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Alexandru-Ciprian Zăvoianu a,c,∗ Edwin Lughofer a Werner Koppelstätter c

Günther Weidenholzer c Wolfgang Amrhein b,c Erich Peter Klement a,c

aDepartment of Knowledge-based Mathematical Systems/Fuzzy Logic Laboratory Linz-Hagenberg, Johannes Kepler

University of Linz, Austria
bInstitute for Electrical Drives and Power Electronics, Johannes Kepler University of Linz, Austria

cLCM, Linz Center of Mechatronics, Linz, Austria

Abstract

In the last two decades, multi-objective evolutionary algorithms (MOEAs) have become ever more used in scientific

and industrial decision support and decision making contexts the require an a posteriori articulation of preference.

The present work is focused on a comparative analysis of the performance of two master-slave parallelization (MSP)

methods, the canonical generational scheme and the steady-state asynchronous scheme. Both can be used to improve

the convergence speed of multi-objective evolutionary algorithms that must use computationally-intensive fitness

evaluation functions. Both previous and present experiments show that a correct choice for one or the other par-

allelization method can lead to substantial improvements with regard to the overall duration of the optimization

process. Our main aim is to provide practitioners of MOEAs with a simple but effective method of deciding which

MSP option is better given the particularities of the concrete optimization process. This in turn, would give the

decision maker more time for articulating preferences (i.e., more flexibility). Our analysis is performed based on 15

well-known MOOP benchmark problems and two simulation-based industrial optimization process from the field of

electrical drive design. For the first industrial MOOP, when comparing with a preliminary study, applying the steady-

state asynchronous MSP enables us to achieve an overall speedup (in terms of total wall-clock computation time)

of ≈ 25%. For the second industrial MOOP, applying the steady-state MSP produces an improvement of ≈ 12%.

We focus our study on two of the best known and most widely used MOEAs: the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2).
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1. Introduction and State of the Art

1.1. Motivation

Many real-world optimization problems usually arise in decision making contexts that involve several

conflicting objectives (e.g. cost vs. quality, risk vs. return on investment) that should be simultaneously

optimized. Problems falling within this class are referred to as multi-objective optimization problems (MOOPs

in short). Generally, such problems do not have a single solution and “solving” them requires finding a set

of non-dominated solutions called the Pareto-optimal set (in short, PS). Each solution (candidate) from this

set is better than any other solution from the set with regard to at least one of the optimization objectives

(i.e., no solution from this set is fully dominated by another solution). For many MOOPs, the Pareto-optimal

set is unknown and/or infinite. Therefore, in most application domains, decision makers refer to the Pareto

non-dominated set (in short, PN) which contains an arbitrarily fixed number of solutions that are able to

provide a good approximation of the PS. The objective space representation of a Pareto non-dominated set

is called the Pareto front.

In real-life scenarios, solving a MOOP is actually divided into two distinct stages:

– the search stage where the goal is to find solution candidates that are able to optimize (minimize) all

the objectives of the MOOP (i.e., discover PNs that are as close as possible to the PS of the MOOP);

– the decision making / articulation of preferences stage where the goal is to determine the exact solution

candidate(s) that incorporate(s) the best trade-offs in the decision maker’s opinion;

The focus of this work lies exclusively with improving the general converge time of methods (evolutionary

algorithms) that are commonly used to solve the search stage and find high-quality PNs. The motivation

for this (and the general concept of a posteriori articulation of preference) is that once a clear and broad

picture of all the existing trade-offs in the MOOP is available (i.e., a good Pareto front has been discovered),

the decision maker has a lot of flexibility to tune the more subjective multi-criteria decision making part in

order to select a very limited number of Pareto non-dominated solutions (sometimes just one) that will be

constructed/implemented/applied in the real-life process modeled by the given MOOP.

Multi-objective evolutionary algorithms (MOEAs) have proven to be one of the most successful soft

computing techniques for solving MOOPs [1] [2] [3]. This is because they are able to produce complete PNs

over single runs. Like most stochastic methods, MOEAs are approximate methods that cannot guarantee

finding the optimal solution set of the MOOP (i.e., the PS and the true Pareto front associated with it),

but these algorithms are fairly robust and can find high quality non-dominated solution sets in reasonable

time.

The main drawback of using MOEAs in practical applications is the fact that, in order to discover good

solution sets, they usually require a large number of solutions to be evaluated during the optimization run.

The issue can become particularly problematic for optimization problems that require very computationally-

intensive fitness evaluation functions in order to compute objective or constraint values (e.g., consider

physics-orientated simulation methods such as finite element methods, or the usage of software emula-

tors in engineering design). In these cases, optimization runs can last for several days, as shown in [4] where

MOEAs are used for the optimization of combustion in a diesel engine, or in [5] where MOEAs are applied

for optimizing design parameters of electrical drives.

A very simple idea that displays immediate benefits in reducing the runtime of time intensive optimization

runs is the parallelization and/or distribution of the MOEA run over a computer cluster or grid environment.
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There are several paradigms (architectural and/or conceptual models) of parallelizing a MOEA: master-slave,

island, diffusion, hierarchical and hybrid models (please see Chapter 8 of [3] for an overview).

By far, the most straight forward and easiest to implement parallelization method for evolutionary al-

gorithms is the master-slave parallelization (MSP) model: fitness evaluations are distributed between

several slave nodes (computational units), while all the evolutionary operations (selection, crossover, muta-

tion, etc.) are performed on a master node (computational unit). The MSP is suitable both for a generational

approach, as well as for an asynchronous parallelization approach similar to the steady-state selection scheme

described in [6]. The question of which of these two simple parallelization schemes is better, is an age old

problem in the field of evolutionary computation. Very recently, Scott and De Jong started to analyze the

problem more thoroughly [7]. In the present study we aim to offer some interesting insights into this matter

from the general point of view of multi-objective evolutionary algorithms and from the particular perspective

of trying to choose the best parallelization method when trying to optimize design parameters in electrical

drive engineering. The findings of our analysis show that for two industrial problems, an overall computation

time speedup of about 12% and 25% can be achieved by simply using an asynchronous MSP instead of a

classical generational MSP (like the one applied in [5]). This improvement of the overall duration of the

optimization seems to have no negative impact on the quality of the final solutions (i.e., of the PNs) the

MOEAs are able to discover.

1.2. Basic Concepts

When considering a computational process parallelized / distributed on a general master-slave architec-

ture, one should distinguish among two types of tasks:

(i) remote tasks - very time-intensive computations that are performed on the slave nodes;

(ii) sequential tasks - include all the computations that must be performed on the master-node in order

to create, dispatch and retrieve remote computation tasks;

It should be noted that in the case of most MOEAs, the “create” part of the sequential tasks includes

applying typical genetic operators like (parent) selection, crossover, mutation, and survival for selection.

Apart from these, in real-world master-slave parallelization setups for MOEAs, the duration of the sequential

tasks is also affected by the fact that lengthy pre-evaluation steps must be performed locally (on the master

node) for each generated individual, before dispatching the individual for remote fitness evaluation on

the slave nodes. These pre-evaluation steps must be performed on the master node because of security

concerns, software licensing issues, network configuration settings, etc. Whenever the average duration of

the sequential tasks carried out on the master node is significant with regard to the average duration of the

fitness evaluation tasks (i.e., the system displays a low parallelization ratio), the speed-up that can be

achieved by employing a parallel / distributed architecture is affected (q.v. Amdahl’s law).

Apart from the parallelization ratio, another aspect that must be considered refers to the heterogeneity

of the time-wise distributions of the remote (i.e., fitness evaluation in the case of MOEAs) and

sequential tasks. Although literature that focuses on the effects of fitness function time-wise heterogeneity

on the MSP choice for MOEAs is scarce, a study by Yagoubi et al. from 2011 [4] indicates that, for MOOPs

that display a heterogeneous (non-constant) time-wise fitness distribution, the steady state asynchronous

parallelization is somewhat better in terms of convergence (Pareto quality and global run-time) than the

generational approach. In their 2008 work [8], Durillo et al. also show evidence that applying a (synchronous)

steady state approach when performing a MOEA run can bring improvements in terms of Pareto quality. The
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present research builds on these earlier findings, considerably extends and generalizes preliminary concepts

and results reported in [9], and tries to outline the main reasons that might influence the average performance

of the two MSP methods in the context of MOEAs.

Our main intention is to provide an analytical framework to help practitioners in this field to decide what is

the most efficient parallelization option based on the particularities (achievable parallelization ratio, MOEA

choice, MOEA parameterization, MOOP characteristics, etc.) of their concrete optimization scenarios. The

comparison is focused on the very practical aspect of achievable Pareto quality / run-time performance. In

other words, given a MOOP to solve, a MOEA to use and two very simple and fast-to-implement (master-

slave) parallelization options, we want to know which parallelization method is more likely to deliver the

highest quality solution set in a pre-defined global run-time interval?

In the next paragraphs we provide a compact description of the two MSP methods we consider in the

present research and we explain why the parallelization choice can seriously impact the MOEA search

(performance) behavior. Together with a motivation for our dual analysis of parallelization performance, in

Section 2.3 we provide an outline of the rest of this work.

2. Methodology

2.1. The Considered Multi-Objective Evolutionary Algorithms

For the purpose of this work we used two of the most well known (“classic”) MOEAs: the Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [10] and the Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[11]. At a high level of abstraction, NSGA-II and SPEA2 are different MOOP orientated implementations

of the same concept: the (µ+ λ) evolutionary strategy – where µ denotes the parent population size and λ

the offspring population size. The two main features of both algorithms are

(i) a highly elitist approach that aims to store the best individuals found during the run;

(ii) a two-tier selection for survival function that uses a primary Pareto non-dominance metric and a

secondary solution density estimation metric.

More recent MOEAs also explore concepts like differential evolution (DE) and objective space decom-

position [12]. The trend to explore the very good search performance exhibited by differential evolution

operators [13] was started with algorithms (like DEMO [14] and GDE3 [15]) that simply replaced the SBX

and polynomial mutation operators used by NSGA-II and SPEA2 with various DE variants. Later, DE was

also used to improve evolutionary approaches (see MOEA/D [16]) that aim to solve MOOPs by performing a

decomposition of the original problem into several single objective optimization problems (e.g., as proposed

in the Normal Boundary Intersection Method [17]) that are to be solved simultaneously. Recently, by apply-

ing a coevolutionary strategy, DECMO2 [18] has been shown to efficiently combine multiple MOEA design

characteristics (e.g., Pareto-based selection for survival, differential evolution, decomposition strategies) in

order to generally deliver a fast convergence behavior on a wide set of benchmark MOOPs.

Although on several (artificial and industrial) MOOPs, the previously mentioned four algorithms have

been shown to display a better convergence speed and / or final Pareto quality performance than NSGA-II

and SPEA2, the same general (µ+ λ) evolutionary strategy can also be used to describe these more recent

approaches. Therefore, the analysis that we propose can easily be applied to these algorithms as well. The

particular choice of the MOEAs used for the tests reported in Section 4 has been made based on the fact

that NSGA-II and SPEA2 exhibit a generally good optimization performance for real-life problems and,
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Fig. 1. Diagram of the GEN-MSPS (the λ-sync block) and SSA-MSPS (the 1+-sync block) computation cycles

according to citation counts, they are still widely used methods. Most likely, these two approaches are the

best known multi-objective evolutionary algorithms.

2.2. Master-Slave Parallelization Schemes

The diagram in Figure 1 provides a general explanation of the computation cycles generated by both

master-slave parallelization schemes (MSPS) when applying them on a generic (µ+ λ) MOEA.

Using as reference the computational components and steps presented in Figure 1, we shall now proceed

to describe in more detail the computational cycles induced by the two master-slave parallelization methods.

Before starting, we mention that regardless of the chosen MSPS (and the associated computation cycle),

the (µ+ λ) MOEA can be initialized using an empty parent population by randomly creating λ individuals

and inserting them into the offspring evaluation pool.

2.2.1. The Generational Master-Slave Parallelization Scheme (GEN-MSPS)

In this case, the computation cycle is regulated by a λ-synchronization step. This step occurs before the

integration of the individuals from the offspring insertion pool into the MOEA population. The master node

must block until all the λ individuals of the current offspring population have been evaluated on the slave

nodes. After this requirement is satisfied, the specific (µ+λ)- selection for survival operation (i.e., S ) is used

in order to update the MOEA population on the master node.

Afterwards, all the λ offspring of the next generation are created sequentially on the master node using

the specific genetic operators (i.e., G) and inserted into the offspring evaluation pool. Each slave node

asynchronously selects an individual from this pool, evaluates it and afterwards places the results in the

offspring insertion pool. The above described procedure is repeated until the optimization stopping criterion

is met.

From an algorithmic point of view, this computation cycle is identical to a sequential (µ+ λ) implemen-

tation.
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2.2.2. The Steady-State Asynchronous Master-Slave Parallelization Scheme (SSA-MSPS)

For the steady-state asynchronous parallelization, the computation cycle is regulated by a 1+-synchronization

step that also occurs before the selection for survival (i.e., S ) operation.

The slave nodes function in the same way as in the generational parallelization scheme. The master node

is again controlled by a simple loop. While the stopping criterion is not met, the master node first checks

if there are any evaluated offspring in the offspring insertion pool and, if such individuals exist, it collects

them and updates (via the selection for survival genetic operation) the MOEA parent population. This is

the main difference to GEN-MSPS, which in each cycle has to wait for the evaluation of all offspring before

new individuals can be generated. Secondly, using the specific genetic operators (i.e., G), the master node

creates as many new offspring as it has previously collected and immediately inserts them into the offspring

evaluation pool.

The above computation cycle resembles classical steady-state selection as, at a given time, usually, only

one evaluated offspring is collected and, if “fit enough”, it is inserted into the MOEA parent population

and another offspring is generated. It is important to notice that the SSA-parallelization scheme drastically

changes the algorithmic behavior of the given MOEA to that of an asynchronous (µ + 1+) evolutionary

strategy.

2.3. Outline and Observations

Figure 2 provides a sketch / didactic example of how individuals are processed by the two parallelization

methods. The more flexible synchronization step of SSA-MSPS enables this method to evaluate more in-

dividuals per time interval than GEN-MSPS (e.g., in Figure 2 SSA-MSPS could evaluate 4 more offspring

in the remaining time interval). We shall investigate this quantitative aspect in Section 3. The downside

of using SSA-MSPS is that, intuitively, the same lack of generational synchronization is expected to make

SSA-MSPS achieve worse results in terms of attained Pareto front quality after evaluating a fixed number of

individuals. This qualitative aspect is investigated on 15 artificial MOOPs in Section 4. The last part of

Section 4 contains an interpretation of the interplay between the quantitative and qualitative observations

when considering two very computationally-intensive optimization scenarios from the field of electrical drive

design. Section 5 contains the conclusions and an outlook on open research lines.

In order to better explain the logic behind the quantitative and the qualitative analyses, let us assume

that in a given (wall-clock) time interval T a MOEA that is parallelized with GEN-MSPS can compute

XGEN individuals and reach a PN of quality QGEN . In this case:

– the quantitative analysis tries to determine (the factors that influence) XSSA – the number of indi-

viduals that can be computed in T by applying SSA-MSPS instead of GEN-MSPS;

– the qualitative analysis tries to determine Xreq – the number of individuals that must be computed

when using SSA-MSPS in order to reach a PN of quality QGEN .

If Xreq < XSSA it clearly follows that SSA-MSPS is a better parallelization option (when the duration of the

optimization is limited to T ). Otherwise, GEN-MSPS should be preferred. Understanding and modeling the

interplay between Xreq and XSSA over the entire optimization run can provide a big help to practitioners who

want to make a good MSP choice. In the case of single-objective evolutionary algorithms, a very interesting

approach regarding this matter can be found in [7].

Generally, we consider that performing the parallelization performance analysis from this dual point of

view is very useful because:
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Fig. 2. The comparative computation steps of GEN-MSPS and SSA-MSPS for 3 generations of size 4 in a distributed computing

environment with one master node and 4 slave nodes

(i) the quantitative aspects tend to be related more to the physical and software constraints of the available

parallel/distributed computing architecture (i.e., they are more or less fixed or hard to change for a

practitioner);

(ii) the qualitative aspects are mainly dependent on the chosen MOEA, the chosen algorithm parameter-

ization, and the complexity of the actual MOOP to be solved.

As such, the qualitative aspects exhibit a higher variability as two of the factors that directly influence them
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(i.e., type of MOEA and MOEA parameterization) can be selected freely by the practitioner.

Furthermore, the quantitative and qualitative analyses have the major role of abstracting the dependency

of the overall parallelization performance on the underlying hardware performance as both analyses only

consider the number of evaluated individuals. This abstraction should make results obtained in different

parallelization environments more comparable and thus meaningful.

3. Examining the Quantitative Performance

3.1. The Basic Model

As mentioned in the previous section, it is obvious that, given a fixed hardware architecture and identical

MOEA settings, SSA-MSPS is able to compute a fixed number of individuals faster than GEN-MSPS (please

see Figure 2 for a sketch). In other words, when using the SSA-MSPS, one is likely to create and evaluate

more individuals in the same time interval. In this section, we attempt to quantify this improvement in

number of computable individuals and to evaluate how the interplay between the duration of the remote

fitness evaluation tasks and the duration of the local sequential tasks affects it.

The theoretical model consists of a (µ + λ) MOEA that is parallelized / distributed over a computing

environment with more than λ slave nodes (i.e., we assume that the available number of slave nodes is not the

bottleneck of the setup). We mark with tp > 0 the duration (in time units) of distributing and performing

the fitness evaluation of any individual on any slave node (i.e., the duration of the remote computation

tasks). We also mark with ts > 0 the cumulative duration of the sequential computation tasks (i.e., genetic

operations + possible pre-evaluation tasks) that are performed on the master node in order to create one

individual. For the time being, we assume that ts and tp are constant (i.e., we have a homogeneous time-wise

distribution of both the fitness evaluation and the individual creation functions). The parallelization ratio

is defined as:

r = d tp
ts
e (1)

Under the above mentioned restrictions, when considering the GEN-MSPS approach, it is quite straight-

forward that it needs not use more than r + 1 slave nodes simultaneously as the first slave will finish its

fitness evaluation by the time individual number r + 2 is generated on the master node . The reasoning in

this section is made under the restriction r+ 1 ≥ λ and that there are more that λ slave nodes available for

performing the remote fitness evaluations.

Assuming that other miscellaneous computation times are negligible with regard to (or integrated in) ts

and tp, the total time required to compute any generation of λ individuals using the GEN-MSPS is (λ×ts)+tp.
In case of the SSA-MSPS, the time required to compute the first λ individuals is also (λ × ts) + tp, but

the time required to compute any of the next batches of λ individuals is (ts + tp), as sketched in Figure 2.

Therefore, when wishing to compute N generations, the overall computation time is a) (λ× ts + tp)×N in

the case of GEN-MSPS; b) (λ× ts+ tp)+(ts+ tp)× (N −1) in the case of SSA-MSPS. After equalizing these

computation times and performing the necessary calculations, we have that in the time interval required

by the GEN-parallelization to compute N generations of λ individuals, the SSA-parallelization can compute

∆struct% more individuals, where ∆struct is given by:

∆struct =
(N − 1)× (λ− 1)× ts

N × (ts + tp)
× 100 (2)
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Fig. 3. ∆struct plots for different parallelization ratios and different degrees of variance (i.e. cv) in the time-wise distribution

of the fitness evaluation function

We shall refer to this measure as the structural improvement that SSA-MSPS has over GEN-MSPS in

terms of computed individuals per given time interval.

It is important to note that while ∆struct does depend on the number of generations to be computed, the

dominant factors that influence ∆struct are the ratio between ts and tp (i.e., the parallelization ratio r) and

the population size (i.e., λ). When dealing with real life, very time-intensive MOOPs, a rather small choice

of λ (i.e. 50 to 250) is usually the norm.

When fixing λ = 100, N = 500, and ts = 1, by varying the value of tp, we can compute the dependency of

∆struct on r. The corresponding plot is presented in Figure 3: the left plot - basic model curve. Unsurpris-

ingly, it shows that the quantitative improvement that SSA-MSPS brings decreases exponentially with the

parallelization ratio.

Although valuable in establishing a baseline for the comparison between GEN-MSPS and SSA-MSPA, the

above described comparison has one severe limitation: it is strongly influenced by the idealistic assumption

that the duration of the fitness evaluation tasks is constant. As such, in Section 3.2 we proceed to address

this issue in order to improve our quantitative performance model.

3.2. The Effect of Variance on the Quantitative Performance

At first, we performed tests in order to validate the theoretical model proposed in the previous section.

Using a homogeneous (i.e. constant / variance free) time-wise fitness distribution, we simulated the time

required by GEN-MSPS and SSA-MSPS runs when considering various values of the parallelization ratio

(1) for the same settings (λ = 100, N = 500, and ts = 1) used in Section 3.1. The obtained results (Figure 3

- the cv = 0 data points for r > 100) confirm the ∆struct behavior indicated by the theoretical model from

(2). Furthermore, the simulation also allowed us to easily estimate ∆struct for values of r smaller than λ

(i.e., the left plot). In this case, ∆struct displays a linear behavior that is directly proportional to r.

Next, we wanted to quantify the influence of having ever larger degrees of heterogeneity (i.e. variance)

in the time-wise distribution of the fitness evaluation function. Therefore, in the next series of tests, the
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Table 1

The observed variance-specific lower thresholds of ∆struct

cv [-] Lower threshold for ∆struct [%] ∆struct for r = 106 [%]

0.20 48.9700 49.1040

0.10 24.4500 24.5300

0.05 12.1800 12.2140

0.02 4.8140 4.8300

fitness evaluation of each individual took tp milliseconds where tp ∼ N (m,σ). By fixing ts = 1, we have

that r ∼ m and, when scaling up m we also modified σ in order to keep the coefficient of variation, cv = σ
m ,

constant at preset values. Using this simple technique we were able to effectively control both the amount

of variation in the time-wise distribution of the fitness function and the parallelization ratio. The maximum

amount of variance that we could consider under the normal distribution assumption was given by cv = 0.2

- a higher value would result in sampling negative values (which makes no sense for a duration). Because of

the induced stochasticity, for each value of r we performed 100 tests and we report averaged results.

The plot in Figure 3 shows how ∆struct behaves for four different variance levels (i.e., cv). The curves

clearly indicate that the exponential decrease of ∆struct is dampened by increased levels of variance. Further

experiments have also shown that for (r > λ), when having variance in the time-wise fitness distribution

function, after reaching a lower threshold, the value of ∆struct tends to stabilize. We have run simulations

up to r = 106 with a step size of 500 and, in Table 1, we report the lower thresholds of ∆struct for different

variance levels. We mention that, in the absence of variance, for r > 49500, ∆struct = 0.0% because, although

SSA-MSPS computes the required 50000 individuals faster than GEN-MSPS, no extra individual can be

computed when using SSA-MSPS in the remaining time interval.

In conclusion, the theoretical model given by Equation (2) gives an accurate lower limit for ∆struct but

the value of ∆struct for a given parallelization ratio r is significantly higher when having variance in the

time-wise distribution of the fitness function. Furthermore, in the presence of variance, ∆struct is lower

bounded by variance-specific thresholds that display a remarkable stability even at very high values of r.

4. Examining the Qualitative Performance - Empirical Results

4.1. Evaluation Framework Setup

The qualitative performance of the two considered master-slave parallelization schemes is harder to quan-

tify as it depends on the concrete MOOP to be solved (i.e., the complexity of the fitness landscape), on

the used MOEA and on the parameterization of the algorithm. In the following paragraphs we describe the

details of the performance evaluation framework we propose in order to estimate the qualitative performance.

4.1.1. Test Problems

We have chosen for benchmarking purposes 15 well known artificial test problems from multi-objective

literature. Our choice of artificial problems is self-evident as it is very helpful to know the ground truth

(i.e., the PS of the MOOP and its associated true Pareto front) in order to compare between parallelization

performances. The problems have been specially selected to propose different degrees of difficulty and,
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subsequently, different convergence behaviors for the two MOEA algorithms that we experiment with. The

15 MOOPs we consider in this study are:

– DTLZ1, DTLZ3, and DTLZ7 from the problem set proposed in [19]. These problems feature 7, 12

and 22 variables and 3 objectives.

– KSW10 - a classic multi-objective optimization problem that is based on Kursawe’s function [20].

The problem has 10 variables and 2 objectives.

– LZ09-F1, LZ09-F2, LZ09-F3, LZ09-F4, LZ09-F5, LZ09-F8, and LZ09-F9 from the LZ09 prob-

lem set [16], a set which is known to be particularly difficult for classic MOEAs like NSGA-II and

SPEA2. LZ09-F8 has 10 variables while the other problems have 30. All the selected problems from

this set feature 2 objectives.

– WFG1 and WFG7 from the problem set proposed in [21]. Both problems have 6 variables and 2

objectives.

– ZDT3 and ZDT6 from the problem set described in [22]. Both problems feature 10 variables and two

objectives.

The computation of the fitness values for all 15 problems is very fast on any modern processor. In order to

make the MOEAs exhibit the desired test behavior, the fitness computation times were artificially increased

using the method described in Section 3.2.

4.1.2. MOEA Parameterization

Our GEN and SSA implementations of both NSGA-II and SPEA2 are based on the ones provided by

the jMetal package [23]. As the main goal is to analyze the comparative performance of two different

parallelization models for the same algorithm, we used standard (literature recommended) parameterization

options for the tested algorithms.

For all the performed tests, the parent population (i.e., archive in the case of SPEA2) size was set at 100

individuals and we used an offspring population size of 100. In the case of SSA-MSPS the term “generation” is

used to denote a batch of 100 individuals. We used the standard genetic operators recommended for NSGA-II

and SPEA2: binary tournament selection, simulated binary crossover [24] and polynomial mutation. These

operators were parameterized using standard values: 0.9 for the crossover probability, 20 for the crossover

distribution index, 1/D for the mutation probability (where D is the number of variables of the MOOP to

solve) and 20 for the mutation distribution index.

Our comparisons are made using runs of 500 generations which means we perform 50000 fitness evaluations

/ run. This is because after 500 generations we reach generally good solutions for almost all the considered

test problems and because time constraints are very important in many real-world industrial optimization

scenarios and practitioners rarely have the time to run an optimization even for a few hundred generations.

Furthermore, we are particularly interested in studying the early and middle-stage convergence behavior

of MOEAs when applying GEN-MSPS or SSA-MSPS. This is because in a real-life optimization scenario,

that is time-constrained, a practitioner is likely to stop the optimization process as soon as he/she notices

that small improvements come come at an ever increasing computational cost (i.e. the MOEA enters the

late-stage of convergence). Nevertheless, if one particular parallelization method is constantly outperforming

the other in the late-stage of convergence, given the descriptions from Section 2.2, one can easily change

during the optimization to the best performing parallelization option by simply switching between the λ

and 1+ synchronization steps.

Given the stochastic nature of MOEAs, for each comparative test that was performed, we made 100
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Fig. 4. NSGA-II qualitative performance plots: (a) - generation-wise hypervolume performance, (b) - ∆qual results

repeats of each experiment (i.e., MOOP-MOEA run) and we always report the averaged results.
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Fig. 5. NSGA-II qualitative performance plots: (a) - generation-wise hypervolume performance, (b) - ∆qual results

4.1.3. Quality Indicators

For a given solution set S, the hypervolume associated with this solution set, H(S), has the advantage

that it is the only Pareto front quality estimation metric for which there is a theoretical proof [25] of a

monotonic behavior. This means that the maximization of the hypervolume constitutes the necessary and
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Fig. 6. NSGA-II qualitative performance plots: (a) - generation-wise hypervolume performance, (b) - ∆qual results

sufficient condition for the set of solutions to be “maximally diverse Pareto optimal solutions of a discrete,

multi-objective, optimization problem” [25]. In light of this, for any optimization problem, the true Pareto

front has the highest achievable hypervolume value.

In our case, for a given MOOP, the monotonic property of the hypervolume metric makes it ideal for
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assessing the relative quality of an arbitrary solution set Sa. Let us mark with Strue the true Pareto front

of our MOOP. As we deal with artificial problems where Strue is known, we can present the quality of the

given solution set as a percentage obtained by reporting the hypervolume measure of this solution set to the

hypervolume value associated with the true Pareto front of the given MOOP:

qual(Sa) =
H(Sa)

H(Strue)
× 100 (3)

Expressing the quality of a solution set as a true hypervolume percentage also enables us to define more

accurately what we mean by the syntagms early, middle and late-stage of convergence. For the purpose of

this research, based on the performance of NSGA-II and SPEA2 on the 15 artificial MOOPs and in light

of the motivations presented in the last paragraph of Section 4.1.2, we arbitrarily define a MOEA as being

in the early stage of convergence if qual(µc) ≤ 15 where µc denotes the current parent population of the

MOEA. If qual(µc) ∈ (15, 85] we consider the algorithm to be in the middle-stage of convergence, while

qual(µc) > 85 is associated with a late-stage of convergence.

In order to perform our qualitative analysis, we proceed to introduce a new measure based on the relative

hypervolume. Consider we wish to solve our MOOP with a certain MOEA. Let: a) p = 1, 100 be an integer

value; b) CGEN (p) be the minimal number of individuals that must be computed when using GEN-MSPS

in order to reach a solution set S1 with the property that qual(S1) ≥ p; c) CSSA(p) be the minimal number

of individuals that must be computed when using SSA-MSPS in order to reach a solution set S2 with the

property that qual(S2) ≥ p. For our MOOP-MOEA combination, we define the SSA qualitative deficit at

the true hypervolume percentage p as:

∆qual(p) =

(
CSSA(p)

CGEN (p)
− 1

)
× 100 (4)

This H-derived measure is designed to show the relative difference in the minimum number of individuals

that must be computed when using the two parallelization schemes in order to reach a solution set Sp with

the property that qual(Sp) ≥ p.

4.2. Basic Qualitative Performance Tests

In the first series of performed tests, using a constant fitness distribution (i.e. cv = 0), we measured the

quality of the MOEA parent population in terms of hypervolume after the completion of each GEN-MSPS

generation / batch of 100 individuals in the case of SSA-MSPS. These results (obtained with NSGA-II) are

presented in the left subplots [marked with (a)] from Figure 4, Figure 5, and Figure 6. We consider that

a more useful perspective for presenting the same comparative convergence behavior information can be

constructed by plotting the ∆qual values of the MOEA parent population as shown (the cv = 0 lines) in the

subplots marked with (b) from the previously mentioned figures.

The first important observation is that for 10 of the 15 test problems, more precisely for those presented

in Figure 4 and Figure 5, the NSGA-II displays a good convergence behavior as it bypasses the initial and

middle stages of convergence and is able to reach the final stage of convergence (i.e., p > 85, where p denotes

a relative true hypervolme percentage). On the 5 MOOPs presented in Figure 6, the convergence behavior

is different:

– for DTLZ3 - the MOEA is only able to reach p values of ≈ 40 after 50000 fitness evaluations (continuing

the run would eventually enable it to reach a late stage of convergence);
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– for LZ09-F1, LZ09-F8, and LZ09-F9 - the MOEA seems unable (with the given settings) to reach p

values > 85 and the charts indicate premature convergence;

– for WFG7 - the MOEA is able to reach the late stage of convergence, but random initializations of

the initial population already display relative p values of ≈ 40;

For the remaining of this work we shall refer to the 10 MOOPs from Figure 4 and Figure 5 as the

successfully solved problems and to the 5 problems from Figure 6 as the special case problems.

The results of these initial tests confirm some of the findings from [26], in the sense that, the GEN-MSPS

is able to achieve a higher quality Pareto front than SSA-MSPS after the same number of evolved individuals

in the early and middle stages of convergence for all the 10 successfully solved problems. This observation

also holds for 4 of the special case problems. In the case of LZ09-F8, the graphs indicate that SSA-MSPS

has a better performance when wanting to reach p-values > 30.

Furthermore, when abstracting the behavioral shifts and numeric artifacts that characterize the early and

late stages of convergence, we notice that ∆qual values are quite constant (within a 10% range) for each

successfully solved test problem. When also considering the special case problems, we can state that, in

general, ∆qual values do not display a trend that increases with p.

Considering the somewhat constant behavior of ∆qual for the successfully solved MOOPs, we can construct

an additional metric. Therefore, by averaging the individual ∆qual values associated with the middle stage of

convergence (i.e., p = 16, 85), we obtain the average required SSA improvement for a MOOP-MOEA

combination:

∆req =
1

70

85∑
p=16

∆qual(p) (5)

The new ∆req metric is important as it is a rough indicator of how many more individuals/time interval

SSA-MSPS must compute in order to mach the results that would be produced by GEN-MSPS in the given

time frame.

4.3. The Effect of Variance on the Qualitative Performance

The second series of tests that we have performed in order to gain more insight into the qualitative

performance of the two parallelization schemes is again related to the influence of having variance in the

time-wise fitness distribution function.

The results obtained using NSGA-II are also presented in the subplots marked with (b) from Figure 4,

Figure 5, and 6. A quick look over all 15 plots reveals that the effect of variance is not so important in the

case of the qualitative performance.

The values of ∆req for the successfully solved problems for both NSGA-II and SPEA2 are shown in Table

2. Given the formulation of ∆req from 5, the metric can not be computed for the special case MOOPs. We

mention that when using SPEA2, WFG1 becomes a special case problem and, as such, computing ∆req

values for the SPEA2-WFG1 combination does not make sense. Nevertheless, the data from Table 2 clearly

indicates that, in the case of the qualitative performance, variance in the time-wise distribution of the fitness

evaluation function has a negligible effect as:

– ∆req is not directly proportional to the amount of variance and for 7 out of the 19 MOOP-MOEA

combinations, the highest average ∆req value corresponds to the experiment with zero variance (i.e.,

cv = 0);
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Table 2

Averaged values of the ∆req metric over 50 runs for different levels of variance in the time-wise distribution of the fitness

evaluation function. For each MOOP-MOEA combination, the highest value is highlighted and marked with “S” if the difference

between it and the lowest ∆req value of the combination is statistically significant.

∆req for NSGA-II [%] ∆req for SPEA2 [%]

Problem cv = 0 cv = 0.02 cv = 0.10 cv = 0.20 cv = 0 cv = 0.02 cv = 0.10 cv = 0.20

DTLZ1 17.61 18.94 16.28 19.30 10.17 8.20 9.48 11.40

DTLZ7 15.61 16.54S 14.32 15.25 15.41 13.12 12.90 15.96S

KSW10 17.22 18.35 17.33 17.19 18.95S 15.94 13.84 14.77

LZ09-F1 12.36 13.81 11.80 14.03 13.25 13.02 12.63 11.93

LZ09-F3 20.45 21.67 20.35 20.82 17.42 17.11 17.54 14.19

LZ09-F4 21.54 20.24 20.24 19.84 13.59 14.42 14.47 14.38

LZ09-F5 21.73 20.62 22.20 22.37 16.92 15.54 16.51 16.44

WFG1 12.58 8.77 13.27 12.14 − − − −

ZDT3 19.92S 15.29 16.67 17.99 14.33S 14.07 13.11 9.90

ZDT6 20.53 19.98 20.25 19.96 20.11 19.78 21.19S 20.23

– in 13 out of 19 cases, the observed average changes induced on ∆req by having some level of variance

are not statistically significant. More precisely, we checked if the difference between the highest and

the lowest ∆req values for any MOOP-MOEA combination is statistically significant given a one-sided

Mann-Whitney-Wilcoxon test with a considered significance level of 0.05.

All these observations create a stark contrast when comparing with the powerful effect that variance

has on the quantitative performance (Section 3.2) and provide a solid indicator that SSA-MSPS should

be favored in the presence of significant variance in the time-wise distribution of the fitness

function.

Across all 15 test problems and regardless of the induced variance, our results indicate that SSA-MSPS

performs quite similar to (i.e., requires the same number of individuals to be computed as)

GEN-MSPS in order to reach (good) solutions towards the end of the runs. The average quali-

tative performance of SSA-MSPS is even marginally better (i.e., ∆qual < 0) for several problems (notably:

DTLZ7, LZ09-F4, LZ09-F2, LZ09-F9, and WFG7 ). In particular, for the 10 successfully solved MOOPs,

this means that it makes no difference (from the number of individuals that must be computed) which

parallelization methods is applied when the MOEA enters the late stage of convergence (i.e., p > 85).

This identical qualitative performance exhibited towards the end of the runs and the generally stable

behavior of the qualitative deficit exhibited by SSA-MSPS throughout the runs allows for the following

reasoning regarding the comparative performance of GEN-MSPS and SSA-MSPS: if, for a given optimization

scenario, the quantitative improvement of SSA-MSPS (∆struct) can overcompensate the qualitative deficit

of SSA-MSPS (∆req), we can say that, on average, SSA-MSPS is the better parallelization choice. This is

because when (∆struct > ∆req) we have good reasons to believe that, in any middle-stage (and implicitly late-

stage) convergence time interval, SSA-MSPS can produce Pareto fronts that are not worse than those that

might have been obtained by using GEN-MSPS for the same time interval. In other words, the percentage of

extra individuals that can be evaluated when using SSA-MSPS (i.e., ∆struct) is larger than the percentage of
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extra individuals that must be evaluated (i.e., ∆req) in order to reach Pareto non-dominated sets of similar

quality.

4.4. Analysis of Two Industrial Optimization Scenarios

We have applied the previously described qualitative and quantitative analyses on two real-life multi-

objective optimization scenario from the field of electrical drive design. In both cases, the motor topology

features an interior rotor with embedded magnets.

The first industrial optimization problem (IndMOOP1) contains six variables that denote various ge-

ometric dimensions relevant to the rather simple topology illustrated in Figure 7. The goal of IndMOOP1

is to simultaneously optimize four (conflicting) objectives and thus obtain motor designs that display: (a)

a high efficiency, (b) a low manufacturing price, low peak-to-peak motor torque values both at (c) load

operation as well as for (d) no current excitation.

Fig. 7. Cross-sections with the geometric dimensions (variables) that are considered in the case of IndMOOP1 - an optimization

problem based on an interior rotor topology with embedded magnets

The second industrial optimization problem (IndMOOP2) has 22 real-valued variables that must be

configured in order to optimize four unconstrained objectives that regard efficiency and production prices.

The performance of the entire assembly is always evaluated (i.e., simulated) at 3000 rotations per minute.

Because of the dimension of the search space and the complexity of the underlying topology, IndMOOP2 is

a very hard multi-objective optimization problem.

Estimating the quality (i.e., fitness) of a design actually means predicting the operational behavior of

the electrical drive under certain conditions and, because of the non-linear behavior of the materials in-

volved, such a prediction is usually based on performing (a series of) time intensive finite element simula-

tions. Because of this, the entire optimization process is distributed over a computer cluster managed using

HTCondorTM[27].

For example, in the case of IndMOOP1, based on 105 samples, the average duration of the fitness evalua-

tions tasks (i.e., tp) is 391.94 seconds and the average duration of the sequential computation tasks (i.e., ts)

is 21.48 seconds. This leads to a rather small parallelization ratio of only 18.25. The reason for the rather

high value and rather strange distribution (Figure 8 - left plot) of ts lays with software and licensing restric-

tions: the software program that transforms the design parameter vector into usable 2D meshes for the FE
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Fig. 8. Kernel density estimations of the time-wise distributions of the sequential (ts) and of the remote (tp) computation tasks

for the analyzed industrial optimization scenario.

simulations is not licensed to run on the slave nodes. Also, after generating 10 to 15 consecutive meshes, the

program needs to be restarted and this is a lengthy operation (≈ 30 or 60 seconds) that directly translates

into high ts values. The distribution of tp (Figure 8 - right plot) is also quite heterogeneous (cv = 0.23) as the

cluster computers used to perform the FE simulations have different (hardware) processing performances.

After integrating all this data into the simulation framework described in Section 3.2, the results indicate

that, on average, we should expect a ∆struct of 19.47%.

In the case of IndMOOP2, initial measurements also indicate that we should expect a ∆struct value of

≈ 20.00%. This should not come as a surprise, since we use the same parallelization environment in both

cases.

In order to evaluate the qualitative and confirm our previous predictions of the qualitative performance,

we performed:

– 15 SPEA2 optimization runs with each parallelization method in the case of IndMOOP1;

– 3 SPEA2 optimization runs with each parallelization method in the case of IndMOOP2.

Each time, the MOEA was parameterized using the same settings described in Section 4.1.2. As we do not

know the true Pareto front of our industrial MOOPs, we have estimated the best attainable solution sets

(i.e., Strue from (3)) for the problems using historic optimization results (from over 50 optimization runs for

IndMOOP1 and 13 runs for IndMOOP2) and expert knowledge.

For IndMOOP1, over the 30 real-life runs, we measured a ∆struct of 20.13% that is quite close to the

prediction (19.47%). The qualitative performance plots are presented in top plots from Figure 9. Surprisingly,

they show that after evaluating the same number of individuals, SSA-MSPS is able to produce better Pareto

fronts than GEN-MSPS. After performing the averaging operation, ∆req = −5.71%. The actual global run-

times of the 30 real-life optimization runs for IndMOOP1 confirm the computed ∆struct and ∆req values as

the SSA-MSPS runs are, on average, faster by ≈ 25%.

In the case of the IndMOOP2 runs, the obtained ∆qual values are not constant but they do exhibit a clear

downward trend as p increases. For example, the bottom right plot from Figure 9 shows that if one would

want to obtain a Pareto non-dominated front that covers roughly 20% of the objective space dominated by

the “true” solution of IndMOOP2 (i.e., p = 20), one would need to compute ≈ 50% more individuals when

using SSA-MSPS. For PNs that cover > 80% of the objective space dominated by the PS, one would only

need to compute ≈ 12% more individuals when using SSA-MSPS.

As we mentioned earlier that our parallelization framework enables SSA-MSPS to compute ≈ 20% more

individuals per time interval (i.e., ∆struct ≈ 20%), the reasoning is that, for this scenario:

– GEN-MSPS obtains better results for very time limited optimizations in which one can only compute

a limited number of individuals (generations);
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Fig. 9. SPEA2 qualitative performance plots for two electrical drive design MOOPs: (a) - generation-wise hypervolume perfor-

mance, (b) - ∆qual results.
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Fig. 10. Average wall-clock performance of SPEA2 with GEN-MSPS and SSA-MSPS on IndMOOP1.

– SSA-MSPS obtains better results when the optimizations are allowed to run for longer periods (and

implicitly for p > 50).

In order to better explain this, in Figure 10, we display the average performance obtained by the two

parallelization schemes when using the wall-clock time as reference. This plot uses exactly the same data

as the bottom left subplot from Figure 9, but here the optimization time is used as reference (instead of

the number of computed generations). Figure 10 indicates that for runs that take less than 140 hours GEN-

MSPS is the better option, while for runs that exceed this threshold, SSA-MSPS should be used. When

comparing with the generational runs, the SSA runs are able to reach high quality PNs (i.e., p > 90) 12%

faster.

It is obvious that the current optimization setup can be improved a lot by solving the issues related to

the mesh generation software. Performing this task on the slave nodes would eliminate the major bottleneck

of the current software architecture and would result in parallelization ratios of more than 150. Neverthe-

less, even (more) in this case, the observed high heterogeneity of the time-wise distribution of the fitness
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evaluation function and the comparative qualitative performance (i.e., negative ∆req for IndMOOP1 and a

decreasing ∆qual trend for IndMOOP2) are very strong indicators that SSA-MSPS should be preferred for

these optimization scenarios.

Applying the proposed quantitative and qualitative analysis of parallelization performance in real world

optimization scenarios is not a complicated process. Nevertheless, the posteriori character of both ∆struct

and ∆req means that a few initial, short, mock-up test runs are required in order to estimate the concrete

ts and tp distributions and get some insight on the problem specific qualitative behavior. The (empirically

observed) non-increasing rend of ∆req means that it can be estimated using short runs (25-35 generations).

This profiling phase is more than worthwhile when one has to solve multiple MOOPs that fall within the

same class (e.g., for the above cases, electrical drive optimization problems with the same topology and with

fairly similar design parameter vectors) or perform a lot of optimization runs for the same MOOP. Initial

tests show that for the same MOOP class, ∆req is expected to be quite robust while ∆struct can be generally

estimated quickly when knowing the ts and tp distributions.

5. Conclusions and Future Work

As the use of multi-objective evolutionary algorithms (MOEAs) in complicated industrial decision making

scenarios is ever more popular and their is a strong push to improve the speed of these heuristic optimization

methods, in the present study, we investigated two master-slave parallelization methods (generational and

steady state asynchronous) for MOEAs and tried to discover what are the decisive factors that can make

one method outperform the other. We directly applied our proposed performance analysis method in two

time-constrained optimization scenarios that also require very computationally-intensive fitness evaluation

functions.

In order to achieve our declared goal, we performed a comparative quantitative and qualitative analysis

of the behavior of the two parallelization methods when applying them to speed up NSGA-II and SPEA2

optimization runs. The results indicate that 1) the parallelization ratio and especially 2) the level of variance

in the time-wise distribution of the fitness evaluation function are the key factors that influence the relative

performance of the two methods. The presence of variance is a key indicator, as a rather heterogeneous

time-wise distribution of the fitness function can make the steady state asynchronous parallelization method

(SSA-MSPS) considerably outperform its generational counterpart (GEN-MSPS).

In the future, we plan to profile using ∆req more problems, explicitly MOOPs that concern different

motor topologies from the field of electrical drive engineering. We also plan to extend the present study by

also analyzing more modern MOEAs like the ones mentioned in Section 2.1. Last but not least, we want to

investigate if a strategy based on switching between the λ and 1+ synchronization steps during various stages

of the optimization run is generally more successful. This is because, our current results on artificial and

real-life test problems (e.g., see the ∆qual plots from Figure 4, Figure 5, and Figure 6) show that GEN-MSPS

is always much better than SSA-MSPS in the beginning of the optimization runs (e.g., for p < 10).
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