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Abstract—The task of designing electrical drives is a multi-
objective optimization problem (MOOP) that remains very slow
even when using state-of-the-art approaches like particle swarm
optimization and evolutionary algorithms because the fitness
function used to assess the quality of a proposed design is
based on time-intensive finite element (FE) simulations. One
straightforward solution is to replace the original FE-based
fitness function with a much faster-to-evaluate surrogate. In our
particular case each optimization scenario poses rather unique
challenges (i.e., goals and constraints) and the surrogate models
need to be constructed on-the-fly, automatically, during the run
of the evolutionary algorithm. In the present research, using
three industrial MOOPs, we investigated several approaches for
creating such surrogate models and discovered that a strategy
that uses ensembles of multi-layer perceptron neural networks
and Pareto-trimmed training sets is able to produce very high-
quality surrogate models in a relatively short time interval.

Keywords—multi-objective evolutionary algorithms, surrogate
fitness evaluation, artificial neural networks, ensemble regression
models

I. INTRODUCTION AND STATE OF THE ART

The task of designing electrical drives is a multi-objective
optimization problem / process (MOOP) that aims to find
machines that simultaneously have: a high efficiency, very
good fault tolerance, easy to control operating characteristics,
and, last but not least, a low manufacturing price. Like with
most MOOPs, such problems rarely have one single solution.
Solving them requires finding a set of non-dominated solutions
called the Pareto-optimal set. Each solution in this set is better
than any other solution in the set with regards to at least one
optimization objective (i.e., it is not fully dominated by another
solution).

In the past, the problem of optimizing the design of an
electrical drive was solved by performing a parameter sweep
(grid search) and calculating a maximum of several hundred
designs [1]. Calculating a design actually means predicting the
operational behavior of the machine under certain conditions
and, because of the non-linear behavior of the materials
involved, for each design, such a prediction is usually based
on the results obtained after performing several time intensive
(3 to 10 minutes) finite element (FE) simulations. In spite
of using modern (population-based) optimization approaches
like genetic algorithms [2] and particle swarm optimization

[3], the present day design process is still very slow (one
complete optimization run can take several days) even when
distributing the computations over a computer cluster. This is
because these optimization methods also use FE simulations
in order to evaluate the performance (fitness) of an individual
(design).

A straightforward solution aimed at reducing the run time
of an evolutionary algorithm that has a very time-intensive
fitness function is to approximate the original fitness function
with surrogate models [4]. In our case, this means substituting
the time-intensive fitness functions based on FE simulations
with very-fast-to-evaluate surrogates based on accurate regres-
sion models. The surrogate models will act as direct mappings
between the design parameters of the electrical drives (inputs)
and the objective and constraint values that are normally
estimated via FE (outputs). Throughout this paper we shall
refer to the objectives and constraints that we wish to model
using surrogates as targets. Four very well documented general
overviews on surrogate based analysis and optimization can be
found in [5], [6], [7] and [8]. In the field of electrical drive
design optimization, surrogate-based approaches are described
in [9] and [10].

As every electrical drive design MOOP we wish to solve
has quite specific characteristics (design parameters, objectives
and constraints), an important requirement is that the surrogate
modeling is performed on-the-fly (during the run of the opti-
mization). Moreover, the whole surrogate construction stage
should be fully automatic (not require any human interaction).
For performing the optimizations we are using multi-objective
evolutionary algorithms [11] and, therefore, the data sets used
for constructing the surrogates will contain (part of) the FE-
evaluated individuals computed in the first N “generations” of
the evolutionary process.

The goal of the present research is to describe an effec-
tive ensemble-based method for creating on-the-fly surrogate
fitness functions. The focus is on analyzing how different
strategies for constructing surrogates for non-linear targets
compare in terms of modeling accuracy, required training
time, and prediction stability when considering three industrial
optimization scenarios from the field of electrical drive design.



II. CONSTRUCTING ON-THE-FLY SURROGATE FITNESS
FUNCTIONS

A. General Considerations

There are at least three important general decisions that
need to be made when constructing on-the-fly surrogate fit-
ness functions. The first one is regarding the structure of
the surrogate fitness function. What is to be preferred: a
surrogate fitness function that is using one single model to
predict all the elicited targets (e.g., a neural network with
multiple output nodes), or a surrogate fitness function that
relies on several surrogate models as each target is modeled
independently? In our optimization scenarios, as the targets
are usually highly conflicting (i.e., price vs. performance vs.
reliability) and exhibiting different degrees of non-linearity, we
have chosen to create a separate surrogate model for each
target and we propose a two tier modeling process. In the
first stage we attempt to construct a linear model for all the
considered targets. If an obtained linear model does not display
a good prediction performance (the value of the coefficient of
determination - R2 when applying the model on the training
set is smaller than 0.925), in a second stage, we attempt to
create a non-linear model for the associated target.

The next important general decision concerns the structure
of the data set that will be used in order to train the surrogate
models. On the one hand, a training set that is too small or
not well distributed over the search space is likely to produce
surrogate models that do not generalize well. On the other
hand, a training set that is too large is likely to incur longer
surrogate model training times.

In [12], the surrogate model construction stage was started
after the completion of N = 25 generations as, for the con-
sidered MOOPs and the considered model training and model
selection methods, the data sets produced until this stage of the
optimization process were sufficient for training high-quality
surrogate models that maintained their very good prediction
accuracy for the next 75 generations. After experimenting with
several other electrical drive optimization scenarios, we have
reached the conclusion that, without extensive apriori knowl-
edge about the particularities of the targets to be modeled,
N = 25 is a generally good threshold for starting the surrogate
model construction stage for non-linear targets. In light of these
observations, all the comparative results presented in Section
IV are based on training sets constructed with the N = 25
setting. Choosing this particular setting for our experiments
also serves to create a comparison basis, as the present work
essentially describes our efforts to improve (especially in terms
of required training time) the surrogate model construction
mechanism presented in [12].

The third important decision is related to the method
used to create surrogate models for the non-linear targets.
The methods that we considered are artificial neural networks
(more precisely multi-layered perceptrons - MLPs with one
hidden layer), support vector regression (SVR), and radial
basis function (RBF) networks. Our choice for these methods
is generally motivated by the fact that they are regarded
as powerful modeling tools (i.e., they possess the universal
approximation capability). Particularly, these methods have
been successfully used on several occasions for surrogate
modeling purposes [13] [14]. Modeling the non-linear targets is

Fig. 1. Diagram of the ENSthr(P)(S),S > 3 model selection scheme. The
numbers indicate the order in which the base models are added into the
ensemble predictor.

by far the most challenging part (both accuracy and time-wise)
of the surrogate fitness function construction process and in the
next sections we shall describe and analyze several attempts
of tackling this task.

B. Strategies for Constructing Surrogate Models for Non-
Linear Targets

We start the surrogate model construction stage after com-
puting N initial generations of FE-evaluated individuals and
we consider three types of training sets:

1) f ull(N) - a training set that contains all the error-
free individuals found during the first N generations
of the optimization process.

2) rand(C,N) - a training set that contains at most C
samples randomly extracted from f ull(N)

3) trim(C,N) - a training set that contains at most C
samples extracted from f ull(N) using the following
strategy: At first, given an optimization scenario with
c1 targets to model, we extract a maximum of c1
samples that are associated with the worst results
of the elicited targets of this scenario. Secondly,
we compute the Pareto non-dominated solution set
from f ull(N) and, if the size of this front is smaller
than c2 = C− c1, we extract all the samples that
correspond to the non-dominated solutions and add
them to trim(C,N). Finally, we randomly extract at
most c3 = C− c1− c2 solutions from the remaining
samples in f ull(N) and also add them to the trimmed
training set. If the size of the Pareto non-dominated
solution set extracted from f ull(N) is larger than c2,
we apply a Pareto/crowding-based selection method
(i.e., non-dominated sorting [15] or environmental
selection [16]) to select exactly c2 individuals and
add the associated samples to trim(C,N).

As we are using parametric non-linear modeling methods,
in order to select the best parameter configuration that will
be used for training the surrogate model/models, we perform
a grid search and select the best candidate based on 10-fold
cross-validation performance. The final surrogate model is
trained using the entire training set and the parameterization of



the previously computed best performing candidate. The main
performance indicator is (constructed around) the coefficient of
determination but sometimes we also use information related
to the (structural) complexity of the resulting models. Given
the results of a best parameter grid search, we are considering
the following automatic model selection schemes:

1) SINbest - selects the single best performing surrogate
model when considering the averaged R2 value over
the cross-validation folds.

2) SINthr(P) - selects a single surrogate model according
to the selection method described in [12]: the best
performing model is chosen by first computing a
high accuracy threshold using the most accurate P%
models and then selecting the least complex model
(e.g., lowest number of hidden units in the case
of MLPs) that has a prediction accuracy that is
higher than this threshold. The accuracy assigned to
a surrogate model is the mean value of R2 minus
the standard deviation of R2 over the cross-validation
folds.

3) ENSbest(S) - selects S base models that will form
an ensemble surrogate predictor. The individual mod-
els are chosen in decreasing order of the averaged
R2 value over the cross-validation folds. The final
prediction of the ensemble is a simple average over
the predictions of the individual models. Trying to
see if such a basic averaging ensemble is able to
achieve a higher prediction accuracy than the single
surrogate models would make sense because there is
virtually no extra computational cost associated with
the method as all the individual base models are being
created during the best parameter grid search.

4) ENSthr(P)(S) - also selects S base models that will
form a simple averaging ensemble predictor. The
individual models are chosen by extending the pre-
viously mentioned high accuracy threshold method.
As such, after computing the threshold, models that
exhibit a good accuracy vs. complexity trade-off are
selected iteratively until the model count limit (i.e.,
S) is reached or until the model with the highest
prediction accuracy is selected. In case of the latter,
the ensemble structure is filled by applying a circular
(round-robin) copy strategy on the individual models
selected so far. When considering the scenario from
Figure 1, where the base model labeled “4” has
the highest prediction accuracy, if our goal would
be to create an ensemble of 10 base models (i.e.,
S = 10), in the final surrogate predictor, the models
labeled “1” and “2” would appear three times each
and the models labeled “3” and “4” would appear
twice. In the extreme case where only one model
has a prediction accuracy higher than the threshold,
the ensemble surrogate will consist of ten copies
of this base model and will perform identical to
the single-model surrogate that would be created by
applying the SINthr(P) selection scheme on the same
best parameter grid search results.

It should be noted that all four model selection schemes
are suitable for the three considered non-linear modeling
methods. These modeling methods in turn, can be combined

with any of the three types of training sets. Throughout the
remainder of this paper we shall refer to the combination
of modeling method + model selection scheme + training
set as a surrogate model construction strategy. For example,
MLP−ENSthr(5)

trim(250,25)(10) denotes a surrogate model construc-
tion strategy that aims to create an ensemble predictor that
contains 10 base MLP models selected according to the high
accuracy threshold method (threshold is computed using the
most accurate 5% models) and trained using a Pareto-trimmed
data set of no more than 250 samples that are selected from
all the valid designs evaluated in the first 25 generations of
the optimization process.

III. EXPERIMENTAL SETUP

A. The Data Sets and the Elicited Targets

The data sets we are using in order to compare the
different surrogate model creation strategies were obtained
by performing optimization runs of 100 generations on three
electrical drive design problems and by storing every generated
(evolved) valid individual (design parameter vector) and its
FE-computed associated target values.

All three optimizations were performed using the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [16] with standard
genetic operators (SBX crossover [17] and polynomial mu-
tation [18]) and a population size of 50. We also used a
standard parameterization with a crossover probability of 0.9,
a crossover distribution index of 20, a mutation probability of
1/|D| (where D is the design parameter vector) and a mutation
distribution index of 20.

TABLE I. INFORMATION REGARDING THE TOTAL NUMBER OF VALID
DESIGNS GENERATED DURING THE OPTIMIZATION RUNS

Scenario N = 25 N = 50 N = 75 N = 100

1 1206 2430 3605 4732

2 897 1855 2743 3622

3 799 1745 2685 3582

As we used a population size of 50, during each optimiza-
tion run we evaluated 5000 electrical drive designs. Because
some of the evolved design configurations were geometrically
unfeasible or invalid with regards to given optimization con-
straints, the actual size of the data sets obtained after the
completion of generation N is smaller than N ∗50. The number
of valid individuals generated during the optimization runs for
each optimization scenario after 25, 50, 75 and 100 generations
is presented in Table I.

For all experiments, when constructing the Pareto-trimmed
surrogate model training sets (i.e., trim(C,N)), if required, we
applied the environmental selection strategy [16].

The first optimization scenario deals with an electrical
motor with embedded magnets and has a design parameter
vector of size six. There are five targets (three objectives and
two constraints) that need to be estimated using the surrogate
fitness function. Three of these targets, the negated efficiency
(T1), the peak-to-peak-value of the motor torque for no current
excitation (T2), and the peak-to-peak-value of the motor torque
at load operation (T3) have been labeled as non-linear because



linear regression only achieved training R2 values of 0.895,
0.7622, and 0.7799.

The second MOOP concerns an electrical machine featur-
ing an exterior rotor. The design parameter vector contains
seven geometric dimensions. Among the three targets (two
objectives and one constraint) for which a surrogate model
must be constructed, one (the losses of the system at load
operation -T4) has been labeled as non-linear (linear regression
training R2 value of 0.9104).

The third optimization scenario also deals with a motor
with an exterior rotor. The design parameter vector has a size
of ten and two of the four targets (objectives) to be modeled
are non-linear. These targets are the ohmic losses in the stator
coils (T5) and the total losses due to material hysteresis and
eddy currents in the ferromagnetic parts of the motor (T6).
Linear regression achieved training R2 values of 0.9156 and
0.7230.

B. The Best Parameter Grid Searches

The MLP, SVR and RBF networks implementations we
used for our tests are largely based on the ones provided by
the WEKA open source machine learning platform [19].

In the case of the MLP surrogates, training is done via
standard backpropagation [20]. In the grid searches that we
performed in order to find the best parameter configurations:

• the number of hidden units was varied between 2 and
double the number of design variables;

• the learning rate (η) was varied between 0.05 and 0.40
with a step size of 0.05;

• the momentum parameter (α) was varied between 0.0
and 0.7 with a step size of 0.1;

This means that during the MLP grid search we constructed:
704 surrogate models for the targets T1, T2, and T3; 832
surrogate models for the target T4; 1216 surrogate models for
the targets T5 and T6.

When training the MLP surrogate models we used an early
stopping mechanism that terminated the training whenever the
prediction error computed over a validation subset did not
improve over 200 consecutive iterations. For every surrogate
training task, this validation subset was constructed at the
beginning of the actual training process by randomly sampling
20% of the instances from the initial training set (i.e., the
one obtained after merging 9 out of 10 cross-validation folds).
Whenever the early stopping criterion was not reached, the
training process stopped after 10000 iterations.

In the case of SVR, we trained 630 surrogate models for
each target as we varied: the general complexity parameter C
between [2−4,2−3, ...,29], the RBF kernel parameter γ between
[2−3,2−2, ...,25] and the ε parameter of the ε-intensive loss
function between [0.005,0.01,0.025,0.05,0.1].

For RBF networks, we trained 513 surrogate models
for each target by varying the number of clusters between
[1, ...,5,10,15, ...,50,60, ...,100,125, ...,200,250,300,400,500]
and the allowed minimum standard deviation for the clusters
between [0.05,0.1,0.50,1.00, ...,5,6, ...,10,15,20].

C. Surrogate Accuracy Evaluation

In order to estimate the quality of a given surrogate model
created using the FE-evaluated individuals from the first N =
25 generations, we compute the overall and the generational R2

values obtained when trying to predict the target values of the
FE-evaluated individuals from the remaining 75 generations
(i.e., unseen test data).

Computing the generational R2 values helps us to estimate
if the obtained surrogate model is able to maintain its initial
accuracy level over the entire run of the optimization process.
Stability is a highly desirable characteristic for the surrogate
models as it ensures that no / very few surrogate re-training
phases will be required during the optimization run.

IV. RESULTS

All the tests that we report on have been executed on the
same machine (8-core CPU, 4GB of RAM) in a multi-threaded
environment that used a maximum of 6 threads. Surrogate
model training times have been measured independently.

A. Single-Model Surrogates

In the first series of tests we wanted to check which of the
three non-linear modeling methods produces the best single-
model surrogates when training using all the valid samples
from the first 25 generations (i.e., the f ull(25) training set).
The results are presented in Table II and indicate that MLPs
perform better than SVR and RBF networks (linear regression
results are also provided in order to offer more insight into
the characteristics of the modeled targets). Furthermore, when
considering the average performance over all elicited targets,
the model selection method based on thresholding (MLP−
SINthr(5)) displays a small accuracy improvement over simply
selecting the best cross-validation model (MLP−SINbest ).

When also taking into account the average training time of
a surrogate model and the total duration of the associated grid
searches (Table IV - the first six columns), MLPs seem to be
the best modeling method for our considered problems.

B. Ensemble-based Surrogates

In the second series of tests we checked whether using an
ensemble strategy would improve the quality of the constructed
surrogates. These ensemble modeling results are presented
in the first two columns of Table III and they indicate that
surrogates based on simple averaging ensembles of 10 base
models are able to outperform single-model surrogates. In the
case of ensembles as well, the model selection method based
on thresholding (MLP− ENSthr(5)(10)) seems to provide a
very slight edge over simply selecting the 10 best performing
cross-validation models.

For all the non-linear modeling methods considered in this
study, model training time is positively correlated with the size
of the training set. As such, the last tests that we performed
were aimed at finding out if ensemble-based surrogate models
trained on reduced training sets would also display a good and
stable prediction accuracy.

Using the methods described in Section II-B we con-
structed training sets of 250 samples (rand(250,25) - with



TABLE II. INFORMATION REGARDING THE PREDICTION ACCURACY OF SINGLE-MODEL SURROGATES

Target
R2 on test data

Linear MLP−SINbest
f ull(25) MLP−SINthr(5)

f ull(25) SV R−SINbest
f ull(25) RBF−SINbest

f ull(25)

T1 0.8594 0.9636 0.9619 0.8917 0.8842

T2 0.7712 0.9390 0.9531 0.8886 0.7687

T3 0.7909 0.9434 0.9577 0.9584 0.8117

T4 0.9201 0.9943 0.9957 0.9964 0.9874

T5 0.9245 0.9894 0.9816 0.9831 0.9784

T6 0.8934 0.9616 0.9644 0.9637 0.9500

Average 0.8599 0.9652 0.9690 0.9469 0.8967

Rank 5 2 1 3 4

TABLE III. INFORMATION REGARDING THE PREDICTION ACCURACY OF ENSEMBLE-BASED SURROGATES

Target
R2 on test data

MLP−ENSbest
f ull(25)(10) MLP−ENSthr(5)

f ull(25)(10) MLP−ENSthr(5)
rand(250,25)(10) MLP−ENSthr(5)

trim(250,25)(10)

T1 0.9586 0.9637 0.9525±0.0054 0.9460±0.0028

T2 0.9556 0.9549 0.9510±0.0015 0.9517±0.0050

T3 0.9573 0.9596 0.9502±0.0108 0.9562±0.0032

T4 0.9961 0.9960 0.9936±0.0034 0.9920±0.0035

T5 0.9889 0.9887 0.9865±0.0020 0.9856±0

T6 0.9763 0.9752 0.9739±0.0010 0.9772±0

Average 0.9721 0.9730 0.9676 0.9681

Rank 2 1 4 3

TABLE IV. INFORMATION REGARDING THE AVERAGE TRAINING TIMES OF THE SURROGATE MODELS AND THE TOTAL TIME REQUIRED BY THE BEST
PARAMETER GRID SEARCHES

Target

Surrogate model training time [s]

MLP− f ull(25) SV R− f ull(25) RBF− f ull(25) MLP− trim(250,25)

avg. total avg. total avg. total avg. total

T1 88.22 70627 307.96 195248 112.59 62603 12.35 10662

T2 85.84 74081 291.99 185125 113.66 63539 15.51 13447

T3 73.93 63661 330.39 209140 114.46 63640 12.81 11064

T4 32.25 28313 120.82 77930 302.05 170960 12.34 10875

T5 45.96 55883 106.68 68810 212.85 120478 12.46 15152

T6 34.28 43298 114.70 74100 217.32 123007 11.02 13399

Average 60.08 55977.2 212.09 135058.8 178.82 100704.5 12.74 12433.17

Rank 2 2 4 4 3 3 1 1

a non-dominated sorting Pareto selection and rand(25)) and
then we applied the MLP− ENSthr(5)(10) surrogate model
construction strategy. Because both methods of constructing
reduced training sets have (by design) a stochastic component,
we repeated each modeling experiment five times and, in
the last two columns of Table III, we present the obtained
average and standard deviation values. The results indicate
that, for the chosen parameters, there is no difference between
applying a random and a Pareto-based trimming of the original
training sets. However, the generational R2 plots from Figure
2 show that the overall quality of the obtained surrogates is
quite high (almost as good as MLP− SINthr(5)

f ull(25) - the best
performing single-model surrogate construction strategy) and
that the predictions are also very stable (even when comparing
with MLP− ENSthr(5)

f ull(25)(10) - the overall best performing

surrogate model construction strategy).

The average training time of the base surrogate models and
the total duration of the associated grid searches (Table IV -
the last two columns) is more than four times smaller when
using the random or Pareto-trimmed training sets than when
training the MLPs on the full training sets. As Figure 3 shows,
the distributions of MLP model training times when applying
the grid searches on the trimmed training sets are much more
compact as only a handful of the constructed models require
a training time larger than 75 seconds. This aspect is very
important when wanting to distribute the best parameter grid
searches over a cluster or grid computing environment as it
makes load balancing much easier.
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Fig. 2. Evolution of the generational coefficient of determination for MLP−
ENSthr(5)

f ull(25)(10) and MLP−ENSthr(5)
trim(250,25)(10) (median accuracy model) for

the six considered targets

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a fairly simple, but efficient, two
stage approach for constructing on-the-fly surrogate models for
multi-objective evolutionary algorithms used to optimize the
design of electrical drives. In our case, surrogate modeling is
needed because the original fitness function used by the evolu-
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Fig. 3. Comparative kernel density estimations of the individual model
training times observed when applying the MLP best parameter grid searches
on the f ull(25) and on the trim(250,25) training sets for the six considered
targets

tionary algorithms requires very time-intensive FE simulations.

As we propose to model each target (optimization objective
or constraint) independently, the most important part of our
surrogate training process lies in the construction of surrogates
for the targets that display a non-linear dependency to the input



parameters. The results we obtained when trying to solve this
task for three industrial data sets indicate that a strategy that
uses ensembles of MLPs and Pareto-trimmed training sets (see
MLP−ENSthr(5)

trim(250,25)(10)) is able to deliver surrogate models
that display the best accuracy vs. training time trade-off. When
considering only the accuracy and stability over time of the
surrogate predictions, a surrogate model construction strategy
that uses MLPs trained using all the available samples (see
MLP−ENSthr(5)

f ull(25)(10)) is the overall best performer.

In the future we shall analyze how the two previously
mentioned ensemble strategies work on other optimization
scenarios, especially during on-line tests. The ability to create
high-quality surrogates much faster (particularly when using
a cluster computing environment) has the lateral effect of
enabling us to execute the surrogate model construction stage
several times during the optimization run. We plan to test if
such an approach can deliver better and/or faster optimization
results than the method described in [12] that performs only
one surrogate construction stage.

Finally, we also plan to perform more tests in order to deter-
mine the qualitative difference of the resulting surrogate mod-
els obtained when using Pareto-trimmed (i.e., problem specific)
and randomly-trimmed training sets constructed with other
parameterizations (e.g., rand(400,50) and trim(400,50)).
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