement associated
with HybridOpt to:

• ≈ 51% for IndMOOP1, ≈ 69% for IndMOOP2 and ≈ 22% for IndMOOP3, when
applying ParSet−B;

• ≈ 27% for IndMOOP1, ≈ 63% for IndMOOP2 and ≈ 14% for IndMOOP3 when
applying ParSet−C.

Table 4.5: The averaged performance over five runs of HybridOpt when allowing for more
individuals to be evaluated during the surrogate-based parts of the run. The results that are
not better than the complementary results produced by ConvOpt are highlighted.

Indicator
IndMOOP1 IndMOOP2 IndMOOP3

HybridOpt
ParSet-B

HybridOpt
ParSet-C

HybridOpt
ParSet-B

HybridOpt
ParSet-C

HybridOpt
ParSet-B

HybridOpt
ParSet-C

IndH 0.9534 0.9535 0.9053 0.9114 0.3910 0.4082
IndGS 0.6103 0.5896 0.7442 0.6814 0.3981 0.3912
Indtime 1332 1968 1156 1375 3315 3631

More importantly, when using the ParSet−B and ParSet−C parameterizations, on
average, HybridOpt is also able to slightly outperform (by at most ≈ 2%) ConvOpt with
regard to the IndH indicator. On the more problematic IndMOOP3, although seriously
improved, the PNs produced by HybridOpt are only better with regard to the IndGS metric.

4.4 Improving Surrogate Modeling Efficiency

4.4.1 Faster Surrogate Model Construction Strategies
First and foremost, we must remark that the results obtained with HybridOpt during
the comparative on-line MOO tests generally validate our proposed methodology to
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create and use on-the-fly global surrogate models to enhance the performance of a standard
MOEA when attempting to solve CIMOOPs.

Nevertheless, previously reported on-line and off-line modeling results (like those from
Section 4.2.5) also indicate that the proposed on-the-fly surrogate construction process is
extremely time-intensive and thus affects the overall optimization speed-ups that can be
achieved by HybridOpt. The computational burden is of course largely owed to the best-
parameter grid search that must be performed when trying to create a very good surrogate
model for a given non-linear target parameter.

There are only two possible options to considerably reduce the duration of the best-
parameter grid searches. The first one is to significantly lower the total number of allowed
parameter combinations by reducing the ranges and / or the number of steps. This approach
would be very risky as it would very likely diminish the general performance of the entire
surrogate modeling process. Furthermore, the approach would not mitigate the frequent
problem that the entire (cluster-distributed) surrogate creation process must wait after a few
very computationally-intensive surrogate training jobs that have been generated during the
grid search. In extreme cases, such training jobs may last more than 15 minutes for example.
This happens because the previously-described surrogate construction strategy requires
the termination of all model training jobs before proceeding with the model selection step.
Of course one could forcefully terminate very long model training jobs but, given the
heterogeneous nature of the cluster system, there are no guarantees that by doing this, one is
not in fact disposing of the best surrogate models.

A second approach aimed at reducing the general duration of the grid searches is to
reduce the size of the data sets used when training the potential surrogate models. Given
the particularities of our modeling needs, we have shown in Section 4.2.6 that constructing
useful training sets requires the computation of several (e.g., 25) FE simulation-based
generations. However we did not explore whether the rough value f eGen = 25 is influenced
by:

• density related aspects - the MOEA requires 25 generations to evolve enough individ-
uals in the “interesting sections” of design space, thus enabling the construction of
good global surrogate approximation models;

• exploration related aspects - the MOEA requires 25 generations to cover / explore
a large enough part of the design space, thus enable the construction of good global
surrogate models.

If the latter case were (even partially) true, one can theoretically restrict the size of
the training sets used to construct global surrogate models without seriously influencing
the prediction quality exhibited by the latter. In order to empirically check this aspect, we
considered three types of training sets:

1. Full( f eGen) - a training set that contains all the feasible individuals (data samples)
found during the first f eGen generations of the MOEA run.

2. Rand(count, f eGen) - a training set that contains at most count samples randomly
extracted from f ull( f eGen)
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3. Trim(count, f eGen) - a training set that contains at most count samples extracted
from f ull(N) in three different steps:

(a) in the first step we extract ntarg samples that correspond to the data samples
that contain the worst (highest) values for each of the elicited objectives of the
MOOP we wish to solve. These anti-optimal samples are the same ones one
would need to synthesize the pref point required when computing (3.9).

(b) in the second step we aim to extract samples that correspond to the PN of
Full( f eGen). If the size of this PN is larger than nPS = count−ntargets, we apply
a Pareto-based method (like the non-dominated sorting [65] or environmental
selection [66] strategies described in Section 2.3.3) to select (and subsequently
extract) exactly nPS individuals.

(c) in the third (optional) step, we randomly extract nrand = count−ntargets−nPS
samples from the ones remaining in Full( f eGen)

Based on the described procedure, it should be obvious that the more elaborate
Trim(count, f eGen) training set actively tries to incorporate MOO domain knowledge
to reduce the size but preserve as much of the density and search space exploration
characteristics of the original [i.e., Full( f eGen)] data set.

By using the syntagm “as much of” in the previous statement, we are in fact indirectly
acknowledging that a certain deterioration of data quality is to be expected in the case of the
Pareto-trimmed (and more generally reduced) training sets. In order to try and compensate
this, one of the most natural (and simple to implement) ideas is to extend the model selection
process described in Section 4.2.4 and to adapt it for constructing ensemble surrogate
predictors. For testing this idea, given a set of potential surrogate models that resulted
from a best-parameter grid search, we experimented with four different model selection
strategies:

1. sibest - selects the single surrogate model with the highest 10-fold cross-validation R2

performance. This is more or less the standard model selection strategy that we also
previously applied in Section 4.2.5.

2. sithr(pq) - selects a single surrogate model according to the threshold-based method
described in Section 4.2.4. The pq parameter indicates the percentage of top perform-
ing models that is used to compute the threshold value – e.g., pq = 5 indicates that
the best performing 5% from all the models computed during the grid search will be
used for establishing the quality threshold.

3. enbest(s) - selects a number of s individual (base) models that will form an ensemble
surrogate predictor. These base models are chosen in decreasing order of their R2

cross-validation performance and therefore, enbest(s) can be seen as a basic extension
of sibest . The final prediction of the ensemble is a simple average over the individual
predictions of the base models. N.B. There is virtually no extra computational cost
associated with this ensemble strategy since all the individual base models are created
by default during the best-parameter grid search.
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4. enthr(pq)(s) - also selects s base models in order to construct an averaging ensemble
predictor. In this case, as we aim to extend the sithr(pq) strategy, after computing the
threshold, individual models that display the best prediction quality vs. complexity
trade-off are selected iteratively (starting with the least complex one) until the model
count limit (i.e., s) is reached or until the model with the highest estimated prediction
quality is selected. In the case of the latter, the ensemble structure is filled by applying
a circular (round-robin) on the already selected base models. Figure 4.7 presents a
graphical description of this ensemble selection procedure.

Figure 4.7: An illustration of the proposed enT HR(pq)(s) model selection strategy. If our goal
is to create an ensemble of size 10 (i.e., s = 10), the final surrogate predictor will contain
three copies (instances) of each of the base models “1” and “2” and two copies for each of
the base models “3” and “4”.

We define a surrogate model construction strategy as being a combination of a
specific modeling method, a specific model selection strategy and a specific training set
structure. For example, we mark with MLP− enthr(5)

Trim(250,25)(10) a strategy that creates an
ensemble surrogate predictor of 10 MLP base models chosen according to a 5% high-quality
threshold and trained on a Pareto-trimmed data set of no more than 250 samples selected
from all the feasible designs evaluated in the first 25 generations of a MOEA run.

4.4.2 Comparative Performance
In order to assess the performance of the new ensemble-based surrogate construction
strategies and also confirm some of the findings reported in Sections 4.2.5 and 4.2.6, we
decided to perform the off-line modeling experiments reported in this section on three new
CIMOOP-based data sets.

These new data sets also correspond to optimizations of IndMOOP1, IndMOOP2 and
IndMOOP3. Therefore, they contain the same eleven targets presented in Table 4.3. The
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three optimization runs that produced the new data sets also ran for 100 generations with
a population size of 50 but the particular MOEA that we applied was SPEA2. For each
problem, the time-wise evolution of feasible designs generated during the SPEA2 run is
fairly similar to the one reported for NSGA-II in Section 4.2.2. Concrete values are presented
in Table 4.6 and, based on them, it is quite fair to assume that the performances of different
modeling techniques should not differ too much from those reported in Section 4.2.5.

Table 4.6: The number of feasible designs generated during the SPEA2 runs.

Problem
Feasible designs after generation
25 33 50 75 100

IndMOOP1 1206 1598 2430 3605 4732
IndMOOP2 897 1222 1855 2743 3622
IndMOOP3 799 1146 1745 2685 3582

We have performed all the surrogate modeling experiments from this section with the
setting f eGen = 25 and, while maintaining the MLP best-parameter grid search we slightly
modified the best-parameter grid searches for SVR and RBFNs that have been defined in
Section 4.2.5. This was done in order to remove a few of the parameter combinations that
did not prove successful with regard to the targets of the three CIMOOPs and to test if other
potential parameter combinations would be better. For the new experiments, during the grid
searches we created:

1. 630 models for each target when using SVR as we varied C between {2−4, . . . ,29}, γ

between {2−3,2−2, . . . ,25} and ε between {0.005,0.01,0.025,0.05,0.1};

2. 513 models for each target when using RBFNs as we varied the number of clusters
between {1, . . . ,5,10,15, . . . ,50,60, . . .100,125 . . . ,200,250,300,400,500} and the
min. cluster standard deviation between {0.05,0.1,0.50,1.0, . . . ,5,6, . . . ,10,15,20}.

This time, all the surrogate modeling tests were executed on the same machine (8-core
CPU, 4GB of RAM) in a multi-threaded environment that used a maximum of 6 threads
simultaneously. The time required to complete each surrogate training task was measured
independently and therefore, when also factoring in the homogeneous hardware environment,
the time-wise results we report are much more trustworthy than the cluster-based ones from
Section 4.2.5.

In a first series of experiments we wanted to (empirically) corroborate three of our earlier
assumptions and findings:

1. MLPs tend to produce slightly more accurate models than the other non-linear model-
ing methods;

2. the choice to start the surrogate modeling stage after computing an initial number of
f eGen = 25 FE-based generations is correct as it enables the construction of accurate
surrogate models;
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3. the automatic model strategy proposed in Section 4.2.4 [marked with MLP− sithr(pq)

Full(25)
when using the latest notations] is able to deliver some improvement over the
standard approach of choosing the best cross-validation performer [marked with
MLP− sibest

Full(25) when using the latest notations].

In Table 4.7 we present surrogate modeling results obtained with MLPs, SVR and
RBFN on the six non-linear targets proposed by IndMOOP1, IndMOOP2 and IndMOOP3.
Linear regression results are also provided for comparison. All the tabular data seems to
confirm earlier findings as, when considering the average performance over all six targets,
MLP− sithr(5)

Full(25) delivers the best performance (i.e., average R2 = 0.9690) achieving an

estimated prediction quality that is very close to R2 = 0.9720 – the complementary result
from Table 4.3 we reported for MLP− sibest

Full(33) on the data sets produced by NSGA-II
optimization runs.

Table 4.7: Information regarding the estimated prediction quality of single-model surrogates.
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T1 0.8594 0.9636 0.9619 0.8917 0.8842
T2 0.7712 0.9390 0.9531 0.8886 0.7687
T4 0.7909 0.9434 0.9577 0.9584 0.8117
T5 0.9201 0.9943 0.9957 0.9964 0.9874
T10 0.9245 0.9894 0.9816 0.9831 0.9784
T11 0.8934 0.9616 0.9644 0.9637 0.9500
Average 0.8599 0.9652 0.9690 0.9469 0.8967
Rank 5 2 1 3 4

A second round of experiments was aimed at evaluating the performance of ensemble-
based surrogates. The first two columns of Table 4.8 indicate that by averaging the results
of the best performing 10 models constructed during the MLP best-parameter grid
searches, we generally improve surrogate prediction quality when using the Full(25)
training sets. Interestingly, the model selection method based on thresholding [i.e., MLP−
enthr(5)

Full(25)(10)] also displays a slight edge over the strategy that simply selects the 10 most

accurate cross-validation models [i.e., MLP− enbest
Full(25)(10)].

The last (and most interesting) experiments we performed investigated if ensemble-
based surrogate models trained on reduced training sets can also deliver a very good and
time-wise stable prediction quality. As such, starting from Full(25) we constructed training
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Table 4.8: Information regarding the estimated prediction quality of ensemble-based surro-
gates.
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T1 0.9586 0.9637 0.9525±0.0054 0.9460±0.0028
T2 0.9556 0.9549 0.9510±0.0015 0.9517±0.0050
T4 0.9573 0.9596 0.9502±0.0108 0.9562±0.0032
T5 0.9961 0.9960 0.9936±0.0034 0.9920±0.0035
T10 0.9889 0.9887 0.9865±0.0020 0.9856±0
T11 0.9763 0.9752 0.9739±0.0010 0.9772±0
Average 0.9721 0.9730 0.9676 0.9681
Rank 2 1 4 3

sets containing only 250 samples [i.e., Rand(25) and Trim(250,25)] on which we applied
the MLP− enthr(5)(10) surrogate model construction strategy. Because both methods of
constructing reduced training usually feature a stochastic component, we performed five
independent runs of each surrogate modeling experiment and in the last two columns of
Table 4.8 we preset the R2 averages and standard deviations. The results show that for
the considered parameters (i.e., 250 samples out of the ones produced with f eGen = 25),
there is virtually no difference between applying a random or a Pareto-based trimming of
the original training sets. Nevertheless the achieved R2 values indicate that both of the
ensemble-based surrogates display a very high average prediction quality (close to the
one of MLP− sithr(5)

Full(25) – the best performing single-model surrogate). Furthermore, the

generational R2 plots from (the left side of) Figures 4.8 and 4.9 indicate that ensemble-based
surrogate models created using reduced (Pareto-trimmed) training sets12 are able to deliver
a very stable predictive behavior that matches the one of MLP− enthr(5)

Full(25)(10) – i.e., the
best performing global surrogate model construction strategy we have evaluated.

The last two columns of Table 4.9 show that when using a reduced data set of only
250 data samples, the average individual (base) model training time is reduced by ≈ 80%
from 60.08 seconds to 12.74 seconds. Furthermore, in the right side plots of Figures 4.8
and 4.9 we present the distributions of MLP model training times when using the Full(25)

12For each target, given the five independent runs we performed with MLP−enthr(5)
Trim(250,25)(10), we selected

the median ensemble model according to training R2 performance.
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and Trim(250,25) training sets during the best-parameter grid searches. Since in the case
of Trim(250,25), only a handful of models (from the 5376 constructed in total) require a
training time larger than 75 seconds, the distribution plots present compelling evidence that
using a smaller training set also drastically reduces the variance of surrogate model training
times. This is extremely important in our case because it makes load balancing a lot easier
when we distribute the best-parameter grid search over the cluster computing environment.

Table 4.9: Information regarding the average training times of the surrogate models and the
total wall-clock time required by the best-parameter grid searches.

Target
Surrogate model training time [s]

MLP−Full(25) SV R−Full(25) RBF−Full(25) MLP−Trim(250,25)
avg. total avg. total avg. total avg. total

T1 88.22 70627 307.96 195248 112.59 62603 12.35 10662
T2 85.84 74081 291.99 185125 113.66 63539 15.51 13447
T4 73.93 63661 330.39 209140 114.46 63640 12.81 11064
T5 32.25 28313 120.82 77930 302.05 170960 12.34 10875
T10 45.96 55883 106.68 68810 212.85 120478 12.46 15152
T11 34.28 43298 114.70 74100 217.32 123007 11.02 13399
Avg. 60.08 55977 212.09 135059 178.82 100705 12.74 12433
Rank 2 2 4 4 3 3 1 1

To summarize, given the three considered CIMOOPs, viz. IndMOOP1, IndMOOP2 and
IndMOOP3, the above presented experiments show that:

• a strategy that uses an ensemble of MLPs trained over Pareto-trimmed data sets – i.e.,
MLP− enthr(5)

Trim(250,25)(10) – produces global surrogate models that display the best
trade-off between prediction quality and training time;

• when only focusing on the quality and stability over time of surrogate predictions, a
strategy that creates an ensemble of MLPs trained using all the available samples –
i.e., MLP− enthr(5)

Full(25)(10) – is the overall best performer.

.
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Figure 4.8: Comparative prediction quality (generational R2) and training time performance
of two surrogate ensemble models, MLP−enthr(5)

Full(25)(10) and MLP−enthr(5)
Trim(250,25)(10), for

the non-linear targets of IndMOOP1.
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Figure 4.9: Comparative prediction quality (generational R2) and training time performance
of two surrogate ensemble models, MLP−enthr(5)

Full(25)(10) and MLP−enthr(5)
Trim(250,25)(10), for

the non-linear targets of IndMOOP2 and IndMOOP3.
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4.4.3 Remarks Regarding Surrogate Modeling
Throughout the current chapter we have presented (and improved) one possible method for
hybridizing a standard MOEA with surrogate (regression) models in order to considerably
speed-up the optimization process when dealing with CIMOOPs. Of course, our approach
is not the only possibility, even when considering particularities like the need to construct
the surrogates on-the-fly and to only present final solutions that are validated by an exact
fitness estimation process (like the one from Figure 3.2 in our case). For example, in [136],
Bittner and Hahn consider CIMOOPs from the exact application domain as us and describe
a multi-objective PSO hybridized with an ingenious Kriging-based [137] surrogate that
self-adapts in an on-line fashion: at each iteration (computational cycle) of the PSO, the
best 30% new particles (i.e., individuals / design vectors) that are deemed as the most
promising (able to advance the current IndH) are re-evaluated with FE simulations and
the Kriging-based surrogate is updated. Considering the introductory descriptions from
Section 4.1, this MOO approach applies surrogates in a pre-selection context.

On the one side, the approach from [136] is very interesting and would probably fair
quite well on a problem like IndMOOP3 that suffers heavily from formalization constraints
that determine the evolution of many infeasible designs. This is because the pre-selection
(PSO-Kriging) approach would not allow an infeasible design with very good surrogate-
estimated performance to influence the general search strategy since the erroneous design
would be disregarded within one iteration. On the other side, when compared to HybridOpt,
the pre-selection based optimization procedure is very likely to deliver smaller computational
improvements (for comparable PN performance) on CIMOOPs that are better defined and
suitable for constructing accurate global surrogate models. This is because, its inherent
(very fine) step-by-step “FE-evaluation→ modeling→ surrogate-evaluation” strategy is
likely to perform many unneeded FE simulations (for designs that will not be part of the
final PN).

Nevertheless, given the very good performances described in [136], we also began to
consider placing the proposed HybridOpt procedure inside a (rather coarse) on-line
learning paradigm13 that requires some surrogate retraining stages. In Chapter 7, we
discuss this matter in more detail as we reshape the HybridOpt process in a fashion that
bears similarities to the one proposed by Nain and Deb in [138].

Furthermore, in order to alleviate the problem of potentially infeasible designs crucially
affecting the behavior of the MOEA during the surrogate-based parts of the run, we decided
to construct surrogate feasibility models. The role of this new type of surrogates is to
assess (classify) if a given individual (design parameter vector) is erroneous or not. Of
course, a wealth of classification methods can be used for this task and by performing
a systematic analysis over CIMOOPs of interest (as described in Section 4.2.5 for the
regression case), one should be able to narrow down the list to a few very promising
classification paradigms. Given the fact that ANNs in general are very likely to at least
be short listed as one of the top contenders, we decided to construct surrogate feasibility
classifiers by adapting the MLP-centered strategy described throughout Section 4.2 as

13Especially since we can considerably minimize the duration of the surrogate modeling stage by switching
to ensemble-based averaging predictors trained over reduced data sets.
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follows:

• the training sets T were modified to include both the feasible and the infeasible
designs generated during the FE-based part of the MOEA run;

• the (training) data samples associated with feasible designs are labeled with “1.0”
and the ones associated with infeasible designs are labeled with “0.0” meaning that,
considering the notations from (4.3), the objective o1(x) of the surrogate feasibility
modeling process is defined as:

o1(x) =

{
1.0 , if x ∈ Dn

0.0 , otherwise
(4.7)

• given a sample x to be tested, it is labeled as feasible by a single-model surrogate if
and only if | f (x,W,a)−1.0| ≥ | f (x,W,a)−0.0|, where f (x,W,a) marks the output
of the MLP model;

• the final feasibility decision of an ensemble of MLPs is made by first computing the
individual option of each base model and then opting for the majority decision (i.e.,
we apply a classical equal voting strategy);

By introducing new concepts like fast-to-train ensemble-based surrogates and MLP-
based feasibility classifiers, we are able to seriously improve the general efficiency of the
surrogate modeling process. In Chapter 7, we present on-line results that illustrate how the
improved on-the-fly surrogate modeling process significantly boosts the performance of a
generally competitive MOEA that is applied on a very difficult CIMOOP.

Although quite successful in practice, we have also encountered a few CIMOOPs on
which the HybridOpt surrogate modeling strategy did not perform very well. This was
because of what we perceive as a general inability to easily construct accurate global
regression models14 for the non-linear targets contained in these electrical drive design
MOOPs.

In order to generally improve the duration of MOEA-based optimizations (especially
on CIMOOPs that prove challenging for surrogate modeling), in the next two chapters we
explore potential enhancements that are particularly focused on speeding-up the general
search mechanism proposed by MOEAs – i.e., reducing the nfe required for finding good
PNs.

14We applied MLPs (also featuring two hidden layers), SVR and RBFNs with considerably expanded
best-parameter grid searches on training sets obtained with the setting 25≤ f eGen≤ 50 and only managed to
obtain average R2 values < 0.65 on the complementary test subsets.
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Chapter 5

Making the Correct Parallelization
Choice

5.1 Motivation and General Idea

5.1.1 Parallel and Distributed MOEAs

The simplest idea that displays immediate benefits when wanting to reduce the run-time of a
MOEA on a CIMOOP is to parallelize / distribute the computations over a cluster or a grid
environment. There are several well-established paradigms (i.e., architectural and conceptual
models) that describe how such a parallelization can be performed. The available options
range from very simplistic master-slave parallelization (MSP) approaches to increasingly
more specialized (complex) island, diffusion, hierarchical and hybrid parallelization models.
For an in depth description of these parallelization options and useful examples of how they
can be (have been) applied in the context of MOO, please see Chapter 8 of [13].

Throughout this chapter we are only concerned with the very simplistic MSP paradigm.
When used to “enhance” run-time of an EA this approach dictates that: all fitness evaluations
are distributed between several slave nodes (computational units) and all the evolutionary
operations (i.e., parent selection, crossover, mutation, selection for survival) are performed
on a master node (computational unit). The simplicity of this model makes it very easy
to implement and to adapt to the particularities of the available hardware infrastructure.
Therefore the MSP model is the first choice of most practitioners and it is widely used.

When applied on EAs, the MSP paradigm offers practitioners two main parallelization
choices:

• a generational master-slave parallelization scheme (GEN-MSPS) that does not alter
the algorithmic behavior of the EA one wishes to parallelize;

• a steady-state asynchronous master-slave parallelization scheme (SSA-MSPS) that
usually changes the algorithmic behavior of the EA by forcing it to adopt an evolution-
ary strategy that is very similar similar to the steady-state selection scheme described
by Goldberg [139].
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Considering the proposed general EA structure from Algorithm 1, the generational evolu-
tionary model is obtained with the setting genSize = popSize and Goldberg’s steady-state
scheme is obtained with the setting genSize = 1. Therefore, adopting one or the other
algorithmic behaviors is usually simply a matter of preference. Deciding which of these
two EA behaviors delivers better results is an age old dilemma in the field of evolutionary
computation. As such, while many advocate the usage of generational EAs, in their study
from 2008 [140], Durillo et al. show evidence that applying a (synchronous) steady state
approach when performing a MOEA run can bring improvements in terms of achievable
PN quality.

The aim of the research (analysis) reported in this chapter is to offer MOEA practitioners
(and DMs) valuable (or at least interesting) insights that can help them make the right MSP
choice based on the particularities of their MOO processes.

5.1.2 Why Focus on the Basic MSP Paradigm?
The question in the title is quite legitimate, especially when considering the impressive
results reported in [13] that were obtained with more advanced parallelization models.

The answer is that, apart from its wide usage and large potential for immediate adoption
when first switching to a parallel / distributed MOEA, the MSP paradigm is:

• interesting to study in the context of MOEAs because of its natural interaction with
the (µ+λ ) Pareto-based strategy that governs most MOEAs. When choosing to adopt
GEN-MSPS, one is sure to obtain the time-wise improvement brought by moving to a
parallel hardware infrastructure. When opting for SSA-MSPS (for reasons we shall
soon present), one is also changing (maybe unwittingly) the governing principle of
the MOEA to a (µ +λ 1+) Pareto-based strategy with the hope of achieving an even
greater time-wise improvement.

• seriously understudied, when taking into account that making the right choice for
GEN-MSPS or SSA-MSPS can seriously impact the performance of the MOO run.

• an important integral part of other, more advanced, hybrid parallelization models (as
we briefly described in Chapter 7) and understanding how to make a correct choice
MSP has an obvious positive impact on the hybrid parallel model as well.

All in all, many empirical tests on EAs have shown that the result obtained when opting
for SSA-MSPS instead of GEN-MSPS can be significantly better or significantly worse,
depending from case to case, and we would like to determine the most important factors that
influence this outcome in the case of a (µ +λ ) MOEAs. More specifically, given a certain
optimization setup, the goal of our analysis to determine which of the two MSP schemata is
more likely to help the MOEA reach a better PN.

N.B. All the MOEAs presented in detail in Section 2.3 with the exception of MOEA/D
fall within the (µ +λ ) class. Because of it’s unique evolutionary strategy centered around
cooperation between neighboring solutions, MOEA/D is a very interesting candidate for a
diffusion-based parallelization.
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5.1.3 The Proposed Analysis
Before proceeding with the description of our proposed method for comparing GEN-MSPS
and SSA-MSPS performance, we must first introduce some basic concepts.

When considering a process that is parallelized / distributed via a MSP architecture, one
must distinguish among two types of computational tasks:

1. remote tasks - very time-intensive computations that are performed on the slave
nodes;

2. sequential tasks - include all the operations that must be performed on the master-
node in order to create, dispatch and retrieve remote computation tasks;

When considering parallel and distributed MOEAs, the “create” part of the sequential
tasks mainly includes the application of genetic operators. Apart from these, in real-world
master-slave parallelization setups for MOEAs, the duration of the sequential tasks can also
be affected by the fact that lengthy pre-evaluation steps must be performed locally (on the
master node) for each generated individual, before dispatching the individual for remote
fitness evaluation on the slave nodes. For example, in the case of our CIMOOPs, during the
electrical drive performance evaluation process illustrated in Figure 3.2, the “2D/3D model
construction” must be performed locally (on the master node) because of license-related
issues related to the used CAD software. Whenever the average duration of the sequential
tasks carried out on the master node is significant with regards to the average duration of
the fitness evaluation tasks, the optimization process is said to display a low parallelization
ratio. In this case, the speed-up that can be achieved by employing a parallel / distributed
architecture is affected (q.v. “Amdahl’s law”).

Apart from the parallelization ratio, another aspect that must be considered refers to
the heterogeneity of the time-wise distributions of the remote and sequential tasks. As
already established, in the case of MOEAs, the remote computational tasks are represented
by the fitness evaluation functions (procedures). Literature that focuses on the effects of
fitness function time-wise heterogeneity on making a good MSP choice for MOEAs is scarce.
Nevertheless, a study by Yagoubi et al. from 2011 [141] shows some empirical evidence
that, for MOOPs that display a heterogeneous (i.e., non-constant) time-wise distribution
of the fitness function, the steady state asynchronous parallelization is somewhat better in
terms of convergence (Pareto quality and global run-time) than the generational approach.
A key focus point of our analysis is this important empirical result from [141].

The diagram in Figure 5.1 provides a general illustration of the computation cy-
cles generated by both GEN-MSPS and SSA-MSPS when applying these parallelization
schemata on a generic (µ +λ )-styled MOEA. As expected (given previous remarks), these
cycles are nearly identical and the only difference is in the type of synchronization blocks
that regulate the MOEA dynamics:

• the λ -sync block used by GEN-MSPS requires that λ offspring must be stored in the
“offspring insertion pool” before the selection for survival operation can take place
and, subsequently, a number of λ new offspring can be generated;
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• the 1+-sync block used by SSA-MSPS allows the selection for survival operation to
take place when at least one offspring is stored in the “offspring insertion pool”. After
the operation takes place, as many new offspring are generated as those that have
taken part in the selection for survival process.

Figure 5.1: Diagram of the GEN-MSPS (the λ -sync block) and SSA-MSPS (the 1+-sync
block) computation cycles.

Figure 5.2 provides a sketch / didactic example of how individuals are processed by the
two MSP schemata. The more flexible synchronization step of SSA-MSPS enables this
method to evaluate more individuals per time interval than GEN-MSPS (e.g., in Figure 5.2
SSA-MSPS could evaluate 4 more offspring in the remaining time interval).

The downside of using SSA-MSPS is that, intuitively, the same lack of generational
synchronization is expected to make SSA-MSPS achieve worse results in terms of PN
quality after evaluating a fixed number of individuals. A quick example as to why this might
happen is represented by the case of “Ind-9” from the aforementioned figure. In the case
of GEN-MSPS, this individual is able to theoretically “profit” from the combined “search
knowledge” of eight individuals that have been generated (and evaluated) before him. In
the case of the SSA-MSPS, “Ind-9” can only profit from the “search knowledge” of six
individuals as, because of the 1+-sync block, “Ind-7” and “Ind-8” have not been evaluated
by the time “Ind-9” was generated. Although rather trivial, these examples are very useful
to describe the basic effect of the two different synchronization blocks:

• SSA-MSPS displays a quantitative improvement with regard to GEN-MSPS as the
former can compute more individuals in a fixed time interval;

• SSA-MSPS displays a qualitative deficit with regard to GEN-MSPS as individ-
ual number s generated by SSA-MSPS profits from less “search knowledge” than
individual number s generated by GEN-MSPS.

The main idea our MSP analysis is to study the quantitative and qualitative aspects in
more detail in order to discover if there are any factors that can drastically influence the
interaction between them.
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We consider that performing our analysis from this dual point of view is very useful since
quantitative aspects tend to be related more to the physical and software constraints of the
available parallel/distributed computing architecture (i.e., they are more or less fixed), while
the qualitative aspects are mainly dependent on the chosen MOEA, the chosen algorithm
parameterization, and the complexity of the actual MOOP to be solved. Therefore, the
qualitative aspects exhibit a higher variability as two of the factors that directly influence
them (i.e., MOEA and MOEA parameterization) can be selected freely.
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Figure 5.2: The comparative computation steps of GEN-MSPS and SSA-MSPS for 3
generations of size 4 in a distributed computing environment with one master node and 4
slave nodes.
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5.2 The Quantitative Performance

5.2.1 The Basic Model
At first we attempt to derive a basic quantitative performance model that, given a time
interval, is able to indicate how many more individuals is SSA-MSPS able to compute when
comparing to GEN-MSPS.

We consider a generic (µ +λ ))-styled MOEA that is parallelized / distributed over a
computing environment with more than λ slave nodes (i.e., we assume that the available
number of slave nodes is not the bottleneck of the optimization setup). We mark with tp > 0
the duration (in time units) of distributing and performing the fitness evaluation of any
individual on any slave node (i.e., the duration of the remote computation tasks). We also
mark with ts > 0 the cumulative duration of the sequential computation tasks (i.e., genetic
operations + possible pre-evaluation tasks) that are performed on the master node in order
to create one individual. For the time being, we assume that ts and tp are constant (i.e., we
have a homogeneous time-wise distribution of both the fitness evaluation and the individual
creation functions). The parallelization ratio is defined as:

r = d
tp

ts
e (5.1)

N.B. Under the above mentioned restrictions, when considering the GEN-MSPS ap-
proach, it is quite straightforward that it doesn’t need more than r+1 slave nodes simultane-
ously as the first slave will finish its fitness evaluation by the time individual number r+2
is generated on the master node . The reasoning in this section is made under the restriction
r+1≥ λ and that there are more that λ slave nodes available for performing the remote
fitness evaluations.

Assuming that other miscellaneous computation times are negligible with regards to (or
integrated in) ts and tp, the total time required to compute any generation of λ individuals
using the GEN-MSPS is (λ × ts)+ tp. In case of the SSA-MSPS, the time required to
compute the first λ individuals is also (λ × ts)+ tp, but the time required to compute any
of the next batches of λ individuals is (ts + tp), as sketched in Figure 5.2. Therefore, when
wishing to compute maxGen generations, the overall computation time is

1. (λ × ts + tp)×maxGen in the case of GEN-MSPS;

2. (λ × ts + tp)+(ts + tp)× (maxGen−1) in case of SSA-MSPS.

After equalizing these computation times and performing the necessary calculations, we
have that in the time interval required by GEN-MSPS to compute maxGen×λ individuals,
SSA-MSPS can compute ∆struct% more individuals, where ∆struct is given by:

∆struct =
(maxGen−1)× (λ −1)× ts

maxGen× (ts + tp)
×100 (5.2)

We shall refer to 5.2 as the structural improvement that SSA-MSPS has over GEN-MSPS
in terms of computed individuals per fixed time interval.
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It is important to note that while ∆struct does depend on the number of generations to be
computed, the dominant factors that influence ∆struct are the ratio between ts and tp (i.e., the
parallelization ratio r) and the population size (i.e., λ ). When dealing with CIMOOPs, a
rather small choice of λ (i.e. 50 to 250) is usually the norm.

When fixing λ = 100, maxGen = 500, and ts = 1, by varying the value of tp, we can
compute the dependency of ∆struct on the parallelization ratio r. The corresponding values
are presented in the left plot of Figure 5.3 as the basic model curve. Unsurprisingly, these
values indicate that the quantitative improvement associated with SSA-MSPS decreases
exponentially with the parallelization ratio.
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Figure 5.3: ∆struct plots for different parallelization ratios and different degrees of variance
(i.e. cv) in the time-wise distribution of the fitness evaluation function

Although valuable in establishing a baseline for the comparison between GEN-MSPS
and SSA-MSPS, this simplistic comparison has one severe limitation: it is strongly in-
fluenced by the idealistic assumption that the duration of the fitness evaluation tasks is
constant.Therefore, in the next section we address this issue in order to improve our quanti-
tative performance model.

5.2.2 The Effect of Variance

At first, we performed tests in order to validate the theoretical model proposed in the
previous section. Using a homogeneous time-wise fitness distribution, we simulated the
time required by GEN-MSPS and SSA-MSPS runs when considering various values of the
parallelization ratio for the same settings used previously λ = 100, maxGen = 500, and
ts = 1. The obtained results (Figure 5.3 - the cv = 0 data points for r > 100) confirm the
∆struct behavior indicated by the theoretical model from (5.2). Furthermore, the simulation
also allowed us to easily estimate ∆struct for values of r smaller than λ (i.e., the left plot of
Figure 5.3). In this case, ∆struct displays a linear behavior that is directly proportional to r.
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Table 5.1: The observed variance-specific lower thresholds of ∆struct

cv [-] Lower threshold for ∆struct [%] ∆struct for r = 106 [%]

0.20 48.9700 49.1040

0.10 24.4500 24.5300

0.05 12.1800 12.2140

0.02 4.8140 4.8300

Secondly, we wanted to quantify the influence of having ever larger degrees of het-
erogeneity (i.e. variance) in the time-wise distribution of the fitness evaluation function.
Therefore, we performed new simulations where the fitness evaluation of each individual
took tp milliseconds and tp ∼N (m,σ). By fixing ts = 1, we obtain r ∼ m and. When
scaling up m we also modified σ in order to keep the coefficient of variation, cv =

σ

m ,
constant at preset values. By using this simple technique we were able to effectively control
both the amount of variation in the time-wise distribution of the fitness function and the
parallelization ratio. The maximum amount of variance that we could consider under the
normal distribution assumption was given by cv = 0.2 - a higher value would result in
sampling negative values (which doesn’t make sense for a fitness duration). Because of the
induced stochasticity, for each value of r we performed 100 tests and we report averaged
results.

The plot in Figure 5.3 shows how ∆struct behaves for four different variance levels
(i.e., values of cv). The curves clearly indicate that the exponential decrease of ∆struct is
dampened by increased levels of variance. Further experiments have also shown that for
(r > λ ), when having variance in the time-wise fitness distribution function, after reaching
a lower threshold, the value of ∆struct tends to stabilize. We have run simulations up to
r = 106 with a step size of 500. In Table 5.1, we report the lower thresholds of ∆struct
for different variance levels. We mention that, in the absence of variance, for r > 49500,
∆struct = 0.0% because, although SSA-MSPS computes the required 50000 individuals faster
than GEN-MSPS, no extra individual can be computed by SSA-MSPS in the remaining
time interval.

In conclusion, the theoretical model given in (5.2) provides an accurate lower limit
for ∆struct but the value of ∆struct . Nevertheless, ∆struct is significantly higher for a given
parallelization ratio r when having variance in the time-wise distribution of the fitness
function. Furthermore, in the presence of variance, ∆struct is lower bounded by variance-
specific thresholds that display a remarkable stability even at very high values of r.
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5.3 The Qualitative Performance - Empirical Results

5.3.1 The Testing Framework

The qualitative performance of the two considered master-slave parallelization schemes is
harder to quantify as it depends on the concrete MOOP to be solved, on the used MOEA and
on the parameterization of the MOEA. In the following paragraphs we describe the details
of the performance evaluation framework we propose in order to estimate the qualitative
performance.

Firstly, we mention that we conducted our experiments (50000 nfe / optimization run)
using NSGA-II and SPEA2 with standard parameterizations and a population / archive
size of 100. The motivation for using NSGA-II is that this MOEA is widely used and
experimented with, so the empirical results obtained with it should be of interest to a larger
audience. The reasons for experimenting with SPEA2 are related to the fact that, in the
next chapter, we use this MOEA as a subpart of a more complex MOO solver that is later
also parallelized. Therefore, the performance of SPEA2 with regard to GEN-MSPS and
SSA-MSPS is of considerable interest to us. Given the stochastic nature of MOEAs, for
each comparative test that was performed, we made 100 repeats of each experiment (i.e.,
MOOP-MOEA run) and we always report over the averaged results.

Secondly, we carried out our tests on 15 benckmark MOOPs selected from those
described in Section 3.1.1. The 15 selected problems propose different degrees of difficulty
and, subsequently, different convergence behaviors for the two MOEAs that we experiment
with. The computation of the fitness values for all 15 problems is very fast on any modern
processor. In order to make the MOEAs exhibit the desired test behavior, the fitness
computation times were artificially increased.

Thirdly, we must mention that we are particularly interested in studying the early and
middle-stage convergence behavior of MOEAs when applying GEN-MSPS and SSA-MSPS.
This is because in a real-life optimization scenario, that is time-constrained, a practitioner is
likely to stop the optimization process as soon as he/she notices that small improvements
come at an ever increasing computational cost (i.e. the MOEA enters the late-stage of
convergence). We have arbitrarily defined the limits 0.15≤ IndH ≤ 0.85 in order to define
what is our region of interest with regard to MOEA convergence.

Fourthly, we introduce a new IndH-derived qualitative performance indicator that denotes
the SSA qualitative deficit at the IndH marker p:

∆qual(p) =
(

nfeSSA(p)
nfeGEN(p)

−1
)
×100, p ∈ (0,1] (5.3)

where, for a fixed MOOP and a fixed MOEA, nfeSSA(p) computes the number of fitness
evaluations that must be performed when applying SSA-MSPS in order to reach a current
PN with a IndH-measured quality of at least p. nfeGEN(p) computes the complementary
value for GEN-MSPS.
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5.3.2 Basic Qualitative Performance
In the first series of performed tests, using a constant fitness distribution (i.e. cv = 0), we
computed the IndH-estimated quality of the MOEA parent population consecutive batches
of 100 individuals. The results obtained with NSGA-II are presented in the left subplots
[marked with (a)] from Figures 5.4, 5.5 and 5.6. The results obtained with SPEA2 are
presented in the left subplots [marked with (a)] from Figures 5.4 5.5 and 5.6.

We consider that a more useful perspective for presenting the same comparative conver-
gence behavior information can be constructed by plotting the ∆qual values of the MOEA
parent population as shown (the cv = 0 lines) in the subplots marked with (b) from the
previously mentioned figures.

For the sake of brevity, our next observations are made based on the empirical results
obtained with NSGA-II. The results obtained with SPEA2 largely display the same trend, a
fact than can be confirmed by the presented graphical and tabular data.

The first important observation is that for 10 of the 15 test problems, more precisely for
those presented in Figures 5.4 5.5, NSGA-II displays a good convergence behavior as it
bypasses the initial and middle stages of convergence and is able to reach the final stage of
convergence (i.e., p > 0.85, where p denotes a IndH marker). On the 5 MOOPs presented
in Figure 5.6, the convergence behavior is different:

• for DTLZ3 - the MOEA is only able to reach p values of ≈ 0.40 after 50000 fitness
evaluations (continuing the run would eventually enable it to reach a late stage of
convergence);

• for LZ09-F1, LZ09-F8, and LZ09-F9 - the MOEA seems unable (with the given
settings) to reach p values > 0.85 and the charts indicate premature convergence;

• for WFG7 - the MOEA is able to reach the late stage of convergence, but random
initializations of the initial population already display relative p values of ≈ 0.40;

For the remaining of this work we shall refer to the 10 MOOPs from Figure 5.4 and
Figure 5.5 as the successfully solved problems and to the 5 problems from Figure 5.6 as
the special case problems.

The results of these initial tests confirm some of the findings from [142], in the sense
that, the GEN-MSPS is able to achieve a higher quality Pareto front than SSA-MSPS after
the same number of evolved individuals in the early and middle stages of convergence for
all the 10 successfully solved problems. This observation also holds for 4 of the special
case problems. In the case of LZ09-F8, the NSGA-II convergence graphs indicate that
SSA-MSPS has a better performance when wanting to reach p-values > 0.30.

Furthermore, when abstracting the behavioral shifts and numeric artifacts that character-
ize the early and late stages of convergence, we notice that ∆qual values are quite constant
(within a 10% range) for each successfully solved test problem. When also considering the
special case problems, we can state that, in general, ∆qual values do not display a trend
that increases with p.
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Figure 5.4: NSGA-II qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Figure 5.5: NSGA-II qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Figure 5.6: NSGA-II qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Figure 5.7: SPEA2 qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Figure 5.8: SPEA2 qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Figure 5.9: SPEA2 qualitative performance plots: (a) - generation-wise hypervolume
performance, (b) - ∆qual results
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Considering the somewhat constant behavior of ∆qual for the successfully solved
MOOPs, we constructed an additional quality metric. By averaging the individual ∆qual
values associated with the middle stage of convergence (i.e., p =∈ {0.16,0.17, . . .0.85}),
we obtain the average required SSA improvement for a MOOP-MOEA combination:

∆req =
1

70

85

∑
p=16

∆qual(p) (5.4)

The new ∆req metric is important as it is a rough indicator of how many more individuals
per time interval SSA-MSPS must compute in order to mach the results that would be
produced by GEN-MSPS in the same time interval.

5.3.3 The Effect of Variance
The second series of tests that we have performed in order to gain more insight into the
qualitative performance of the two parallelization schemes is again related to the influence
of having variance in the time-wise fitness distribution function.

The results obtained using NSGA-II and SPEA2 are also presented in the subplots
marked with (b) from Figures 5.4, 5.5, 5.6, 5.7, Figure 5.8 and 5.9. A quick look over all
30 plots reveals that the effect of variance is not so important in the case of the qualitative
performance.

The values of ∆req for the successfully solved problems for both NSGA-II and SPEA2
are shown in Table 5.2. Given the formulation of ∆req from 5.4, the metric can not be
computed for the special case MOOPs. We point out that when using SPEA2, WFG1
becomes a special case problem and, as such, computing ∆req values for the SPEA2-WFG1
combination does not make sense. Nevertheless, the data from Table 5.2 clearly indicates
that, in the case of the qualitative performance, variance in the time-wise distribution of the
fitness evaluation function has a negligible effect as:

• ∆req is not directly proportional to the amount of variance and for 7 out of the 19
MOOP-MOEA combinations, the highest average ∆req value corresponds to the
experiment with zero variance (i.e., cv = 0);

• in 13 out of 19 cases, the observed average changes induced on ∆req by having some
level of variance are not statistically significant. More precisely, we checked if the
difference between the highest and the lowest ∆req values for any MOOP-MOEA
combination is statistically significant given a one-sided Mann-Whitney-Wilcoxon
test with a considered significance level of 0.05.

All these observations create a stark contrast when comparing with the powerful ef-
fect that variance has on the quantitative performance and provide a solid indicator that
SSA-MSPS should be favored in the presence of significant variance in the time-wise
distribution of the fitness function.
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Table 5.2: Averaged values of the ∆req metric over 50 runs for different levels of variance
in the time-wise distribution of the fitness evaluation function. For each MOOP-MOEA
combination, the highest value is highlighted and marked with “+” if the difference between
it and the lowest ∆req value of the combination is statistically significant.

∆req for NSGA-II at cv = [%] ∆req for SPEA2 at cv = [%]

Problem 0 0.02 0.10 0.20 0 0.02 0.10 0.20

DTLZ1 17.61 18.94 16.28 19.30 10.17 8.20 9.48 11.40

DTLZ7 15.61 16.54+ 14.32 15.25 15.41 13.12 12.90 15.96+

KSW10 17.22 18.35 17.33 17.19 18.95+ 15.94 13.84 14.77

LZ09-F1 12.36 13.81 11.80 14.03 13.25 13.02 12.63 11.93

LZ09-F3 20.45 21.67 20.35 20.82 17.42 17.11 17.54 14.19

LZ09-F4 21.54 20.24 20.24 19.84 13.59 14.42 14.47 14.38

LZ09-F5 21.73 20.62 22.20 22.37 16.92 15.54 16.51 16.44

WFG1 12.58 8.77 13.27 12.14 - - - -

ZDT3 19.92+ 15.29 16.67 17.99 14.33+ 14.07 13.11 9.90

ZDT6 20.53 19.98 20.25 19.96 20.11 19.78 21.19+ 20.23

5.4 Remarks regarding MSP Schemata
Across all 15 test problems and regardless of the induced variance, our results indicate that
SSA-MSPS performs quite similar to GEN-MSPS towards the end of the runs. The
average performance of SSA-MSPS is even marginally better (i.e., ∆qual < 0) for several
problems (notably: DTLZ7, LZ09-F4, LZ09-F2, LZ09-F9, and WFG7 ). In particular,
for the 10 successfully solved MOOPs, this means that it makes no difference which
parallelization methods is applied if the optimization is ran long enough to allow GEN-
MSPS to enter the late stage of convergence (i.e., p > 0.85).

This identical performance exhibited towards the end of the runs and the generally
stable behavior of the qualitative deficit exhibited by SSA-MSPS allows for the following
reasoning regarding the comparative performance of GEN-MSPS and SSA-MSPS: if, for
a given optimization scenario, the quantitative improvement of SSA-MSPS (∆struct)
can overcompensate the qualitative deficit of SSA-MSPS (∆req), we can say that, on
average, SSA-MSPS is the better parallelization choice. This is because, when (∆struct >
∆req), the percentage of extra individuals that can be evaluated when using SSA-MSPS (i.e.,
∆struct) is larger than the percentage of extra individuals that must be evaluated (i.e., ∆req) in
order to reach Pareto non-dominated sets of similar quality.
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5.5 Application on a CIMOOOP
We have applied the previously described qualitative and quantitative analyses on a slightly
modified version of IndMOOP1.

Based on 105 samples, the average duration of the fitness evaluations (i.e., tp)tasks
performed in our high throughput computing environment is 391.94 seconds and the average
duration of the sequential computation tasks (i.e., ts) is 21.48 seconds. This leads to a
rather small parallelization ratio of only 18.25. The reason for the rather high value and
rather strange distribution (Figure 5.10 - left plot) of ts lays with the previously mentioned
software licensing restrictions. The distribution of tp (Figure 5.10 - right plot) is also quite
heterogeneous (cv = 0.23) as the cluster computers used to perform the FE simulations
have different processing performances. After integrating all this data into the simulation
framework described in Section 5.2, the results indicate that, on average, we should expect
a ∆struct of 19.47%. Taking into account that in all the tests from Section 5.3, ∆req is hardly
ever higher than 20%, this observation would motivate us to apply SSA-MSPS for this
problem.
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Figure 5.10: Kernel density estimations of the time-wise distributions of the sequential (ts)
and of the remote (tp) computation tasks for IndMoop1

We performed 15 SPEA2 optimization runs with each MSP schema. The algorithm
was parameterized using the same settings described in Section 5.3.1. Over these real-life
runs, we measured a ∆struct of 20.13% that is quite close to the prediction (19.47%). The
qualitative performance plots are presented in Figure 5.11 and, surprisingly, they show that,
after evaluating the same number of individuals, SSA-MSPS is able to produce better Pareto
fronts than GEN-MSPS. The reason for this may lay with the number of infeasible designs
generated during the search.

It is worth mentioning that the actual global run-times of the 30 real-life optimization
runs confirm the computed ∆struct and ∆req values as the SSA-MSPS runs are (on average)
able to achieve the PN-quality obtained with GEN-MSPS ≈ 25% faster.
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“In varietate concordia” / “In varietate unitas!”

Motto of the European Union / Ernesto Teodoro Moneta

Chapter 6

Coevolutionary Enhancements

6.1 Motivation and General Idea

Apart from Holland’s Schema Theorem mentioned at the end of Section 2.3.1, one of
the most influential / important theoretical results related to evolutionary optimization
(and search / optimization in general) can be found in the 1997 article of Wolpert and
Macready [103] in which the authors prove their now famous "No Free Lunch Theorems
for Optimization" (NFL). In the own words of Wolpert and Macready from [143], “the

‘No Free Lunch’ (NFL) theorems state that any two [search / optimization] algorithms are
equivalent when their performance is averaged across all possible problems”. In order to
clarify the disheartening (and often wrong) conclusions associated with the NFL theorems
over the years, in [144], Wolpert clarifies that: “while the NFL theorems have strong
implications if one believes in a uniform distribution over optimization problems, in no
sense should they be interpreted as advocating such a distribution”.

A very popular interpretation of these theorems is that, from a theoretical perspective, it
generally makes sense to pair specialized optimization strategies with problems-to-be-solved
as there exists no universal optimization strategy that is better1 than all other strategies across
all possible problems. Practically, given a real-life optimization problem – P1 – with an
unknown solution and the demand to solve it using as few objective evaluations as possible,
the NFL theorems suggest that, since a best-for-all-problems universal solver does not exist,
one should focus on (finding and adapting / creating and) experimenting with (increasingly
better) problem-specialized solvers that can speculate the particularities of P1 during the
optimization. In light of this, the NFL theorems have been added to the select circle of what
scientists humorously dubbed “full employment theorems”2. N.B. The NFL theorems do
by no means dismiss the fact that a certain optimization algorithm –Alg-A– can perform
better than another one – Alg-B – (or to all other ones for that matter) across a subset of
optimization problems. The NFL theorems simply entail that if this superior performance

1Requires less objective evaluations to find the solution.
2Applying oneself to the study of problems governed by these theorems is likely to lead to a prolific

publishing record or, like in the present case, to a few interesting results that can hopefully justify a PhD
degree.
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of Alg-A is confirmed (observed), then, there also exists another subset of optimization
problems on which Alg-A performs correspondingly worse than Alg-B3. Nevertheless, if the
set of problems on which Alg-A outperforms its competitors is of major practical importance
and the set on which it underperforms is not (yet), then searching for / developing Alg-A
is indeed worthwhile. For interesting theoretical arguments as to why informed search
methods (hill climbing, simulated annealing, EAs, etc.) perform better than random search
in nearly all reported cases please consult [146].

With regard to (general) optimization strategies that can be parametrized (like EAs), since
different parameter settings can notably influence the concrete search behavior, the NFL
theorems also provide quite compelling evidence in favor of (the empirically proven) need to
(fine) tune4 solvers and thus “specialize” them on the particularities of the problem(s) at hand
when wanting to considerably improve the (nfe-measured) efficiency of the optimization
process. Of course, most of the solving strategies regarded as being highly competitive
also have the inherent quality of being quite robust with regard to their parameterization –
i.e., when using standard (literature recommended) settings, they display a good balance
between optimization efficiency and final solution quality across a wide range of problems.

Nevertheless, all the previous arguments are necessary in order to outline a very impor-
tant practical aspect related to the inherent difficulty of solving CIMOOPs that is not usually
emphasized: the very long (wall-clock) optimization times associated with these types
of problems generally make any attempts to parameter-tune an a posteriori MOOA
rather impractical. Thus, practitioners usually must rely on the standard parameter set-
tings of the applied MOOA. when wanting to solve CIMOOPs. Furthermore, in our case,
taking into account that several MOO practitioners and DMs from the electrical drive design
community do not (and need not!) have an extensive background with regard to the internal
workings and parameterization sensibilities of MOO solvers, developing new MOOAs
that are both highly efficient and very robust with regard to parameterization has
been identified as an important research goal.

In order to achieve it, we examined (and experimented with) a few already proven
concepts that aim to enhance a standard EA process by:

• allowing the algorithm to apply different genetic operators (and parameterizations of
these operators) throughout the search [147];

• enabling the EA to dynamically choose which genetic operators to apply based on
previous performance [148];

• applying self-adaptive genetic operators [149];

• implementing a coevolutionary-centered search strategy;

In our case, the coevolutionary option was able to deliver the most promising results
even when encapsulated in a very basic construct. Therefore, in Section 6.2 we describe our

3For example, in [145], Oltean describes a NFL-motivated approach for constructing artificial optimization
problems (i.e., objective functions) on which random search outperforms EAs.

4In the case of an EA this can mean experimenting with different population sizes, different genetic
operators, different parameterizations related to genetic operators and / or their application ratios, etc.
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initial (and fairly successful) coevolutionary MOEA proposal and in Section 6.3 we describe
DECMO2, a more advanced coevolutionary-centered approach that has proven very efficient
and robust when considering all the artificial MOOPs mentioned in Section 3.1.1.

In nature, coevolution denotes a process through which two or more species that find
themselves inside a predatory, parasitic, or symbiotic relationship are gradually forced to
adapt (i.e., evolve) in virtue of their interactions. As such, coevolution can be seen as the
part (or flavor) of the general evolutionary process that is responsible for (over-)specializing
a population in response to the biotic dynamics of the environment it operates in. The role of
this over-specialization is to allow a species to survive (in the predatory or parasitic case) or
to thrive (in the symbiotic case). For an introduction and overview of biological coevolution
please consult [150].

Because of the generality of the underlaying principal on which it is based (i.e., an action
and reaction cycle that triggers inner-changes in the participants), coevolution has also
been adapted and used outside biology in areas like astronomy, social sciences (economics,
politics, sociology, etc.), and computer science.

Within computer science, among other uses, coevolution is a very popular choice for
improving the performance of population-based (heuristic) optimization methods. Two
main classes of subpopulation-based coevolutionary optimization algorithms are easily
distinguishable:

1. competitive coevolution approaches - in which the fitness of an individual is the result
of (adversarial) “encounters” (comparisons) with other individuals (possibly from
another population) [151] [152];

2. cooperative coevolution approaches - in which the fitness of an individual from one
population is the result of collaboration with individuals from other populations [153].

Practical overviews of coevolutionary optimization and MOO approaches can be found
in Chapter 3 (more precisely, Section 3.5) from [47] and Chapter 6 from [154]. As a
side note, the latter reference is very interesting as Sean Luke explicitly states (the quite
common conception) that fitness sharing and crowding strategies “are coevolutionary in
nature” since they assess the survivability of individual x based on the potential presence
in the population of another individual y that is deemed as “too close” to x in objective
space. Under this reasoning, all MOEAs from Section 2.3 that use a Goldberg-inspired
selection for survival strategy, viz. NSGA-II, SPEA2, DEMO and GDE3, can be seen as
coevolutionary approaches.

Apart from the many (real-life) optimization contexts where coevolutionary approaches
have proven their worth over the years, our attention towards these methods was also
drawn by another interesting theoretical result reported by Wolpert and Macready: the
NFL theorems do not generally hold in particular cases of coevolutionary optimization
that involve “‘self play’ problems” [143]. In these types of problems, coevolution is used
to enable a set of given individuals (game strategies) to “‘cooperate’ to train one of them
as champion”5. The “champion” strategy will then be pitted against an “antagonist” in a

5This type of interaction is actually classified as 1-population competitive coevolution by Sean Luke [154]
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subsequent multiplayer (turn-based) game. The goals is to obtain a champion that performs
as well as possible in the subsequent game. Wolpert and Macready indicate as concrete
self-play application domains (where their new results can be of interest) checkers and
chess and provide two references to this respect: [155] and [156]. Although our application
domain (i.e.,MOO) does not resemble the ones investigated in [143]6, after lecturing this
work, we found very enticing the idea of trying to construct a “champion” MOEA that can
efficiently combine some of the most important MOEA-related developments that have
been proposed over the years. The self-play application domain and the turn-based games it
concerns also inspired the design of the HRPC methodology we introduced in Section 3.3.2.
To complete the analogy, the main goal of our “champion” MOEA is to perform better
than other state-of-the-art “antagonist” MOEAs during (especially the initial stages of) the
multi-stage IndH-comparison races that the HRPCs illustrate. This is because, by virtue
of design, HRPCs favor algorithms that display a better than average performance
across as many of the considered test problems as possible. A MOEA that fairs very
well with regard to HRPCs when using a fixed parameterization over a large (diverse and
complicated) problem set is very likely to be a top pick for a DM in search for a black-box a
posteriori MOO method.

The starting point for building our “champion” algorithm was the simple observation
(hinted in Section 2.3.4). that the only differences between the generational SPEA2 algo-
rithm [66] and the generational GDE3 algorithm [73] lies in the choice of genetic operators.
Nevertheless, the (exploratory) performance of these two MOEAs on several MOOPs is
quite different. Given a new CIMOOP to be solved, the MOEA practitioner (i.e., electrical
drive DMs, in our case) would of course prefer to use the best performing of the two options.
However, if no extra information related to the problem can help him decide between the
two, (s)he will eventually be forced to make a (more or less educated) guess. Our initial idea
for solving this dilemma was to try and develop a simple hybrid approach that essentially:

• runs both algorithms in parallel (i.e., coevolves two distinct subpopulations);

• is able to profit from the clear superior performance that might be exhibited by one of
them (i.e., stores and shares elite solutions among the subpopulations).

6.2 Initial Approach: The DECMO Algorithm

6.2.1 Method Description
Let us mark with P the first subpopulation of our coevolutionary MOEA and with Q
the second subpopulation. Both subpopulations are of equal size: psize = |P| = qsize =
|Q|. The final PN of our differential evolution-based coevolutionary multi-objective
optimization algorithm (DECMO) is obtained by applying the environmental selection
operator on the union of the two subpopulations: PNDECMO = Esel(P∪Q, psize +qsize).

Subpopulation P is evolved according to the (generational) SPEA2 evolutionary model
described in Section 2.3.3. This means that, at a given generation t, t ≥ 1, we apply the

6And as such we make absolutely no claims that the findings reported there apply in our case.
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SBX and PM genetic operators on the individuals in P in order to obtain an offspring
subpopulation P′. The SPEA2 subpopulation of generation t +1 is obtained by applying the
environmental selection operator (also described in Section 2.3.3) on the union of parents
and offspring: P = Esel(P∪P′, psize).

Subpopulation Q is evolved according to a DEMO/GD3 evolutionary model that, as
mentioned in Section 2.3.4, retains the environmental selection operator, but adopts a DE-
based search space exploration. The particular DE strategy (i.e., operator combination)
suggested by DEMO/GDE3 is DE/rand/1/bin. At a given generation t, t ≥ 1, we begin by
performing the initializations: Q′←Φ and Q′′←Q. Afterwards, the DE-based evolutionary
model requires that, as long as Q′′ 6= Φ, we randomly extract x ∈ Q′′ and perform three
operations:

1. Construct a mutant vector v according to the rand/1 part of the DE strategy by
randomly selecting three individuals za,zb,zc ∈ Q such that za 6= zb 6= zc 6= x and
computing:

v = za +F(zb− zc) (6.1)

where F > 0 is a numeric control parameter.

2. Generate a trial (offspring) vector y via the binomial crossover part of the DE strategy:

yi =

{
vi if ui <CR or i = j
xi if ui ≥CR and i 6= j

, (6.2)

where j is a randomly selected integer from {1, . . . ,n}, u1, . . . ,un are independent
random variable uniformly distributed in [0,1], and CR ∈ [0,1] is a numeric control
parameter.

3. Remove x from the list of individuals from the current generation that must be
processed – i.e., Q′′ = Q′′ \{x} – and update Q′ using the formula:

Q′ =


Q′∪{x} if x� y
Q′∪{y} if y� x
Q′∪{x}∪{y} if x 6� y and y 6� x

(6.3)

At the end of the cycle that processes every element of Q′′, usually, |Q′| > qsize. In
order for this to happen, it is sufficient to have a single occurrence where x and its associate
(offspring) trial vector y are not dominating each other and thus, according to (6.3), both
individuals are added to Q′. As we operate under the assumption of a fixed (sub)population
size, in order to select the individuals that will form the subpopulation of the next genera-
tion, the DEMO7/GDE3 evolutionary model requires the application of the environmental
selection operator: Q = Esel(Q′,qsize).

7We are referring to the DEMOSP2 variant from [72]. The DEMONS-II variant presented in the same
paper uses the non-dominated sorting mechanism proposed by NSGA-II.
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In order to construct an efficient cooperative coevolutionary process, one of the most
important tasks is to design a good fitness sharing mechanism. After experimenting with
several options, we found that a dual fitness sharing mechanism was able to ensure a very
stable and competitive performance. This mechanism consists in:

1. weak sharing stages – that occur at every new generation and consist in attempting
to insert in each subpopulation one random individual from the complementary
subpopulation;

2. strong sharing stages – that occur once every tsha generations and require the con-
struction of an elite subset of individuals from P∪Q and the attempt to (re)insert the
members of this elite subset in both subpopulations. We mark the size of this elite
subset with esize. The idea behind this process is to spread, from time to time, the best
performing individuals across both coevolved subpopulations.

The word “attempt” is used in order to emphasize the fact that we are not enforcing the
described operations in order to avoid the brutal altering of the inherent dynamics of the
coevolved populations. Instead, we always rely on the implicit (highly elitist) selection for
survival mechanism that is employed by both the SPEA2 and DEMO/GDE3 evolutionary
models. This extensive use of the environmental selection operator throughout DECMO is
also motivated by the fact that it inherently has two features that are extremely useful from
a coevolutionary perspective:

1. a primary Pareto-based selection criterion – that can successfully act as a global (i.e.,
intra-population) fitness indicator;

2. a secondary crowding-based selection (filtering) criterion – that ensures diversity
(niching) within the elite subsets that are a key part of the fitness sharing strategy.

N.B. Any MOO selection strategy based on the principles laid down by David Goldberg
in [50] would also display the two features mentioned above. For example, instead of the
environmental selection operator, one can also employ the non-dominated sorting strategy
proposed by Deb et al. in [65]. The choice of using the former in DECMO is a matter of
personal preference.

In Algorithm 3 we present the major steps of our proposed coevolutionary approach.
We outline that in order to reduce parameterization requirements we adopted the setting
tsha = esize = psize/10.

The DECMO(problem, popSize, maxGen) function contains only three input parame-
ters since we assume that the P and Q subpopulations are evolved either with the literature
recommended paramterizations for SPEA2 and DEMO/GDE3 or with the parameterizations
of these methods one would apply when running stand-alone versions of the MOEAs on
the given problem. The popSize indicates the size of the population one would use when
applying stand-alone runs of SPEA2 or DEMO/GDE3. Inside the main (generational loop),
the instructions from lines 10-13 are responsible for implementing the weak sharing stage
and the instructions from lines 16-23 are implementing the strong sharing stage. Like
almost every MOEA, DECMO returns the PN obtained at the end of the run. When solving
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Algorithm 3 The DECMO multi-objective evolutionary algorithm
1: function DECMO(problem, popSize, maxGen)
2: psize,qsize← popSize/2
3: tsha,esize← psize/10
4: t← 1
5: P← INITIALIZEPOPULATION(psize, problem)
6: Q← INITIALIZEPOPULATION(qsize, problem)
7: while t ≤ maxGen do
8: P′← EVOLVEOFFSPRINGSPEA2(P)
9: Q′← EVOLVEOFFSPRINGDE(Q)

10: xp← DUPLICATERANDOMINDIVIDUAL(P)
11: xq← DUPLICATERANDOMINDIVIDUAL(Q)
12: P′← P′∪xq

13: Q′← Q′∪xp

14: P← Esel(P∪P′, psize)
15: Q← Esel(Q′,qsize)
16: if tsha = 1 then
17: E← Esel(P∪Q,esize)
18: P← Esel(P∪E, psize)
19: Q← Esel(Q∪E, psize)
20: tsha← psize/10
21: else
22: tsha← tsha−1
23: end if
24: t← t +1
25: end while
26: PN← Esel(P∪Q, popSize)
27: return PN
28: end function

CIMOOPs, one would normally modify this process and return the PN extracted from the
set that contains every feasible individual generated during the run – as we have previously
shown in the NSGA-II-SEARCH( ) function from Algorithm 2.

6.2.2 Comparative Performance on Benchmark MOOPs

In order to assess the performance of DECMO we performed several tests using the 25
artificial MOOPs mentioned in Section 3.1.1. At first we wanted to evaluate the comparative
performance of DECMO with respect to stand-alone versions of SPEA2 and GDE3. The
population (archive) size of each MOEA was set at 200 (i.e., psize = qsize = 100 in the
case of DECMO). All three algorithms were allowed to perform 50000 fitness evaluations
per run. We repeated each experiment (i.e., MOEA-MOOP combination) 50 times. In
the case of SPEA2 (with SBX and PM) we applied the standard parmeterization: 0.9 for
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the crossover probability, α = 20 (SBX crossover index), γ = 20 and pmut = 1/n (PM
mutation distribution index and mutation rate). In the case of (DEMO/)GDE3, we apply the
DE/rand/1/bin strategy with the parameterization CR = 0.3 and F = 0.5 (recommended in
[72]). The exact same settings used in the stand-alone versions are also used to parameterize
the evolutionary processes that steer the P and Q subpopulations of DECMO.

In Figure 6.1 we present the average convergence behavior of the three tested MOEAs on
10 MOOPs. The problems have been specially selected in order to illustrate the performance
of DECMO in cases where:

• both (incorporated) evolutionary models perform equally well: DTLZ2 and DTLZ4;

• both (incorporated) evolutionary models perform well, but one converges slightly
faster: DTLZ7, KSW10 and LZ09-F1;

• both (incorporated) evolutionary models perform well, but one converges much
faster than the other: DTLZ1 and ZDT6;

• one (incorporated) evolutionary model performs well and the other does not: DTLZ6
and WFG1;

• both (incorporated) evolutionary models perform poorly, but one of them still displays
a significantly better performance than the other: LZ09-F8.

The plots from Figure 6.1 clearly show that DECMO is very successful in its role
as it is generally able to replicate the behavior of the best incorporated evolutionary
model. Furthermore, it is important to remark the performance of DECMO on the LZ09-F1
problem. Initially, the coevolutionary approach demonstrates the same rapid convergence
as SPEA2 but, after 25000 fitness evaluations, DECMO switches to a GDE3 convergence
behavior as the DE-based MOEA generally performs better towards the end of the runs.
On three problems (DTLZ1, DTLZ4 and WFG1), DECMO is even able to surpass the
stand-alone performance of both SPEA2 and GDE3.

In Chapter 5 we have presented empirical evidence that, in the case of NSGA-II and
SPEA2, for many MOOPs, after reaching PNs with IndH> 0.85, the algorithms enter a so-
called late stage of convergence (in which improvements tend to come at a much higher nfe
count). In order to clarify (and substantiate) our initial visual observations with regard to the
average performance of DECMO, we present in Table 6.1 information (mean and standard
deviation) regarding the nfe required by SPEA2, GDE3 and DECMO to reach IndH> 0.85
for each of the 10 MOOPs presented in Figure 6.1. For each MOEA-MOOP combination
we also computed a successful run ratio (not: srr) that indicates which algorithms were
able to reach a late stage of convergence during each of the 50 individual runs. In order to
emphasize the importance of delivering a constantly good performance:

• although the nfe-related values from Table 6.1 were computed only taking into account
the individual runs where the algorithms managed to discover a PN with IndH> 0.85;

• the best result for each MOOP is selected by considering only those MOEAs that
were able to achieve a successful run ratio of 1.0 for that problem (e.g., DTLZ4).
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Figure 6.1: The convergence behavior of SPEA2, GDE3 and DECMO averaged over 50
runs.
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Table 6.1: Mean and standard deviation information regarding the nfe required in order to
reach average PNs with hypervolumes higher than 0.85. The best result for each MOOP is
highlighted.

Problem
SPEA2 GDE3 DECMO

nfe
srr

nfe
srr

nfe
srr

avg. ±σ avg. ±σ avg. ±σ

DTLZ1 27908 3489.3 1.00 15068 810.8 1.00 12688 983.3 1.00
DTLZ2 7216 735.0 1.00 10348 923.9 1.00 7576 513.7 1.00
DTLZ4 5573 396.8 0.90 6164 337.3 1.00 5626 356.0 1.00
DTLZ6 69578 1712.0 0.94 4884 259.0 1.00 5980 271.8 1.00
DTLZ7 22364 1247.2 1.00 11940 622.4 1.00 13048 769.4 1.00
KSW10 6872 600.4 1.00 12564 735.9 1.00 7576 831.7 1.00
LZ09-F1 12416 2484.2 1.00 16728 930.9 1.00 12184 866.5 1.00
LZ09-F8 - - 0.00 - - 0.00 - - 0.00
WFG1 39720 8289.1 0.40 21012 1131.7 0.98 21596 1669.2 1.00
ZFT6 33416 909.7 1.00 6884 433.5 1.00 7800 557.0 1.00

In the case of the MOOPs from Table 6.1 where at least two algorithms were able to
achieve srr = 1, the differences between the average nfe required by the best performer
and those required by the second-best performer are also statistically significant8 with the
exception of LZ09-F1. In this case, the better performance displayed by DECMO in front
of SPEA2 is not statistically significant.

In order to better show the general performance of DECMO when compared to SPEA2
and GDE3, in Figure 6.2 we plot HRPCs obtained when considering all the 25 benchmark
MOOPs (please refer back to Section 3.3.2). We present HRPCs plots obtained with:

• the basic ranking schema;

• a pessimistic ranking schema with th = 0.01 (i.e., that requires a minimum IndH-
measured PN improvement of 1% in order to apply a rank improvement)

• a pessimistic ranking schema with th = 0.05 (i.e., 5% improvement required)

• a statistical ranking schema

All four DECMO vs SPEA2 vs GDE3 plots confirm the fact that the coevolutionary
MOEA is indeed able to generally display the performance of it’s best incorporated evolu-
tionary model in the key-interest part from the beginning of the runs. Furthermore, towards
the end of the runs, DECMO displays a better performance than both SPEA2 and GDE3.

In Figures 6.3 and Figures 6.4 we also present HRPC charts obtained when comparing
DECMO with NSGA-II (same parameterization as SPEA2) and MOEA/D-DE (with a

8We applied a one-sided Mann-Whitney-Wilcoxon test with a considered significance level of 0.05.
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Figure 6.2: HRPCs obtained when comparing SPEA2, GDE3 and DECMO over all 25
benchmark MOOPs.

population size of 500 and all other parameters set according to the description in [78]).9.
These HRPCs indicate that:

• NSGA-II is generally able to converge faster than DECMO in the initial stages of runs
(i.e., for nfe ≤ 5000) and, although statistically significant, this improvement does
not seem very large as it is not visible when using the th = 0.05 pessimistic ranking
schema;

• MOEA/D-DE matches the performance of DECMO for nfe≤ 5000 and outperforms
the coevolutionary approach towards the end of the runs (i.e., nfe≥ 40000 );

• DECMO seems a generally better choice when wanting (or being able) to run an
optimization with 10000 to 40000 nfe.

The results of the comparisons with NSGA-II and MOEA/D-DE show that, although our
coevolutionary approach can be considered a very successful proof of concept,
DECMO also provides room for improvement – especially when considering its per-
formance against NSGA-II in the beginning of the runs.

9In the case of SPEA2, GDE3, NSGA-II and MOEA/D-DE we relied on implementations largely based on
those from the jMetal framework [157]
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Figure 6.3: HRPCs of DECMO vs NSGA-II.
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Figure 6.4: HRPCs of DECMO vs MOEA/D-DE-500.
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6.3 The Refinement: DECMO2

6.3.1 Overview

In order to improve the efficiency of our initial coevolutionary approach, we considered two
major enhancements: the integration of a decomposition strategy and the dynamic allocation
of fitness evaluations during the run. We named this improved coevolutionary algorithm
DECMO2. In Section 6.3.5 we present several results that indicate that DECMO2 is able to
completely surpass its predecessor and, when considering all the 25 benchmark MOOPs
described in Section 3.1.1, it displays a robustness and a nfe-measured efficiency that is
unmatched by other state-of-the-art MOEAs.

DECMO2 is also a hybrid approach that mainly relies on coevolving two populations
(P and Q) of equal sizes where P is evolved via the SPEA2 evolutionary models and Q is
evolved using the DE mechanism described at the start of Section 6.2.1. The novelty in
DECMO2 is represented by an external archive, marked with A, that is maintained according
to a decomposition-based principle. Thus, DECMO2 was designed to integrate what we
previously labeled as three major milestones in MOEA research: Pareto-based elitism,
DE-based search and decomposition-based strategies.

In order to efficiently integrate all there concepts and thus obtain a MOEA that would
be preferred by DMs in search of a black-box a posteriori MOO solver, the fitness sharing
mechanism described in DECMO was redesigned / improved. While the environmental
selection operator proposed by SPEA2, i.e., Esel(Set,count), still plays an important role,
the version of it we use in DECMO2 is slightly modified as it includes a filter that first
removes (objective-wise) duplicates from Set before starting the actual trimming process.
As a direct result, very often applications of the operator are possible and the (strong) fitness
sharing stage can be performed after every generation.

6.3.2 Decompostion-based Archive

With regard to its predecessor, DECMO2 proposes a major structural modification that
comes in the form of the new archive (population) A with |A| = asize. This archive is
maintained according to a decomposition-based principle that uses a modified weighted
Tschebyscheff approach (2.10). The working principles of this new (coevolved) compo-
nent are inspired (and quite similar) to those initially proposed in [75] and
re-popularized by MOEA/D [76].

Before proceeding with the description of the functionality of this archive, we must first
make a few notations. Therefore, let us mark:

• the current optimal reference point of the DECMO2 run with: popt = (popt
1 , . . . , popt

m ).
More formally, popt

i = min
{

oi(x) | x ∈ Deval} for all i ∈ {1, . . . ,m} where DE ⊂ Dn

contains all the (feasible) individuals evaluated during the DECMO2 run (till the time
popt is computed).

• an arbitrary objective weighting vector with wi = (wi
1, . . . ,w

i
m) ∈ [0,1]m subject to
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wi
j ≥ 0 and

m
∑
j=1

wi
j = 1 for all j ∈ {1, . . . ,m} and for all i ∈ {1, . . . ,asize} ;

• the Tschebyscheff distance between a point x ∈ Dn and the current optimal reference
point when considering an arbitrary weighting of the objectives w with:

distT (x,w) = max
j∈{1,...,m}

{
w j
[
oi (x)− popt

i
]}

. (6.4)

For any MOOP to be solved, the idea is to generate, prior to the start of the optimization,
asize uniformly spread objective weighting vectors w1,w2, . . . ,wasize and to subsequently
use these vectors inside the distT formulation in order to define a decomposition of the
original MOOP into asize single-objective optimization problems. After being generated,
the weighting vectors remain constant throughout the optimization run. Archive A is
organized as a set of pairs (i.e., 2-tuples) that we mark 〈wi,xi〉, with wi ∈ [0,1]m and xi ∈Dn,
i ∈ {1, . . . ,asize}. Knowing that wi is fixed, during the run of DECMO2, A is constantly
updated in order to minimize distT (x,w) for all i ∈ {1, . . . ,asize}. Therefore, after a new
individual x∗ is generated during the DECMO2 run, after performing the standard fitness
evaluation:

1. we update the current optimal reference point popt as x∗ might display improvements
with regard to certain single-objectives;

2. we construct A′ – the improvable subset of the current archive:

A′ =
{
〈w′,x′〉 | 〈w′,x′〉 ∈ A and distT (x∗,w′)< distT (x′,w′)

}
(6.5)

3. if A′ 6= Φ, we:

(a) identify 〈wr,xr〉 ∈ A′ that maximizes ∆distT = distT (xr,wr−distT (x∗,wr), i.e.,
the single-objective optimization problem that x∗ can improve the most;

(b) update the archive by replacing the most improvable single-objective solution
(i.e., A = A\ 〈wr,xr〉) with the current individual: A = A∪〈wr,x∗〉;

Steps 3.(a) and 3.(b) can be easily redefined in order to incorporate replacement strategies
that are more advanced than the presently proposed one. However, several comparative
tests have shown that the simple greedy replacement offers a very good trade-off between
complexity and general performance.

6.3.3 Search Adaptation and Fitness Sharing
In Section 2.3.1 we have argued that, in a broad sense, all EAs are adaptive by design
as their mechanics are governed by a “survival of the fittest” paradigm that prompts the
evolved population to progressively “adapt” – i.e., develop and / or retain the genetic
makeup that is deemed successful. Furthermore, in Section 6.2.2 we have presented strong
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empirical evidence that a simple (symbiotic) cooperative-coevolutionary approach has
the general ability to adapt on a meta level and mimic the convergence behavior of its
best incorporated evolutionary model.

In light of the latter observation, in DECMO2 we envisioned a mechanism that is aimed
to slightly (but actively) bias the coevolutionary search towards the particular evolution-
ary model that seems to be more successful during the current part of the optimization.
Concretely, at each odd-numbered generation t, t ≥ 3, we reward the evolutionary model
that was more successful in the previous, t−1, generation by allowing it to create an extra
number of esize bonus (offspring) individuals. The success of a particular evolutionary
model is assessed by computing its generational archive insertion ratio. As such, after each
even-numbered generation we compute:

• φ P - the archive insertion ratio achieved by the psize offspring generated in subpopula-
tion P using SBX and PM;

• φ Q - the archive insertion ratio achieved by the qsize offspring generated in subpopula-
tion Q using the DE/rand/1/bin strategy;

• φ A - the archive insertion ratio achieved when creating esize individuals by applying
DE/rand/1/bin on individuals selected directly from A. In this case, the esize trial
vectors are created for individuals that represent the solutions of the esize single-
objective optimization problems that have not been updated for the longest periods.

When considering the previous notations from Section 6.2.1 and 2.3.3, the DECMO2
explicit search adaptation enhancement works as follows:

• if at an arbitrary even-numbered generation t, φ P > φ Q and φ P > φ A, at generation
t + 1 the size of the offspring population generated during the SPEA2 search (i.e.,
P′)will be set at: psize + esize;

• if at an arbitrary even-numbered generation t, φ Q > φ P and φ Q > φ A, at generation t+
1, after the end of the Q′′ processing cycle (i.e., when Q′′=Φ), Q′′ will be re-initialized
with a set of esize individuals randomly extracted from Q and the DE/rand/1/bin cycle
will resume and continue until Q′′ is fully processed again;

If neither success criterion is met, we shall create the esize reward individuals of genera-
tion t +1 by applying DE/rand/1/bin on individuals selected directly from A.

DECMO2 generally achieves very good results when the sizes of its components satisfy
the relation: 

esize = asize
10

psize = qsize

asize = psize +qsize + esize

(6.6)

Like with its predecessor, the main channel through which fitness is shared among the
coevolved components of DECMO2 is formed by a subset of elite individuals. We mark
this subset with E and mention that its size is fixed to esize. At a given generation t, t ≥ 1,
the very last steps are:
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• the construction of the elite subset E via the environmental selection operator:
E = Esel(P∪Q∪A,esize)

• the attempt to spread these elite global solutions among the main coevolved compo-
nents: P = Esel(P∪E, psize) and Q = Esel(Q∪E,qsize);

6.3.4 Algorithmic Description

Algorithm 4 presents the main computational loop of DECMO2 as well as the initialization
of its main components10: P, Q and A. Like its predecessor, DECMO2 also proposes
only three input parameters as it is intended to run with more or less fixed (i.e., literature
recommended) settings for SBX, PM and DE/rand/1/bin. In order to obtain results that are
comparable with other methods, after the computation of the last generation, the DECMO2(
) function returns a PN extracted from the individuals stored in P, Q and A.

The auxiliary functions used across Algorithm 4 are:

• COMPUTESIZES(archiveSize) - given an archiveSize, this function solves (6.6) and
computes psize, qsize, and esize.

• INITIALIZEARCHIVE(problem, count) - firstly, this function generates a number of
count uniformly spread object weight vectors, w1,w2, . . .wcount , with a dimension-
ality that matches the number of single-objectives proposed by the given problem.
Secondly it creates and returns an incomplete archive: A =

{
〈w1,〉, . . . ,〈wcount ,〉

}
.

• CREATEINDIVIDUAL(problem) - according to the definition (i.e., Dn) of the given
problem, this function randomly initializes and returns a single individual (i.e., a
real-coded variable vector).

• INSERTINTOARCHIVE(ArchiveSet, x) - this procedure locates a single incomplete
pair of the form 〈wi,〉, with i ∈ {1, . . . , |ArchiveSet|} inside the ArchiveSet, performs
an update (i.e., Archive=Archive\〈wi,〉 and Archive=Archive∪〈wi,x〉), and returns
the ArchiveSet.

• EVOLVENEXTGENSPEA2(ParentSet, count) - starting from the given ParentSet,
this function generates a number of count offspring using the SPEA2 evolutionary
model described in Section 2.3.3. The function returns two entities:

1. a new set of size |ParentSet| obtained by applying the environmental selection
operator on the union of the initial ParentSet and the set containing the newly
generated offspring;

2. a real number representing the archive insertion ratio achieved by the count
offspring that have been generated using SBX and PM.

10The presented pseudo-code and its corresponding description are primarily designed for readability and
they should not be interpreted as instructions for an optimal implementation of DECMO2.
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Algorithm 4 The DECMO2 multi-objective evolutionary algorithm
1: function DECMO2(problem, asize, maxGen)
2: P,Q←Φ

3: 〈psize,qsize,esize〉 ← COMPUTESIZES(asize)
4: A← INITIALIZEARCHIVE(problem, asize)
5: i← 1
6: while i≤ asize do
7: x← CREATEINDIVIDUAL(problem)
8: A← INSERTINTOARCHIVE(A, x)
9: if i≤ psize then

10: P← P∪{x}
11: else
12: if i≤ (psize +qsize) and i > psize then
13: Q← Q∪{x}
14: end if
15: end if
16: i← i+1
17: end while
18: φ P,φ Q,φ A, t← 1
19: while t ≤ maxGen do
20: pbonus,qbonus,← 0
21: abonus← esize
22: if t ∈ {2k+1 : k ∈ Z} then
23: pbonus,qbonus,abonus← 0
24: if φ P > φ Q and φ P > φ A then
25: pbonus = esize
26: abonus← 0
27: end if
28: if φ Q > φ P and φ Q > φ A then
29: qbonus = esize
30: abonus← 0
31: end if
32: end if
33: 〈P,φ P〉 ← EVOLVENEXTGENSPEA2(P, psize + pbonus)
34: 〈Q,φ Q〉 ← EVOLVENEXTGENDE(Q, qsize +qbonus)
35: φ A← EVOLVEARCHIVEIND(A, abonus)
36: E← Esel(P∪Q∪A,esize)
37: P← Esel(P∪E, psize)
38: Q← Esel(Q∪Q,qsize)
39: t← t +1
40: end while
41: PN← Esel(P∪Q∪A,asize)
42: return PN
43: end function
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• EVOLVENEXTGENDE(ParentSet, count) - starting from the given ParentSet, this
function generates a number of count (offspring) trial vectors using the DE-based
evolutionary model described in Section 6.2.1. The function returns two entities:

1. a new set of size |ParentSet| obtained after applying a DEMO/GDE3-like evolu-
tionary model on the ParentSet;

2. a real number representing the archive insertion ratio achieved by the count (off-
spring) trial vectors that have been generated using the DE/rand/1/bin strategy.

• EVOLVEARCHIVEIND(ArchiveSet, count) - this function uses the DE/rand/1/bin
strategy to create a number of count (offspring) trial vectors using individuals from the
pairs that make up the given ArchiveSet. The returned value is the archive insertion
ratio achieved by the newly generated individuals. If count = 0, the function also
returns 0.

The above descriptions also help to highlight one of the major shortcomings of
DECMO2: the high structural and computational complexity11. For example, when
also considering the incorporated SPEA2 and DEMO/GDE3-style evolutionary processes,
the environmental selection operator is applied five times during a single generation. In
the next two sections we shall provide strong empirical evidence (on bechmark MOOPs
and real-life CIMOOPs) that the structural complexity of DECMO2 is fully compen-
sated by the general convergence performance displayed by this hybrid and adaptive
coevolutionary MOEA.

6.3.5 Comparative Performance on Benchmark MOOPs
In order to test the general convergence behavior of DECMO2, we performed compara-
tive tests with SPEA2, GDE3, NSGA-II, MOEA/D-DE and DECMO on the 25 artificial
(benchmark) MOOPs described in Section 3.1.1. As the main intent of our tests is to
estimate how robust these algorithms are (when used as black-box a posteriori MOO
solvers), for each MOEA we applied a fixed parameterization across all test problems.
We performed 50000 fitness evaluations during each optimization run and we made 100
independent runs for each MOEA-MOOP combination. In the case of SPEA2, GDE3 and
NSGA-II we used a population / archive size of 200 and all other parameters were set as
previously described in Section 6.2.2 (i.e., we used literature recommended settings). In the
case of MOEA/D-DE we used the same version as the one in the DECMO tests (i.e., fixed
population size of 500) but we also compared DECMO2 to the literature recommended
variant that uses a population size of 300 for problems with two objectives and a population
size of 595 for MOOPs with three objective.

In the case of DECMO we used a subpopulation size of 100. For DECMO2 we set the
archive size at 200. For both coevolutionary MOEAs we used the literature recommended
settings for the SPEA2 evolutionary model (i.e., subpopulation P). For the DE-based

11That is somewhat expected when considering that we are trying to harmoniously integrate three different
MOEA strategies.
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subpopulation Q we applied the DE/rand/1/bin strategy with control parameters aimed to (I)
ensure a good trade between exploration and intensification (F = 0.5) and (II) stimulate a
minor increase in population diversity (i.e., CR = 0.2) as shown by Zaharie in [158].

First of all, in Figure 6.5 we present the average IndH measured performance of all
six MOEAs over the entire benchmark set. These results indicate that both coevolutionary
methods (with a plus for DECMO2) have the tendency to converge faster than their counter-
parts. Interestingly, this chart indicates that DECMO has an advantage over MOEA/D-DE
towards the end of the runs (i.e., nfe > 40000) while the HRPC plot from Figure 6.4 indicates
the opposite. This divergence is due to the fact that MOEA/D-DE performs slightly (but
significantly) better than DECMO on many problems, while DECMO has larger advantages
on a few MOOPs.
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Figure 6.5: Averaged run-time H -measured performance over 20 artificial benchmark
MOOPs.

In order to offer more insight into the comparative performance of the six tested MOEAs,
in Figure 6.6 we plot HRPCs obtained with four different ranking schemata: basic, pes-
simistic with th = 0.01, pessimistic with th = 0.05 and statistical. In Table 6.2 we present
the associated overall average ranks (i.e., µA) and the final stage average ranks (i.e., µF )
achieved by the tested algorithms when applying each ranking schemata. All these results
confirm previous remarks regarding the comparative performance of DECMO with regard
to the other four (non-coevolutionary) MOEAs. More importantly, all the HRPC plots
from Figure 6.6 and the average rank data from Table 6.2 clearly show that DECMO2
profits significantly from the introduction of the decomposition-based archive and of the
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dynamic search adaptation mechanism. As such, on average, the refined coevolutionary
method surpasses all the other tested MOEAs.
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Figure 6.6: HRPCs obtained when comparing DECMO2 with five other MOEAs across 25
benchmark MOOPs.

The very good HRPC-quantified performance exhibited by DECMO2 (especially when
comparing to DECMO and the average IndH-plots from Figure 6.5) can also be explained
by taking a closer look at the number of MOOPs on which each algorithm was able to
achieve “full convergence” (i.e., IndH> 0.99 for thePN of the final population). This is
because (as explained in Section 3.3.2), at each ranking stage, the bonus / penalty system
we applied for all four ranking schemata rewards “full convergence” with a special rank
“0” that has the obvious effect of reducing all average ranks like µS,µA,µF . Across the
25 artificial MOOPs, SPEA2 achieved “full convergence” on 5 problems, GDE3 on 6
problems, NSGA-II on 4 problems, MOEA/D-DE on 7 problems, DECMO on 6 problems
and DECMO2 on 9 problems. LZ09-F1 is the onlyMOOP on which DECMO2 was unable
to “fully convergence”, but another algorithm (MOEA/D-DE) managed to do so.

In Figures 6.7 and 6.8 we display the results obtained when performing individual
comparisons between DECMO2 and NSGA-II and between DECMO2 and DECMO. All
the HRPCs suggest that DECMO2 displays a superior performance.

In Figure 6.9 we present HRPC plots that highlight the comparative convergence behav-
ior of DECMO2 and MOEA/D-DE. The curves indicate that our coevolutionary approach
generally performs better, especially in the first 35 ranking stages (i.e., for nfe ≤ 35000).
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Table 6.2: The overall and final stage average ranks achieved by the six tested MOEAs over
the benchmark problem set when considering four different ranking schemata. The best
(i.e., lowest) values are highlighted.

MOEA
HRPC ranking schemata

Basic Pes. th = 0.01 Pes. th = 0.05 Statistical
µA µF µA µF µA µF µA µF

SPEA2 3.92 3.72 4.52 4.28 5.02 4.60 4.29 4.00
GDE3 3.82 3.32 4.34 4.00 4.62 4.24 4.04 3.44
NSGA-II 3.66 3.60 4.42 4.32 4.99 4.72 4.06 3.92
MOEA/D-DE 3.30 2.08 4.09 3.20 4.58 3.84 3.76 2.56
DECMO 3.15 2.80 3.75 3.52 4.30 4.00 3.55 3.12
DECMO2 1.90 1.60 3.05 2.68 3.87 3.28 2.50 1.88

Nevertheless, MOEA/D-DE become quite competitive towards the end of the runs and, the
basic ranking schema indicates that it is able to surpass DECMO2 in the last 10 ranking
stages (i.e., for nfe ≥ 40000). Interestingly enough, the other three ranking schemata also
show that MOEA/D-DE is able to match DECMO2 but not surpass it. This phenomenon
is explained by the fact that on the MOOPs where the two algorithms perform equally
well (but are not able to “fully converge”), MOEA/D-DE has the advantage that its PN is
composed of up to 500 points while the PN of DECMO2 contains at most 200 points. This
means that while the search strategies are equally successful (by the end of the runs), the
PN retention strategy of MOEA/D-DE is slightly better (probably because of archive size
alone). For a very interesting discussion related to the importance of the interplay between
the search strategy and the PN retention strategy in MOOAs, please see [159].

In Figure Figure 6.10 we present HRPC plots that highlight the comparative convergence
behavior of DECMO2 and the version of MOEA/D-DE that uses a problem-dependent
population size (please refer back to Section 3.3.3 for details). In this case, the ability of
MOEA/D-DE to match and slightly surpass the performance of DECMO2 towards the end
of the runs is also confirmed by the statistical ranking schema. Nevertheless, the HRPCs
obtained with the pessimistic th = 0.01 ranking schema indicates that the improvements
displayed by MOEA/D-DE are not large at all. When considering the most pessimistic
ranking schema (i.e., th = 0.05), DECMO2 also outperforms this version MOEA/D-DE
across all ranking stages This means that when only > 1% and > 5% differences of PS
quality are of interest, DECMO2 still displays a general advantage across the problem set.
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Figure 6.7: HRPCs of DECMO2 vs NSGA-II.
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Figure 6.8: HRPCs of DECMO2 vs DECMO.
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Figure 6.9: HRPCs of DECMO2 vs MOEA/D-DE.
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Figure 6.10: HRPCs of DECMO2 vs literature recommended MOEA/D-DE version with
problem-dependent population size.
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6.3.6 Performance on a CIMOOP
In order to test the performance of DECMO2 on real-life problems, we applied it with
the same parameterizaton from the previous section on the (very complicated) IndMOOP4
electrical drive design problem described in Section 3.1.2. We allowed our coevolutionary
algorithm to perform only 10000 fitness evaluations because, even when distributing the
computations over the computer cluster architecture described in the previous chapters,
performing all these evaluations required between 6 and 7 days.

Because of the extremely long run-times, we only managed to perform two independent
runs with DECMO2. As a performance reference we used two (legacy) optimization
runs performed with SPEA2. Using as reference for computing the IndH the best known
solutions of this CIMOOP, in Figure 6.11 we present the comparative run-time convergence
behavior of the two MOEAs. The chart indicates that DECMO2 is able to converge faster.
In this particular setting, the performance improvement exhibited by DECMO2 means
that the coevolutionary approach was usually able to find one day sooner PNs of similar
IndH-estimated quality to those that would be obtained by SPEA2.
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Figure 6.11: Run-time IndH-measured performance of DECMO2 and SPEA2 IndMOOP4.

6.3.7 Remarks Regarding the Proposed Algorithms
The two newly proposed coevolutionary algorithms described in this chapter, DECMO and
DECMO2 are generally able to surpass the individual performance of their incorporated

147



CHAPTER 6. COEVOLUTIONARY ENHANCEMENTS

evolutionary models when considering a quite wide (and diverse) set of benchmark MOOPs
and fixed parameterizations.

The DECMO algorithm proves that even a basic coevolutionary approach is capable
of enhancing the performance (robustness) of well-known and widely used MOEAs like
SPEA2, DEMO and GDE3. Furthermore, the performed tests have shown that when
considering optimization runs where one may perform 5000 to 35000 nfe, DECMO is a
very attractive choice because of its structural simplicity.

The results of the reported individual (i.e., one-on-one) and batch comparative con-
vergence comparisons strongly indicate that DECMO2 is a much improved version of
its predecessor and that this (somewhat structurally complex) coevolutionary approach
is able to successfully compete with a very well known (state-of-the-art) MOEA like
MOEA/D-DE across a wide range of artificial MOOPs. The highlighted construct is not
a measure of false modesty but a reminder that all the presented results are based on the
IndH quality indicator and that they should be regarded in combination with the appropriate
interpretation of IndH monotonicity discussed in Section 3.2.2. According to this, the
strongest definite statement that we can make based on the presented results is that, given the
25 benchmark problems: on average, DECMO2 is not a worse a posteriori MOO solver than
any of the other tested algorithms during a large part12 of the optimization run. Nevertheless,
based on the same results, the previous definite statement can not be made for any of the
other analyzed MOEAs. Therefore, one can weakly argue that, on average, DECMO2 is the
best (safest) choice among all the considered algorithms. As a direct consequence, a DM
(confronted with a CIMOOP) should be more likely to prefer DECMO2 as a the first option
when searching for a robust and efficient black-box a posteriori MOO method13.

12For example, when considering any nfe ≤ 40000.
13If (s)he considers that the general optimization performance displayed on the 25 artificial MOOPs is

relevant for the real-life MOOPs (s)he aims to solve.
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Chapter 7

Cumulative Results

7.1 Combining the Enhancements
The results presented during the three previous chapters show that, taken separately, all
the MOEA-intended enhancements we have proposed1 are able to achieve their goal of
generally improving run-time duration and final solution (i.e., PN) quality.

Nevertheless, in the introductory chapter of this thesis, we stated that our main idea when
choosing to investigate three different (but complementary) MOEA improvements was to
ensure that we could obtain powerful hybrid MOEAs that can effectively tackle complicated
CIMOOPs from different angles. Thus, the motivation for combining the three proposed
enhancements is very straightforward: if one particular enhancement (improvement strategy)
cannot deliver good results on a certain CIMOOP, we hope that its poor performance can be
compensated by (a combination of) other improvements.

In order to offer a basic example into this matter, let us consider the parallel / distributed
implementation of the DECMO algorithm. Since the two coevolved subpopulations of
DECMO are both using (µ +λ ) MOO evolutionary models (implemented via the envi-
ronmental selection operator), one can choose to parallelize them via a generational or
a steady-state asynchronous MSP scheme. In light of the arguments from Section 5.4,
given our optimization setup for CIMOOPs, the SSA-MSPS seems more attractive. The
modifications required by DECMO2 to enforce such a parallelization scheme are minimal as
each subpopulation can independently manage its own asynchronous evolutionary process
and:

• after every evaluation of at least psize new individuals in subpopulation P and at least
qsize new individuals in population Q, we apply a weak fitness sharing stage (i.e., a
random copy of one individual from the complementary subpopulation);

• after every evaluation of at least tsha× psize individuals in P and at least tsha×qsize
individuals in Q, we apply the strong fitness sharing stage that requires the construction

1In the order of their introduction, these are: (i) global surrogate-based evolution, (II) steady-state
parallelization and (III) symbiotic cooperative coevolution of multiple MOEAs.

2As it is described in Algorithm 3.
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of the global elite subset.

In order to simplify referencing, we shall call this version of our basic coevolutionary
MOEA: SSA-DECMO. It is worthy to mention that, when running SSA-DECMO on our
computer cluster environment, we actually end up with a hybrid parallelization strategy that
combines:

• an island model paradigm on the broader level – i.e., when considering the limited
interactions between the two coevolved subpopulations P and Q;

• SSA-MSPS on the finer level – i.e., inside each of the coevolved components.

It is important to note that inside this basic island model topology inherently generated by
the parallelization of DECMO, the dual fitness sharing mechanism completely defines the
required migration policy.

SSA-DECMO can also be easily improved by integrating on-the-fly surrogate modeling.
We shall refer to the obtained approach as SSA-DECMO-SE. Considering the most impor-
tant findings from Chapter 4, SSA-DECMO-SE is obtained by integrating surrogate-based
optimization blocks inside the main loop of SSA-DECMO. Each such block is represented
by the successive application of a surrogate model construction stage a surrogate-based
MOEA execution stage and a FE-based re-evaluation stage. In the re-evaluation stage of
SSA-DECMO-SE blocks we apply the FE-based ranking on a preset number of the most
promising3 surrogate-discovered designs. At the end of a surrogate-based optimization
block:

1. every discovered feasible individual is considered for a possible update of either the
P or Q subpopulations (the choice is random);

2. the SSA-DECMO-SE may continue with a standard FE-based optimization or with
another surrogate-based optimization block (depending on the DM’s preference).

It is important to note that the ability to integrate multiple surrogate-based optimization
blocks during the run is owed to the very time-efficient surrogate construction strategies
introduced in Section 4.4. Furthermore, the approach of using the surrogate-based enhance-
ment on-demand, according to the DM’s preferences and observations, slightly pushes
SSA-DECMO-SE towards the interactive MOO paradigm. If instead one chooses to employ
very often (automatic / linked) short surrogate-based optimization blocks, SSA-DECMO-SE
could also be seen as moving towards a (rudimentary) on-line learning strategy (aimed to
permanently update the surrogates as new information becomes available).

7.2 Two Summarizing Plots
In order to show how all three enhancements can be combined in order to seriously improve
the ability of MOEAs to tackle very complicated optimization scenarios, we present the

3We apply a standard Pareto-based ranking (i.e., selection for survival) strategy.
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results of optimization runs on the most difficult industrial CIMOOPs we tested with: In-
dMOOP5. This problem is not only difficult because it has 22 variables and 4 objectives.
When considering the performance evaluation process from Figure 3.2, IndMOOP5 requires
18 current-load simulations and the (non-parallel) post-processing phase is also computa-
tionally intensive and affects the achievable parallelization ratios. Furthermore, the problem
also suffers from formalization constraints and, as shown by IndMOOP3 in Section 4.3.2,
this can seriously impact the performance of global surrogate models. The combined effect
of all these features is that, when using a population size of 100, the generational version
of SPEA2(not: GEN-SPEA2) required, on average, 350 hours (wall-clock time) to evolve
100 generations4. In light of all these considerations, one would expect that no standalone
enhancement is able to ensure a very large improvement. Nevertheless, a combination of
two or all three enhancements might prove more successful.

In order to show the progressive impact of the various enhancements proposed through-
out this thesis, we also applied a steady-state asynchronous version of SPEA2 (not:
SSA-SPEA2) with the same population size of 100 and SSA-DECMO and SSA-DECMO-
SE with a population size of 200. Thus, SSA-SPEA2 proposes the most basic “enhancement”
– i.e., applying an asynchronous steady-state evolutionary model instead of a generational
one. SSA-DECMO improves on this and adds a coevolutionary enhancement that introduces
a DE-based paradigm aimed at improving the performance of the SSA-SPEA2 approach.
SSA-DECMO-SE finally adds (on-demand) surrogate modeling to the mix.

All four algorithms were parameterized in a standard way and in the case of SSA-
DECMO-SE we performed six surrogate-based optimization blocks: after 500, 1500, 2500,
3500, 4500 and 5500 fitness evaluations. We always used Pareto-trimmed training sets of at
most 1000 individuals and we also constructed surrogate feasibility models (as described
in Section 4.4.3) in order to alleviate the effect of the formalization constraints during
the surrogate-based optimization runs. At the end of each surrogate-based optimization
cycle we re-evaluated the best 1000 individuals discovered during the surrogate-based
search. The surrogate-based optimizations were carried out using SSA-DECMO (with
an identical parameterization) and were allowed to generate 10000 individuals. Two of
the four objectives were very difficult to model, as the best global MLP surrogates we
obtained only achieved a training R2 of 0.80. The decision not to continue with surrogate-
based optimization cycles after the nfe=6500 was influenced by the observation that the
improvements delivered by this enhancement were becoming smaller and smaller. As such
for the last 3500 allowed fitness evaluations SSA-DECMO-SE fell back to the standard
SSA-DECMO evolutionary model on which it is based.

We performed three independent tests with each method and (in order to obtain more
comparable results) we started each MOEA run with the same, LHS-generated population
of 100 individuals. The comparative nfe and time-wise MOEA convergence plots are
presented in Figure 7.1. While we do strongly feel that these performance plots are self-
explanatory and form a perfect showcase for the main ideas and concepts presented
throughout this thesis, two things must be pointed out explicitly:

1. all three enhanced methods are eventually able to discover final PNs that are at least
4All fitness evaluations were distributed over the HTCondor™-managed cluster computing environment
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as good (i.e., IndH=0.9) as those obtained by the baseline MOEA (i.e., GEN-SPEA2);

2. the MOEA that incorporates all three enhancements (i.e., SSA-DECMO-SE) finds
PNs with IndH=0.9 approximately six days (140 hours) faster than GEN-SPEA2 and
is able to discover PNs with a significantly better (IndH-estimated) quality than all its
counterparts.
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Figure 7.1: IndH-measured comparative convergence of a standard MOEA (i.e., GEN-
SPEA2) and of three iteratively enhanced MOEAs: SSA-MSPS, SSA-DECMO and SSA-
DECMO-SE.
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“Perfection is a stick with which to beat the possible.”

Rebecca Solnit

Chapter 8

Conclusions

8.1 Achievements
In the present thesis we have proposed several ideas aimed at enhancing the performance of
(standard) multi-objective evolutionary algorithms (MOEAs) applied on computationally-
intense problems. Our improvements are structured along three complementary research
lines:

1. In Chapter 4 we systematically introduced a procedure for generating on-the-fly
(global) surrogate models capable of alleviating the dependency of the MOEA on the
computationally-intensive original fitness evaluation mechanism.

2. In Chapter 5 we investigated which master-slave parallelization schema is more likely
to help a (µ +λ )-styled MOEA obtain better performance given the particularities of
the considered multi-objective optimization process. The results of this analysis are
very helpful for practitioners of MOEA as they offer valuable insight with regard to a
simple decision that can significantly reduce the total run-time of the optimizations
without affecting final solution quality.

3. In Chapter 6 we proposed two new algorithms that apply a symbiotic cooperative-
coevolutionary paradigm in order to efficiently integrate the search strategies of
multiple MOEAs in a single run. Across a wide set of artificial test problems, the
obtained coevolutionary multi-objective optimization solvers are shown to be both
robust to parameterization and highly competitive when comparing with state-of-the-
art approaches.

Across the thesis, the individual and combined effectiveness of our proposed enhance-
ments is empirically tested and confirmed on five real-life computationally-intensive opti-
mization problems (CIMOOPs) from the field of electrical drive engineering.

As a byproduct of our research endeavors, we have also developed a new racing-based
methodology for easily measuring (and reporting) the comparative convergence performance
(behavior) of MOEAs over large benckmark problem sets. This methodology is introduced
in Section 3.3 and extensively used throughout Chapter 6.
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All in all, we consider that through the present work we have introduced at least a few
novelties that can benefit the field of MOEA research in general and the work of MOEA
practitioners dealing with CIMOOPs in particular.

8.2 Outlook
Far from contesting the importance of visionary thinking inside the research world, we
believe that the epigraph of this chapter describes quite well the complementary state that
generally characterizes a scientists’ attitude towards his own achievements and towards the
results obtained by others.

With regard to the work discussed in this thesis, we would primarily like to extend the
presented coevolutionary approaches by reshaping them as a general framework capable of
integrating even more multi-objective optimization methods. The convergence behavior of
the different MOEAs we have tested during our experiments indicates that there is a huge
improvement potential in applying DECMO2 during the initial phase of the optimization
runs and switching to MOEA/D-DE after that. The hybridization of the two search strategies
should be facilitated by the fact that both maintain a decomposition-based population
(archive). More advanced parallelization methods, better suited for the resulting hybrid
MOEA, also warrant a close examination.

Concerning the surrogate-based enhancements, future plans are centered around the
investigation of on-line learning paradigms suitable for global surrogate modeling and on
the possible integration of pre-selection strategies and simpler local models.

Generally, we consider that significant improvements in the field of CIMOOP can be
discovered by hybridizing state-of-the-art non-deterministic solvers either with proven
classical strategies (like those presented in Section 2.2) or with (domain-adapted) machine
learning and data mining surrogate construction methods.
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[72] T. Robič, B. Filipič, DEMO: Differential evolution for multiobjective optimization,
in: International Conference on Evolutionary Multi-Criterion Optimization (EMO
2005), Springer, Springer Berlin / Heidelberg, 2005, pp. 520–533.

[73] S. Kukkonen, J. Lampinen, GDE3: The third evolution step of generalized differential
evolution, in: IEEE Congress on Evolutionary Computation (CEC 2005), IEEE Press,
2005, pp. 443–450.

[74] S. Kukkonen, J. Lampinen, Performance assessment of Generalized Differential
Evolution 3 with a given set of constrained multi-objective test problems, in: IEEE
Congress on Evolutionary Computation (CEC 2009), IEEE Press, 2009, pp. 1943–
1950.

[75] A. Jaszkiewicz, On the performance of multiple-objective genetic local search on the
0/1 knapsack problem - A comparative experiment, IEEE Transactions on Evolution-
ary Computation 6 (4) (2002) 402–412.

160



[76] Q. Zhang, H. Li, MOEA/D: A multi-objective evolutionary algorithm based on
decomposition, IEEE Transactions on Evolutionary Computation 11 (6) (2007) 712–
731.

[77] H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation 13 (2)
(2009) 284–302.

[78] Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09
unconstrained MOP test instances, Tech. rep., School of CS & EE, University of
Essex (February 2009).

[79] D. Angus, C. Woodward, Multiple objective ant colony optimisation, Swarm intelli-
gence 3 (1) (2009) 69–85.

[80] M. Reyes-Sierra, C. A. Coello Coello, Multi-objective particle swarm optimizers:
A survey of the state-of-the-art, International journal of computational intelligence
research 2 (3) (2006) 287–308.

[81] K. C. Tan, C. K. Goh, A. Mamun, E. Ei, An evolutionary artificial immune system
for multi-objective optimization, European Journal of Operational Research 187 (2)
(2008) 371–392.

[82] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, A simulated annealing-based multi-
objective optimization algorithm: Amosa, Evolutionary Computation, IEEE Transac-
tions on 12 (3) (2008) 269–283.

[83] F. Bolognini, A. A. Seshia, K. Shea, Exploring the application of multidomain
simulation-based computational synthesis methods in MEMS design, in: ICED 07
International Conference on Engineering Design, 2007.

[84] J. H. Holland, Building blocks, cohort genetic algorithms, and hyperplane-defined
functions, Evolutionary Computation 8 (4) (2000) 373–391.

[85] F. Kursawe, A variant of evolution strategies for vector optimization, in: Workshop
on Parallel Problem Solving from Nature (PPSN I), Vol. 496 of Lecture Notes in
Computer Science, Springer, 1991, pp. 193–197.

[86] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms:
Empirical results, Evolutionary Computation 8 (2) (2000) 173–195.

[87] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization
test problems, in: IEEE Congress on Evolutionary Computation (CEC 2002), IEEE
Press, 2002, pp. 825–830.

[88] S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test problem
toolkit, in: Evolutionary Multi-Criterion Optimization (EMO 2005), Vol. 3410 of
Lecture Notes in Computer Science, 2005, pp. 280–295.

161



[89] J. T. Richardson, M. R. Palmer, G. E. Liepins, M. Hilliard, Some guidelines for
genetic algorithms with penalty functions, in: Proceedings of the third international
conference on Genetic algorithms, Morgan Kaufmann Publishers Inc., 1989, pp.
191–197.

[90] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parameter
optimization problems, Evolutionary Computation 4 (1) (1996) 1–32.

[91] D. Whitley, S. Rana, J. Dzubera, K. E. Mathias, Evaluating evolutionary algorithms,
Artificial intelligence 85 (1) (1996) 245–276.

[92] T. Weise, R. Chiong, K. Tang, Evolutionary optimization: Pitfalls and booby traps,
Journal of Computer Science and Technology 27 (5) (2012) 907–936.

[93] T. Okabe, Y. Jin, M. Olhofer, B. Sendhoff, On test functions for evolutionary
multi-objective optimization, in: Parallel Problem Solving from Nature-PPSN VIII,
Springer, 2004, pp. 792–802.

[94] FEMAG - The finite-element program for analysis and simulation of electrical ma-
chines and devices, Website http://people.ee.ethz.ch/∼ femag/englisch/index_en.htm.

[95] J. J. Durillo, A. J. Nebro, E. Alba, The jMetal framework for multi-objective opti-
mization: Design and architecture, in: IEEE Congress on Evolutionary Computation
(CEC 2010), 2010, pp. 1–8.

[96] J. Knowles, L. Thiele, E. Zitzler, A tutorial on the performance assessment of
stochastic multiobjective optimizers, Tech. Rep. 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zürich (2006).

[97] D. Van Veldhuizen, G. Lamont, Multiobjective evolutionary algorithm research:
A history and analysis, tech. rep. tr-98-03, Tech. rep., Dept. Elec. Comput. Eng.,
Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson, AFB, OH
(1998).

[98] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and
genetics-based offspring generation for multi-objective optimization using a conver-
gence criterion, in: IEEE Congress on Evolutionary Computation (CEC 2006), 2006,
pp. 892–899.

[99] E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and
applications, Ph.D. thesis, Swiss Federal Institute of Technology (1999).

[100] M. Fleischer, The measure of Pareto optima: Applications to multi-objective meta-
heuristics, in: International Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), Springer, 2003, pp. 519–533.

162



[101] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. da Fonseca, Performance
assessment of multiobjective optimizers: An analysis and review, IEEE Transactions
on Evolutionary Computation 7 (2) (2003) 117–132.

[102] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms - a
comparative case study, in: Parallel problem solving from nature - PPSN V, Springer,
1998, pp. 292–301.

[103] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[104] H. B. Mann, D. R. Whitney, On a test of whether one of two random variables is
stochastically larger than the other, The annals of mathematical statistics 18 (1) (1947)
50–60.

[105] L. V. Santana-Quintero, A. A. Montaño, C. A. C. Coello, A review of techniques
for handling expensive functions in evolutionary multi-objective optimization, in:
Y. Tenne, C.-K. Goh, L. M. Hiot, Y. S. Ong (Eds.), Computational Intelligence in
Expensive Optimization Problems, Vol. 2 of Adaptation, Learning, and Optimization,
Springer, 2010, pp. 29–59.

[106] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P. Kevin Tucker, Surrogate-
based analysis and optimization, Progress in Aerospace Sciences 41 (1) (2005) 1–28.

[107] A. Forrester, A. Sobester, A. Keane, Engineering Design via Surrogate Modelling: A
Practical Guide, Wiley, 2008.

[108] Y. Tenne, C. Goh (Eds.), Computational Intelligence in Expensive Optimization
Problems, Vol. 2 of Adaptation, Learning and Optimization, Springer, 2010.

[109] M. Pilát, Evolutionary algorithms for multiobjective optimization, Ph.D. thesis,
Charles University in Prague, Institute of Computer Science, AS CR (2013).

[110] I. Loshchilov, M. Schoenauer, M. Sebag, A mono surrogate for multiobjective opti-
mization, in: Proceedings of the 12th annual Conference on Genetic and Evolutionary
Computation (GECCO), ACM, 2010, pp. 471–478.

[111] M. Pilát, R. Neruda, ASM-MOMA: Multiobjective memetic algorithm with aggregate
surrogate model, in: IEEE Congress on Evolutionary Computation (CEC 2011), 2011,
pp. 1202–1208.

[112] I. Loshchilov, M. Schoenauer, M. Sebag, Dominance-based Pareto-surrogate for
multi-objective optimization, in: Simulated Evolution and Learning, Springer, 2010,
pp. 230–239.

[113] M. Pilát, R. Neruda, Local meta-models for asm-moma, in: Bio-Inspired Computing
and Applications, Springer, 2012, pp. 79–84.

163



[114] D. Stephens, D. Gorissen, K. Crombecq, T. Dhaene, Surrogate based sensitivity
analysis of process equipment, Applied Mathematical Modelling 35 (4) (2011) 1676–
1687.

[115] M. D. McKay, R. J. Beckman, W. J. Conover, Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code,
Technometrics 21 (2) (1979) 239–245.

[116] I. Voutchkov, A. Keane, Multi-objective optimization using surrogates, in: Computa-
tional Intelligence in Optimization, Springer, 2010, pp. 155–175.

[117] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice
Hall Inc., 1999.

[118] R. Collobert, S. Bengio, SVMTorch: Support vector machines for large-scale regres-
sion problems, Journal of Machine Learning Research 1 (2001) 143–160.

[119] M. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge
University Press, 2003.

[120] C. Bishop, Pattern Recognition and Machine Learning, Information Science and
Statistics, Springer, 2006.

[121] J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks,
Neural computation 3 (2) (1991) 246–257.

[122] D. Aha, D. Kibler, M. Albert, Instance-based learning algorithms, Machine learning
6 (1) (1991) 37–66.

[123] Y. Jin, M. Hüsken, M. Olhofer, B. Sendhoff, Neural networks for fitness approxi-
mation in evolutionary optimization, in: Y. Jin (Ed.), Knowledge Incorporation in
Evolutionary Computation, Studies in Fuzziness and Soft Computing, Springer, 2004,
pp. 281–305.

[124] Y.-S. Hong, H. Lee, M.-J. Tahk, Acceleration of the convergence speed of evolution-
ary algorithms using multi-layer neural networks, Engineering Optimization 35 (1)
(2003) 91–102.

[125] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators, Neural Networks 2 (5) (1989) 359–366.

[126] M. Paliwal, U. A. Kumar, Neural networks and statistical techniques: A review of
applications, Expert Systems with Applications 36 (1) (2009) 2–17.

[127] C. N. Gupta, R. Palaniappan, S. Swaminathan, S. M. Krishnan, Neural network
classification of homomorphic segmented heart sounds, Applied Soft Computing
7 (1) (2007) 286–297.

164



[128] A. Wefky, F. Espinosa, A. Prieto, J. Garcia, C. Barrios, Comparison of neural
classifiers for vehicles gear estimation, Applied Soft Computing 11 (4) (2011) 3580–
3599.

[129] P. J. Werbos, Beyond regression: New tools for prediction and analysis in the behav-
ioral sciences, Ph.D. thesis, Harvard University (1974).

[130] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference and Prediction, 2nd Edition, Springer, 2009.

[131] P. S. Churchland, T. J. Sejnowski, The Computational Brain, MIT Press, 1992.

[132] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics
of Control, Signals, and Systems 2 (4) (1989) 303–314.

[133] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees,
Chapman and Hall / CRC, 1993.

[134] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The WEKA
data mining software: an update, SIGKDD Explorations 11 (1) (2009) 10–18.

[135] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the condor
experience., Concurrency - Practice and Experience 17 (2-4) (2005) 323–356.

[136] F. Bittner, I. Hahn, Kriging-assisted multi-objective particle swarm optimization
of permanent magnet synchronous machine for hybrid and electric cars, in: IEEE
International Electric Machines & Drives Conference (IEMDC 2013), IEEE, 2013,
pp. 15–22.

[137] M. L. Stein, Interpolation of spatial data: some theory for Kriging, Springer, 1999.

[138] P. K. Nain, K. Deb, A multi-objective optimization procedure with successive ap-
proximate models, Tech. Rep. 2005002, KanGAL (2005).

[139] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic
algorithms, in: Foundations of Genetic Algorithms, Morgan Kaufmann, 1991, pp.
69–93.

[140] J. Durillo, A. Nebro, F. Luna, E. Alba, A study of master-slave approaches to
parallelize NSGA-II, in: IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 2008), 2008, pp. 1–8.

[141] M. Yagoubi, L. Thobois, M. Schoenauert, Asynchronous evolutionary multi-objective
algorithms with heterogeneous evaluation costs, in: IEEE Congress on Evolutionary
Computation (CEC 2011), 2011, pp. 21–28.

[142] J. Durillo, A. Nebro, F. Luna, E. Alba, On the effect of the steady-state selection
scheme in multi-objective genetic algorithms, in: International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO 2009), Springer, 2009, pp. 183–197.

165



[143] D. H. Wolpert, W. G. Macready, Coevolutionary free lunches, Evolutionary Compu-
tation, IEEE Transactions on 9 (6) (2005) 721–735.

[144] D. H. Wolpert, What the fo free lunch theorems really mean; how to improve search
algorithms, Tech. rep., Santa Fe Institute and Information Sciences Division (Los
Alamos National Laboratory) (2012).

[145] M. Oltean, Searching for a practical evidence of the no free lunch theorems, in:
Biologically Inspired Approaches to Advanced Information Technology, Springer,
2004, pp. 472–483.

[146] S. Christensen, F. Oppacher, What can we learn from no free lunch? a first attempt to
characterize the concept of a searchable function, in: Proceedings of the Genetic and
Evolutionary Computation Conference, Vol. 2001, 2001, pp. 1219–1226.

[147] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, M. F. Tasgetiren, Differential evolu-
tion algorithm with ensemble of parameters and mutation strategies, Applied Soft
Computing 11 (2) (2011) 1679–1696.

[148] T.-P. Hong, H.-S. Wang, W.-C. Chen, Simultaneously applying multiple mutation
operators in genetic algorithms, Journal of heuristics 6 (4) (2000) 439–455.

[149] S. Bandaru, R. Tulshyan, K. Deb, Modified sbx and adaptive mutation for real world
single objective optimization, in: IEEE Congress on Evolutionary Computation (CEC
2011), 2011, pp. 1335–1342.

[150] J. N. Thompson, The coevolutionary process, University of Chicago Press, 1994.

[151] J. Paredis, Coevolutionary computation, Artificial life 2 (4) (1995) 355–375.

[152] C. D. Rosin, R. K. Belew, New methods for competitive coevolution, Evolutionary
Computation 5 (1) (1997) 1–29.

[153] M. A. Potter, K. A. De Jong, Cooperative coevolution: An architecture for evolving
coadapted subcomponents, Evolutionary computation 8 (1) (2000) 1–29.

[154] S. Luke, Essentials of Metaheuristics, 2nd Edition, Lulu, 2013, available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[155] K. Chellapilla, D. B. Fogel, Evolution, neural networks, games, and intelligence,
Proceedings of the IEEE 87 (9) (1999) 1471–1496.

[156] D. B. Fogel, T. J. Hays, S. Hahn, J. Quon, A self-learning evolutionary chess program,
Proceedings of the IEEE 92 (12) (2004) 1947–1954.

[157] J. J. Durillo, A. J. Nebro, JMETAL: A Java framework for multi-objective optimiza-
tion, Advances in Engineering Software 42 (2011) 760–771.

166



[158] D. Zaharie, Influence of crossover on the behavior of differential evolution algorithms,
Applied Soft Computing 9 (3) (2009) 1126–1138.

[159] D. Corne, J. Knowles, Some multiobjective optimizers are better than others, in: IEEE
Congress on Evolutionary Computation (CEC 2003), Vol. 4, 2003, pp. 2506–2512.

167


	List of Figures
	List of Tables
	List of Algorithms
	List of Terms
	Introduction
	Background
	Goal and Approach
	Outline of the Thesis
	Original Contribution

	Multi-Objective Optimization
	Multi-Objective Optimization Problems
	General Definition and Structure of Solutions
	Constraints

	Classical Multi-Objective Optimization Methods
	General Considerations
	A Taxonomy of Available Approaches
	MOO with No Articulation of Preferences
	MOO with A Priori Articulation of Preferences
	MOO with A Progressive Articulation of Preferences
	MOO with A Posteriori Articulation of Preferences
	Remarks Regarding Classical MOO Approaches

	Multi-Objective Evolutionary Algorithms
	Evolutionary Algorithms
	Extensions to Multi-Objective Optimization Problems
	NSGA-II and SPEA2
	DEMO and GDE3
	MOEA/D
	Remarks Regarding MOEAs


	Test Problems and Performance Evaluation
	Test Problems
	Artificial Test Problems
	Industrial Test Problems

	Performance Measures for MOOPs
	Primary PN Quality Indicators
	Considerations regarding MOO Quality Assessment

	A New Methodology for Evaluating MOOAs
	Motivation
	Hypervolume-ranked Performance Curves
	Using HRPCs to tune MOEA/D


	On-the-Fly Surrogate Modeling
	General Idea
	Approach and Performance Baseline
	Overview of the Surrogate-enhanced MOEA Framework

	Constructing On-the-Fly Global Surrogate Models
	Design Decisions
	Data Sets and Target Parameters
	Structure and Training of MLP Surrogate Models
	An Automatic Selection Procedure for MLP Surrogate Models
	Comparative Performance of MLP Surrogate Models
	The Stability over Time of MLP Surrogate Models

	MLP-enhanced NSGA-II
	Algorithmic Description
	Comparative Performance on CIMOOPs

	Improving Surrogate Modeling Efficiency
	Faster Surrogate Model Construction Strategies
	Comparative Performance
	Remarks Regarding Surrogate Modeling


	Making the Correct Parallelization Choice
	Motivation and General Idea
	Parallel and Distributed MOEAs
	Why Focus on the Basic MSP Paradigm?
	The Proposed Analysis

	The Quantitative Performance
	The Basic Model
	The Effect of Variance

	The Qualitative Performance - Empirical Results
	The Testing Framework
	Basic Qualitative Performance
	The Effect of Variance

	Remarks regarding MSP Schemata
	Application on a CIMOOOP

	Coevolutionary Enhancements
	Motivation and General Idea
	Initial Approach: The DECMO Algorithm
	Method Description
	Comparative Performance on Benchmark MOOPs

	The Refinement: DECMO2
	Overview
	Decompostion-based Archive
	Search Adaptation and Fitness Sharing
	Algorithmic Description
	Comparative Performance on Benchmark MOOPs
	Performance on a CIMOOP
	Remarks Regarding the Proposed Algorithms 


	Cumulative Results
	Combining the Enhancements
	Two Summarizing Plots

	Conclusions
	Achievements
	Outlook

	Bibliography

