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Abstract. We propose a 2-population cooperative coevolutionary op-
timization method that can efficiently solve multi-objective optimiza-
tion problems as it successfully combines positive traits from classic
multi-objective evolutionary algorithms and from newer optimization ap-
proaches that explore the concept of differential evolution. A key part of
the algorithm lies in the proposed dual fitness sharing mechanism that is
able to smoothly transfer information between the two coevolved popula-
tions without negatively impacting the independent evolutionary process
behavior that characterizes each population.
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1 Introduction and State-of-the-art

Part of our general research tasks are aimed at optimizing design parameters of
electrical drives and deal with highly-dimensional multiple-objective optimiza-
tion problems (MOOPs) that also display very lengthy run-times [17]. This is
because our optimization scenarios require time-intensive design (fitness) eval-
uation functions that are based on finite element simulations. As such, hav-
ing a robust and generally efficient (in number of required fitness evaluations)
optimization algorithm is very important as it would significantly reduce the
optimization run-times.

Like most MOOPs, the problems that we deal with rarely have a single
solution and solving them means finding (an approximation of) a set of non-
dominated solutions called the Pareto-optimal set [1]. Because of their inherent
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ability to produce complete Pareto-optimal sets over single runs, multi-objective
evolutionary algorithms (MOEAs) have emerged as one of the most successful
soft computing techniques for solving MOOPs [1].

Among the early MOEAs, NSGA-II [3] and SPEA2 [16] proved to be quite
effective and are still widely used in various application domains. At a high level
of abstraction, both algorithms can be seen as MOOP orientated implementa-
tions of the same paradigm: the (µ + λ) evolutionary strategy. Moreover, both
algorithms are highly elitist and use a two-tier selection for survival function
based on Pareto and crowding indices. Canonically, both algorithms also use the
same classic evolutionary operators: SBX crossover operator [2] and polynomial
mutation [5];

More modern MOEAs (e.g., DEMO [13] and GDE [8]) wanted to exploit the
very good performance exhibited by differential evolution (DE) operators [12]
and replaced the SBX and polynomial mutation operators with various DE vari-
ants. Convergence benchmark tests [13] [9] show that differential evolution can
help MOEAs to explore the decision space far more efficiently for several classes
of MOOPs. Also, DE-based algorithms seem to be quite stable, as premature
convergence can usually be avoided by choosing a good parameterization that
stimulates a minor increase in population diversity [14].

For some problems though, MOEAs that use the SBX and polynomial mu-
tation operators still significantly outperform DE-based algorithms. SBX and
polynomial mutation also seem to be quite robust with regards to their param-
eterization as standard values are able to produce good results on a wide range
of test problems.

In the next sections of this paper we shall describe our attempt to efficiently
combine the two different search paradigms in order to obtain a hybrid opti-
mization method that retains to a good extent all of the above described pos-
itive traits: efficient exploration of the search space, stability with regards to
premature convergence, and robustness to parameterization.

2 Our Approach

In order to achieve our goal and create an optimization method that has the ro-
bustness of classic MOEA algorithms and also profits from the very good perfor-
mance exhibited by DE operators, we use coevolution. More precisely, we apply
2-population cooperative coevolution where the first population, P , is evolved
using the SPEA2 model, while the second population, Q, uses the DEMO/GDE3
evolutionary model coupled with a survival strategy based on environmental se-
lection [16]. The general state of our differential evolution-based, coevolutionary
multi-objective optimization algorithm (DECMO) at a given generation is ob-
tained by constructing A = P ∪Q.

Unsurprisingly, empirical results have shown that the way in which fitness is
shared among the two coevolved populations has a crucial impact on the overall
success of the method. We obtained the most stable behavior and the best results
when using a dual fitness sharing mechanism based on the interleave between,
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Fig. 1. Diagram of the proposed fitness sharing mechanism

generational, weak sharing stages and, fixed interval, strong sharing stages. As
shown in Figure 1, the weak fitness sharing stage consists of trying to insert
in each population one random offspring generated from the complementary
population. In the strong sharing stage, which takes place every m generations,
an elite subset is constructed by performing the union of A with the two offspring
populations and extracting, via environmental selection, the best m individuals.
Afterwards, environmental selection is again applied in an attempt to reintroduce
(some of) these elite individuals in populations P and Q.

We make extensive use of the environmental selection operator because it
inherently has two features that are, by default, beneficial to a coevolutionary
process:

– a primary Pareto-based selection criterion - acts both as an inter and intra
population fitness indicator

– a secondary crowding-based filtering mechanism - helps to preserve popula-
tion diversity.

The above two features also characterize the non-dominated sorting [3] sur-
vival strategy proposed with NSGA-II. Choosing one method over the other for
our initial DECMO prototype was simply a matter of personal preference on
behalf of the authors.
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The advantage of the previously described fitness sharing mechanism is that
it only introduces one extra configuration parameter: m - the control parameter
of the strong fitness sharing stage. Furthermore, we have performed several tests
and discovered that the setting m = (|P | + |Q|)/20 is stable and yields good
results.

3 Experimental Setup

For assessing the performance of our coevolutionary approach, we have made
runs of up to 50000 individuals (75000 for one special case) using SPEA2,
DEMO/DGE3, and DECMO. The population (and archive) sizes were fixed to
200 individuals for the first two methods, while for DECMO we used the setting
|P | = |Q| = 100. All the results we report are aggregated from 50 independent
runs for each MOEA - MOOP combination. In the case of DEMO and GDE3 we
consider that conceptually, the overall evolutionary process is nearly identical,
but for the sake of clarity we mention that we performed the tests using GDE3,
which can also be considered a DEMO variant, namely DEMONS−II .

Test Problems In order to assess the performance of the three MOEAs we
apply them on 10 standard, artificial, test problems from the evolutionary multi-
objective literature. These problems have been specifically selected as they pro-
pose different degrees of difficulty and different convergence behaviors for the
two categories of MOEAs we are interested in (i.e., classical and DE-based).
The first five problems we use are selected from the DTLZ set [4], while the
other five are KSW10 (based on Kursawe’s function [10]), LZ09-F1 and LZ09-
F2 - part of the LZ09 problem set [11], which is particularly difficult for classic
MOEAs, WFG1[7], and ZDT6 - a problem with a non-uniform search space [15].

MOEA Parameterization We selected the standard parameterization for
SPEA2: 0.9 for the crossover probability, 20 for the crossover distribution in-
dex, 1/L for the mutation probability (where L is the number of variables) and
20 for the mutation distribution index. In the case of DEMO/GDE3, we use a
DE/rand/1/bin operator with the settings CR=0.3 and F=0.5 (recommended
in [13]). The DE repair strategy we apply replaces any candidate value that is
violating a boundary constraint with the boundary value. It should be noted
that this particular repair strategy is biased as it offers an advantage in the case
of problems where the true Pareto front lies on one of the bounds of the decision
space. These settings are also used to parameterize the individual populations
P and Q of DECMO. The m-parameter is set, according to the description at
the end of Section 2, to a value of 10.

Assessment of Solution Quality The hypervolume associated with a solu-
tion set, has the advantage that it is the only Pareto front quality estimation
metric for which there is a theoretical proof [6] of a monotonic behavior. For any
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optimization problem, the true Pareto front has the highest achievable hyper-
volume value. As for our test problems, where the true Pareto front is known, we
assess the performance of a MOEA after a given number of fitness evaluations
by reporting the hypervolume of the current population to the hypervolume of
the true Pareto front.

4 Results - Comparative Performance

The plots in Figure 2 present the average convergence behavior of the three
optimization methods. On all the test problems, DECMO displays a search per-
formance that is similar, or even slightly better, than that of the best performing
stand-alone strategy. It is noteworthy to highlight the average performance of
DECMO on the LZ09-F1 problem where the coevolutionary approach initially
displays the same rapid convergence as SPEA2 but switches to a DEMO/GDE3
convergence behavior as the latter seems to be more efficient in the final stage
of the runs.

Table 1. Mean and standard deviation information regarding the number of function
evaluations (nfe) required in order to reach a late-stage of convergence. The values
are computed by considering only those individual runs that are able to reach a late-
stage of convergence. The best result for each problem is highlighted and selected by
considering only those MOEAs that are able to achieve a successful run ratio (srr) of
1.0 for that problem.

Problem
SPEA2 GDE3 DECMO
nfe

srr
nfe

srr
nfe

srr
µ σ µ σ µ σ

DTLZ1 27908 3489.3 1.00 15068 810.8 1.00 12688 983.3 1.00

DTLZ2 7216 735.0 1.00 10348 923.9 1.00 7576 513.7 1.00

DTLZ4 5573 396.8 0.90 6164 337.3 1.00 5626 356.0 1.00

DTLZ6 69578 1712.0 0.94 4884 259.0 1.00 5980 271.8 1.00

DTLZ7 22364 1247.2 1.00 11940 622.4 1.00 13048 769.4 1.00

KSW10 6872 600.4 1.00 12564 735.9 1.00 7576 831.7 1.00

LZ09-F1 12416 2484.2 1.00 16728 930.9 1.00 12184 866.5 1.00

LZ09-F8 - - 0.00 - - 0.00 - - 0.00

WFG1 39720 8289.1 0.40 21012 1131.7 0.98 21596 1669.2 1.00

ZFT6 33416 909.7 1.00 6884 433.5 1.00 7800 557.0 1.00

In [18] it has been argued that after reaching a solution set that accounts
for over 85% of the true hypervolume, a MOEA reaches a late-stage of conver-
gence where improvements generally come at a greater cost in terms of fitness
evaluations. Because we consider that knowing the number of fitness evaluations
(nfe) that are required in order to reach such a late-stage of convergence is very
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Fig. 2. The convergence behavior of the three MOEAs averaged over 50 runs

helpful in characterizing the search behavior of a multi-objective optimization
algorithm, we have also measured this data and present the aggregated values
in Table 1.

The results from Table 1 further underline the tendency that DECMO has
to replicate the search behavior of the most successful strategy. This seems to
be the case even on problems where both search strategies are having difficul-
ties (e.g., LZ09-F8 and WFG1) as all or some of the runs are unable to reach a
late-stage of convergence (i.e., srr < 1.0). For every test problem except LZ09-F1
(SPEA2 vs. DECMO), the observed differences between the performance of the
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MOEAs that were able to achieve a successful run ratio (srr) of 1.0 are also sta-
tistically significant (one-sided Mann-Whitney-Wilcoxon test with a considered
significance level of 0.05).

5 Conclusions and Future Work

The results we obtained on 10 benchmark MOOPs indicate that coevolution
is quite successful at its aim of constructing a robust average between SBX
and DE based methods when using an appropriate fitness sharing mechanism.
Furthermore, in general, this combination of two different evolutionary search
paradigms also seems to be quite stable and efficient as it is able to perform very
well on different optimization scenarios.

Future work will revolve around studying in more depth the qualitative dif-
ferences between the two coevolved populations and how to use this information
in order to improve the overall optimization method. We also plan to develop
a steady state asynchronous version of DECMO and to test the performance of
the algorithm on MOOPs from the field of electrical drive design.
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