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Abstract

The term ”visual discomfort” refers to a subjective sensation of discomfort that accompanies
watching stereoscopic image- or video contents. Eye strain, headache and nausea are only
some symptoms covered by this definition. It is generally agreed that visual discomfort is a
key aspect of the quality of experience when watching 3D content and therefore an important
part influencing the overall acceptance of 3D technology. Re-rendering of 3D contents can
prevent visual discomfort and is based on an accurate prediction of that phenomenon.
Consequently designing visual comfort measures, which predict visual discomfort, is a major
research-activity of 3D technology production and 3D display systems.

In literature, various approaches modelling the extent of visual discomfort based on image
data analysis, can be found. All these approaches are based on the extraction of image fea-
tures as input for machine learning models. Therefore, the correct selection of these image
features influences the accuracy of visual comfort measures. Although lots of research has
been done in this direction, state-of-the-art measures can still be improved.

This work addresses the quality of state-of-the-art visual discomfort prediction measures and
the right choice of the used image features. Particularly, the computational efficiency of such
models is investigated. It turns out, that a novel approach based on a texture image feature
improves state-of-the-art computational models for measuring visual comfort in terms of accu-
racy and, above all, time complexity. This result is underpinned by statistical tests on public
available databases.

iii



Contents

1. Introduction 1

2. Problem Description and Structure of This Work 3
2.1. Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Structure of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Visual Discomfort 5
3.1. Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Consequences of Visual Discomfort . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3. Factors Influencing Visual Discomfort . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1. Accommodation-Vergence Conflict . . . . . . . . . . . . . . . . . . . . 6
3.3.2. Parallax Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.3. Binocular Mismatch and Depth Inconsistencies . . . . . . . . . . . . . 6
3.3.4. Perceptual and Cognitive Inconsistencies . . . . . . . . . . . . . . . . . 7

4. State-of-the-Art for Visual Discomfort Prediction 8
4.1. Visual Discomfort Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.1. Components of Visual Discomfort Measures . . . . . . . . . . . . . . . 8
4.1.2. Properties of Visual Discomfort Measures . . . . . . . . . . . . . . . . . 10

4.2. Categorization of Image Features Used for Visual Discomfort Prediction . . . . 12
4.3. State-of-the-Art Image Features Used for Visual Discomfort Prediction . . . . 14

4.3.1. Choi et al. (2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2. Lambooij et al. (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3. Kim et al. (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.4. Sohn et al. (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4. Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.1. Problems of State-of-the-Art Visual Discomfort Measures . . . . . . . . 19
4.4.2. Possible Improvements of State-of-the-Art Visual Discomfort Measures 20

5. Improving Visual Discomfort Prediction by Disparity-Based Contrast 21
5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2. Disparity-Based Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1. Modelling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2. Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6. Experiments 29
6.1. Goal of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



Contents

6.3. Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4. Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5. Pareto-Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7. Conclusion and Outlook 40

A. Computer Vision Preliminaries 41
A.1. Sobel Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2. Pearson Product-Moment Correlation Coefficient . . . . . . . . . . . . . . . . 42
A.3. M5P Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.4. Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.5. Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.5.1. Non Parametric Mann-Whitney U Test . . . . . . . . . . . . . . . . . . 48
A.5.2. One Tailed F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

Statutory Declaration 54

v



List of Figures

4.1. Example of a Disparity Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2. Example of Segmented Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Hierarchical Feature Extraction Pyramid . . . . . . . . . . . . . . . . . . . . . 13

5.1. Variable Notations According to Haralick Contrast Feature . . . . . . . . . . . 23
5.2. Example of Disparity Maps and the Value of the Haralick Feature . . . . . . . 24
5.3. Example of Gray-Level Co-Occurrence Matrix . . . . . . . . . . . . . . . . . . 25
5.4. More Disparity Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5. Sensitivity Analysis of Haralick Features Parameter . . . . . . . . . . . . . . . 28

6.1. Experimental approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2. Analysis of Prediction Accuracy of Best Feature Combinations . . . . . . . . . 34
6.3. Pareto Front for KaistDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4. Pareto Front for LausanneDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1. Example Application of Sobel Operator . . . . . . . . . . . . . . . . . . . . . . 42
A.2. Example of M5P Regression Tree Output . . . . . . . . . . . . . . . . . . . . . 44
A.3. Leave-One-Out Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



1. Introduction

In literature the term visual discomfort refers to a subjective sensation of discomfort that ac-
companies watching stereoscopic image- or video streams [25] (more precise definition later).
Eye strain, headache and nausea are only some symptoms covered by the definition of visual
discomfort [40]. Results of clinical and subjective assessments show that bad quality 3D con-
tent can cause permanent damage to the visual system of children [11] and, visual discomfort
turns out to be a key aspect of the overall quality of experience when watching 3D content [23,
28]. As a consequence, visual discomfort has direct impact on the overall acceptance of 3D
technology [32], particularly in the context of 3D film production and 3D display systems [47,
48, 16, 20].

To minimize visual discomfort, significant work is required during post-production of the 3D
production workflow. This post-production step is called depth grading and is the step where
a stereographer tries to adjust 3D content to ensure immersive, yet comfortable experience.
In order to adapt the 3D content to the viewing system or even automate the depth grading
process, visual discomfort measures are required.

These measures try to predict the level of visual discomfort which accompanies 3D content.
In literature, various approaches modelling the extent of visual discomfort based on image data
analysis, can be found. All these approaches are based on the extraction of image features
from a depth map storing the depth information of the stereoscopic images. Based on the
extracted features, machine learning functions are used as a mapping from the feature space
onto a range of visual discomfort scales.

Although, powerful machine learning functions exist, the quality of visual discomfort mea-
sures is primarily based on an accurate choice of the used features. Thus, most researchers
try to model new and powerful image features, as they use only linear or piecewise-linear
regression functions. This is also because, interpretability is an important property of visual
discomfort measures, which is only given by comprehensible feature aggregation.

There are authors who prefer low-level features like depth range or mean depth of pixels,
mainly based on first order statistics [24, 30, 3] that are derived from a depth map called
disparity map. Recently, Sohn et al. [38] proposed the application of higher level image analysis
techniques like segmentation to describe objects in an stereoscopic image. They use features
like object thickness and relative difference of mean disparity of objects. The latter approach
allows a substantial improvement of the prediction accuracy of visual discomfort measures
compared to measures based on first order statistics only.

Unfortunately these higher level features need substantially more computation time to eval-
uate than approaches based on low level features. This fact can be problematic since visual
discomfort measures often are part of computational models in the 3D post-production [29,
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1. Introduction

39, 41].
The central questions of this work are about the optimal combination of image features in

terms of balancing both, prediction accuracy and time complexity.
This is done by analysing image features of some representative state-of-the-art models and

the used features. The analysis shows, that using second order statistics is a new approach
in the context of visual discomfort measures. Furthermore, a second order statistical feature
from the field of texture analysis is proposed. It is called Haralick Contrast (HC) and it is
used to model the contrast of a disparity map. It turns out that this feature allows substantial
improvements in terms of prediction accuracy and runtime of state-of-the-art visual discomfort
measures.

In more detail, the experimental evaluations of this work address the validation of the
following four claims with respect to the approaches of [24, 30, 3, 21, 38]:

Claim 1 (Prediction Accuracy)
The expected prediction accuracy, which can be achieved by combinations including HC, is
significantly higher than for combinations without HC.

Claim 2 (Feature Selection)
Taking the eight features under consideration, inclusive HC, into account, a total number of
four features is appropriate to predict visual discomfort.

Claim 3 (Time Complexity)
HC allows substantial time complexity improvement without significant loss of prediction
accuracy, compared to the state-of-the-art approaches under consideration.

Claim 4 (Further Improvement)
The prediction accuracy which can be achieved by the best combination without HC can be
improved by HC.

These claims are underpinned by statistically tests on two publicly available databases [19,
10].
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2. Problem Description and Structure of
This Work

This work is partially supported by the Software Competence Center Hagenberg c© (SCCH),
which tries to optimize a special step in the 3D content production workflow. This post-
production step is called depth grading and is the step where a stereographer tries to adjust
the 3D content to ensure immersive, yet comfortable, experience. In order to optimize this
step, a new and automated 3D re-rendering software is under development.

The central problem of this software is about an accurate re-rendering of stereoscopic images
in order to minimize the effects of visual discomfort. Visual discomfort refers to a subjective
sensation of discomfort that often accompanies watching stereoscopic image- or video contents,
which will be defined in more detail later (section 3.1)

Minimization of visual discomfort requires an accurate prediction of this phenomenon. Thus,
the development of visual discomfort measures has become a major research-activity of 3D
technology production and 3D display systems.

2.1. Problem Description

Unfortunately, state-of-the-art prediction models often show high evaluation time, which can
cause problems if they are used in optimization processes. This work should deal with this
problems. More precisely formulated:

Goal
This work should answer the question, if a visual discomfort measure can be designed, that
achieves the same prediction accuracy as state-of-the-art models, while it needs comparably
lower runtime.

The answer to this question is Yes, which is verified in this work by the development of a
visual discomfort measure which has the required properties. The approach is based on an
accurate analysis and characterization of some representative state-of-the-art measures. The
analysis of some shortcomings of these measures leads to the proposition of a new feature
in that field. The relation between this feature, called Haralick Contrast (HC), and visual
discomfort is discussed. Afterwords, the advantages of the HC feature compared to other
state-of-the-art image features, used for visual discomfort prediction, are outlined. This work
concludes with experiments on two publicly available databases, which underpin arising claims
of this work.

The work is structured as follows:

3



2. Problem Description and Structure of This Work

2.2. Structure of this Work

Chapter 3 provides a comprehensive introduction to the concept of visual discomfort, its
influencing factors and possible consequences of that phenomenon.

The basic structure of visual discomfort measures is analysed in chapter 4, which consists
of four main parts: an outline of the basic structure of state-of-the-art visual discomfort
measures (section 4.1, a characterization of state-of-the-art image features (section 4.2), a
detailed discussion of some state-of-the-art approaches (section 4.3) and, a problem analysis
of this approaches (section 4.4).

Chapter 5 is intended to give a detailed discussion of the new approach of this work, mainly
based on the introduction of a feature from texture analysis. Section 5.1 gives a motivation
for the approach from three research fields. Section 5.2 describes the new approach in detail.
The chapter concludes with a summary of the proposed approach.

Chapter 6, after a small review on experimental design, based on the goal of this work,
provides experiments, discusses several properties of state-of-the-art models and compares the
results with the approach of this work. The experimental analysis should provide evidence
regarding the following aspects: prediction accuracy (section 6.3), feature selection ( 6.4), and,
time complexity versus prediction accuracy (section 6.5).

Appendix A is intended to give the basics for all algorithms, which are addressed.

4



3. Visual Discomfort

This chapter provides a comprehensive introduction to the concept of visual discomfort. After
a short definition of this term, some consequences of that phenomenon are outlined. The main
part of this chapter consists of the outline of influencing factors of visual discomfort.

3.1. Basic Definition

In the literature, the terms visual fatigue and visual comfort have been used interchangeably
to describe the discomfort that might accompany the use of 3D imaging technologies [40].
However, Lambooij et al. [25] suggested a distinction between these two terms giving the only
existing formal definition of them.

Definition 1 (Visual Discomfort and Visual Fatigue)
The term visual fatigue refers to a decrease in performance of the visual system produced by
a physiological change. Visual discomfort refers to the subjective sensation of discomfort that
accompanies the physiological change.

Therefore, visual discomfort can be measured by asking viewers of stereoscopic contents to
report he level of perceived discomfort that occurs while watching. This leads to the fact that
models, which predict visual discomfort, are based on research coming from the analysis of
subjective assessment data.

People participating in these subjective assessments reported symptoms like eye strain,
headache and nausea when asked about visual discomfort [40].

3.2. Consequences of Visual Discomfort

Research shows, that visual discomfort is a key aspect of the overall quality of experience
that someone has when watching stereoscopic 3D content [23, 28]. Consequently it has direct
impact on the acceptance of 3D technology including 3D movies and 3D display systems and
has become a major research activity in that field [47, 48, 16, 20].

But more, intensive watching of 3D content accompanied by a high level of visual discomfort
can seriously harm the visual system of people. Especially, the visual system of children, which
is still growing, can be damaged [11].

Consequently, minimizing the viewers discomfort is a major research activity in the field
of 3D technology, which has to take the full extent of the viewers watching experience into
account.

5

https://www.researchgate.net/publication/269847928_Stereoscopic_HDTV_Experimental_System_and_Psychological_Effects?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/257229017_How_Visual_Fatigue_and_Discomfort_Impact_3D-TV_Quality_of_Experience_a_Comprehensive_Review_of_Technological_Psychophysical_and_Psychological_Factors?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/250717181_Experimental_stereoscopic_high-definition_television?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/239009280_Visual_Discomfort_and_Visual_Fatigue_of_Stereoscopic_Displays_A_Review?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/227240335_Clinical_and_laboratory_investigations_of_the_relationship_of_accommodation_and_convergence_function_with_refractive_error?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/2565955_Perceived_depth_and_the_feeling_of_presence_in_3DTV?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==


3. Visual Discomfort

3.3. Factors Influencing Visual Discomfort

To model the experience of visual discomfort it is important to identify the main factors neg-
atively influencing visual discomfort. As outlined in chapter 1, this information is used to
develop image features, which form the basis of visual discomfort measures.

Due to Tam et al. [40] the most relevant factors influencing visual discomfort can be grouped
into five categories: accommodation-vergence conflict, parallax distribution, binocular mis-
match, depth inconsistencies and cognitive inconsistencies.

3.3.1. Accommodation-Vergence Conflict

When watching a 3D object our visual system uses two different physiological processes to focus
the object. The first process is called accommodation process and refers to the adaptation of
the eyes lenses in order to sharp the object on the retina. The second process is called vergence
process and it refers to the adaptation of the relative angular constellation of the eyes in order
to direct the eyes at the same object.

Accommodation and vergence are normally yoked when viewing objects in a natural scene.
However, the normal interaction between these two processes can be disrupted when viewing
stereoscopic images as described in [40]. When looking at stereoscopic displays the responses
created from these processes can cause conflicts in the visual perception. One reason for this
accommodation-vergence conflict can be excessive parallax [30, 46] and it is generally assumed
that, to minimize this conflict, the disparities of a stereoscopic image should be limited by
so-called comfort limits.

The parallax of an object is the difference in the apparent position of an object viewed along
two different lines of sight, i.e. position difference in the right and left eyes view. Accordingly,
the word disparity is defined as the absolute pixel difference of two corresponding pixels in a
left and right view of a stereoscopic image.

Thus, the influence of the accommodation-vergence conflict can be modelled by image fea-
tures like range and maximum, extracted from the disparity map, which stores the disparities
of all pixels.

3.3.2. Parallax Distribution

The distribution of the parallax of an object is given by the spatial arrangement of the pixels
disparities. Intuitively spoken, the more image details in different depth levels, the more
exists competition for visual attention at various potential objects of interest. Such ambiguity,
concerning visual attention, can lead to discomfort in the visual perception.

Parallax distribution can be modelled by image features describing characteristics like spatial
frequency or disparity gradient. It has been shown that, when modelled accurately, such
features can have a high correlation to visual discomfort [38].

3.3.3. Binocular Mismatch and Depth Inconsistencies

The term binocular mismatch refers to pixel mismatches between the left and right view of
stereoscopic images caused by distortions of the images. In [22], Kooi and Toet study the
effects of distorting transformations on stereoscopic images. The results show little impact of
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3.3. Factors Influencing Visual Discomfort

transformations like rotation, magnification and key stone distortions, in contrast to blur and
vertical offset transformations. This transformations can be caused e.g. by lossy compression
or transition of stereoscopic content and they are a possible source of visual discomfort [40].

3.3.4. Perceptual and Cognitive Inconsistencies

Perceptual and cognitive inconsistencies are caused by a mismatch between our cognition of
the real world and insufficient appearance induced by a 3D display system. For example,
cognitive confusion might occur when objects are only partially visible at the boarder of a
display system. This effect is called edge violation [34]. For example, an object (e.g. hand
with five fingers) which is supposed to be in front of the screen, is only partially visible (e.g.
hand with four fingers) which confuses our cognition of the object (e.g. hand). A possible
solution of the problem of edge violation is the use of a floating window, which consists of a
virtual border perceptually located closer to the viewer than the object [40].
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4. State-of-the-Art for Visual Discomfort
Prediction

As outlined in section 3.1 visual discomfort can be measured using subjective assessments
as [19] and [10]. Surprisingly, there are no standard methods for the measurement of visual
comfort for stereoscopic images [40]. The International Telecommunications Union (ITU) gives
recommendations on subjective methods for stereoscopic imaging [17], but these recommen-
dations only consider picture and depth quality.

In light of this deficiency, most researchers analysing visual discomfort use modified versions
of these recommendations. This results in different scales and questionnaires which makes
it hard to compare state-of-the art visual discomfort measures. Due to this fact, in our
experiments, we use two different publicly available databases storing stereoscopic images and
subjective assessment data (see chapter 6).

Apart from that, this subjective assessment data is used to train visual discomfort measures
which predict the level of discomfort that people will suffer.

4.1. Visual Discomfort Measures

In general, visual discomfort measures are computational models for predicting visual discom-
fort. The input of a visual discomfort measure is a stereoscopic image normally consisting
of two separate views of the same scene. The measures consist of three main components: a
disparity map generation component, a feature extraction component and a machine learning
function.

4.1.1. Components of Visual Discomfort Measures

The disparity map generation component extracts the depth information which is stored in
the left and right view of the stereoscopic image. This component is followed by a feature
extraction part and a machine learning function which maps the image features onto a range
of visual discomfort scales.

Disparity Map Generation

A stereoscopic image consists of a right and a left view (fig. 4.1a and fig. 4.1b)) which are often
stored as two separate files. To extract the depth information of the two streams, disparity
generation algorithms are used (for instance see [14]).
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4.1. Visual Discomfort Measures

(a) (b)

(c) (d)

Figure 4.1. (a) Part of a right and (b) left view of a stereoscopic image. The disparity map
of the whole image displayed as (c) grey image and (d) 3D projection.

As defined in section 3.3.1, the disparity of a pixel in the left respectively right view is defined
as the distance (measured in pixels) to the corresponding pixel in the right respectively left
view. Therefore a disparity map is always related to one of this views. As an example of a
possible output of the component see figures 4.1c and 4.1d.

Disparity generation algorithms normally have many parameters which can be tuned and
they should work with various input images which differ in many properties like colour, lumi-
nance and resolution.

Another important fact is that some regions visible in one view can be occluded in the
other view. Thus, some pixels in the disparity map are not defined. These pixels are then
interpolated using so-called hole filling algorithms.

Due to the various input images and the occluded regions, the resulting disparity maps often
include artefacts and noise. Therefore, the connected feature extraction component should be

9



4. State-of-the-Art for Visual Discomfort Prediction

able to deal with such erroneous disparity maps.

Feature Extraction Component

The feature extraction component is maybe the most important part of a visual discomfort
measure. This component extracts image features like mean, maximum or object size from
the disparity map. Figure 4.2a shows a segmented disparity map, from which object specific
features can be extracted and figure 4.2b shows a histogram of a disparity map, from which
features like mean or variance can be extracted.

(a) (b)

Figure 4.2. (a) Segmented disparity map, where equal coloured pixels belong to the same
object, (b) Grey level histogram of normalized disparity values.

The used image features should have different properties like, high correlation to the per-
ceived visual discomfort which accompanies the stereoscopic image, they should be stable
against noise and artefacts and they should be fast to evaluate. Section 4.1.2 addresses these
requirements in detail.

The output of the component is a vector of image features, where each represent a certain
property of the image.

Machine learning Function

The extracted image features are used as input for a machine learning function. This function
maps the features onto a range of scales.

Most researcher use linear [24] or piecewise linear [38] functions, which are trained using
subjective assessment data.

4.1.2. Properties of Visual Discomfort Measures

In the previous sections it was argued that the superior of the visual discomfort measures
lie on the prediction accuracy. But also other properties are important like time complexity,
interpretability, robustness and the possibility to easily adapt the model parameters to various
input.
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4.1. Visual Discomfort Measures

Most state-of-the-art visual discomfort measures are based on the extraction of image fea-
tures as input for linear [24] or piecewise linear [38] machine learning functions, who show the
expected properties. In the following these properties are discussed in detail.

Interpretability

Visual discomfort measures are used to objectively assess image data. The results of the
prediction process is often used to identify image properties or image regions which affect visual
discomfort, see e.g. [39]. Therefore, the output of the measure should be directly related to
some image properties. This will be especially the case, if the used machine learning function
aggregates the image features in a comprehensible way and if the used features have a clear
interpretation.

Thus, most researchers prefer simple mathematical models as machine learning functions
and use features which are directly related to the perceived visual discomfort.

Simplicity of Parameter Adaptation

Stereoscopic images can differ in various properties like colour, luminance, resolution and blur.
Thus, the scope of the applicability of visual discomfort measures is also important. This
includes also the simplicity of adapting its model parameters to images of various different
properties.

Most researchers use simple and parameter free machine learning functions [24, 30, 3, 21,
38]. Thus, the parameters of the measures are the one of the disparity generation component
and the feature extraction component.

Since this work is not intended to analyse disparity generation algorithms, there will not be
a focus on these parameters. Once the parameters of the disparity generation module are set,
the major emphasises of the parameter adaptation lie on the feature extraction parameters,
which will be discussed in detail.

Prediction Accuracy

As noted above, prediction accuracy is the most important property of visual discomfort
measures. This property depends on the correlation of the used image features and the way
how they are aggregated.

Thus, the prediction accuracy can be measured by the correlation between the combination
of the used features and subjective assessed visual discomfort scores. This fact will be used
later in the experimental part, to rate the quality of visual discomfort measures.

Robustness

As noted above, images can differ in various properties. This phenomenon often causes er-
roneous disparity (see section 4.1.1 disparity generation). In that case, machine learning
functions only produce accurate results, if the feature extraction process is robust against
noise. Therefore, the robustness of the visual discomfort measure is directly related to the
way how features are designed.
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4. State-of-the-Art for Visual Discomfort Prediction

Computational Efficiency

Visual discomfort measures are used for computational optimization in the rendering process
of 3D contents [29, 39, 41]. This makes computational efficiency (i.e. runtime) a critical issue.

Some optimization procedures, including the one of the SCCH make it possible to work
without the disparity generation module, because of existing disparity maps from pre-process
steps. Therefore, the major runtime is required for the feature extraction process. Conse-
quently, minimizing the runtime of the feature extraction component is an important goal of
this work.

Summary

In this section some important properties of visual discomfort measures are briefly discussed.
This shows that an accurate model of visual discomfort needs well designed image features
with certain properties and a fast and relatively comprehensible aggregation of them. Table 4.1
summarizes the most important properties of visual discomfort measures.

Property Description

Interpretability Comprehensiveness of results

Simplicity of Parameter Adaptation
Simplicity of model parameter adaptation to
images with different properties

Prediction Accuracy Accuracy of visual discomfort scores

Robustness
Similar prediction results for images with dif-
ferent properties

Computational Efficiency Low time complexity of evaluation process

Table 4.1. Important properties of visual discomfort measures

4.2. Categorization of Image Features Used for Visual
Discomfort Prediction

To identify the differences of state-of-the-art image features used for visual discomfort predic-
tion, we need a representative categorization of the features. This section is intended to give
such a characterization. Note that the categorization of state-of-the-art image features used
for visual discomfort prediction is a basic result of this work.

Different feature categories are shown in figure 4.3. The pyramid shows different levels of
image features used for visual discomfort assessment. As we traverse the pyramid from the
bottom up, we get increasingly higher information representation by different categories of
image features.

At the very lowest level one deals with a large number of individual pixels. With this raw
data, one may perform some one-dimensional sorting process of the individual pixel intensities.
Using this low-level process one gets a first-order statistic of pixel values, i.e. distribution of
a pixel value (e.g. intensity).

The colour histogram of an image (figure 4.2b) is an example of a first-order statistic, as it
shows the distribution of the pixels colour (0-100 in the figure). First order statistics like the
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Figure 4.3. Hierarchical feature extraction pyramid.

colour histogram can be used for fast extraction of first-order statistical features like mean,
variance or mean of the 10% greatest pixel values. Many visual discomfort measures [24, 30,
3] make use of such features derived from the disparity map.

By using higher dimensional arrangement or counting processes, one gets higher order statis-
tics. Let us define a k-order statistic of an image as the joint probability distribution of pixels
w.r.t. k values. For example, one can define a second-order statistic of a colour image as the
joint probability distribution of the red value and the green value of pixels. This second-order
statistic can be defined as matrix {aij}i,j=0,...,255, where the red and green colour is coded by
the values 0, . . . , 255. Thus, the value aij is the number of pixels which have the red colour
i and the green colour j, divided by the total number of pixels. As an other example of a
second-order statistic the grey level co-occurrence matrix of a grey image will be defined in
section 5.2. This matrix represents the joint probability distribution of the pixel intensities of
two neighbouring pixels w.r.t. a special neighbourhood structure.

Processes like segmentation or clustering are higher level image processing steps which result
in clusters of pixels often called segments.

By aggregation and meaningful interpretation someone can represent the scene, shown by
image, as constellation of objects. This objects can be identified by real world objects who
interact with each other.

The top of the pyramid is the objective assessment, in our case an objective assessment
score of visual discomfort. This assessment is done by a machine learning function, which
maps the image features onto a range of scales.

With this categorization in mind, state-of-the-art visual discomfort measures can be clas-
sified. The categories of the used image features help in the next steps to analyse properties
and arising problems of the proposed features.
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4.3. State-of-the-Art Image Features Used for Visual
Discomfort Prediction

State-of-the-art visual discomfort measures can be categorized based on the used image fea-
tures. In the last five years many researchers created computational models of visual discomfort
by using image features representing special image properties. Most of them used first-order
statistical features as defined in section 4.2. Apart from that, in 2013, at the beginning of
this work, some researchers used higher level image analysis techniques [38, 19]. The latter
approaches allow substantial improvement of the prediction accuracy compared to other ap-
proaches. However, these approaches have some shortcomings like high runtime, resulting in
problems (see section 2), which will be discussed and solved later.

In the following we will compare some representative visual discomfort measures based
on the used image features. We use the categories of section 4.2 and compare them with
respect to the feature properties of section 4.1.2. This is done by short arguments concerning
these properties, especially interpretability and simplicity of parameter adaptation. More
sophisticated tests on the quality of the other desirable properties are done in chapter 6.

4.3.1. Choi et al. (2010)

in [3] rely on first-order statistical features to
predict the visual discomfort associated with
stereoscopic movies. As machine learning com-
ponent, they use linear regression between their
features and visual discomfort scores. They
suggest to use mean and variance of the dis-
parity map to model the mean deviation from
the comfort zone and the parallax distribution
(see section 3.3) respectively. The mean dis-
parity Mean is calculated as the mean of all
pixels in the disparity map D. The disparity
variance Var is calculated as the standard variance of all disparities.

Mean(D) =
1

#D
∑
x,y

D(x, y)

V ar(D) =
1

#D
∑
x,y

(D(x, y)−Mean(D))2

Where #D represents the cardinality of D, i.e. the total number of pixels.

In combination with motion features their prediction results for stereoscopic movies show
the statistical significance (see appendix A.5.2 F-test) of effects of the modelled characteris-
tics. However, the correlation for the combination of the two features with visual discomfort
for stereoscopic movies, was rather low (Pearson Correlation Coefficient CC of 0.708, CC is
defined in appendix A.2). Experiments in chapter 6 also show rather low correlation of the
single features with visual discomfort. Apart from that, Mean and Var are parameter free
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features which are fast to compute. In addition to that, these features are known to be very
robust against artefacts and noise. Table 4.3 summarizes these arguments.

4.3.2. Lambooij et al. (2011)

in [24] suggest to use mean and range of dis-
parities, which are both first-order statistical
features. Their Mean feature is chosen simi-
larly to Choi et al. [3]. The Rangeδ of a dispar-
ity map is calculated by the difference between
the sum of the δ% greatest disparities and the
sum of the δ% smallest disparities. Thus,

Rangeδ(D) =
1

#Uδ(D)

⎛
⎝ ∑

(x,y)∈Uδ(D)

D(x, y)−
∑

(x,y)∈Lδ(D)

D(x, y)

⎞
⎠

where Uδ(D) is the set of indices of the δ% greatest disparities and Lδ(D) is the set of indices
of the δ% smallest disparities. #S is again the cardinality of S (i.e. the number of elements
in S), therefore #Uδ(D) is the number of indices (x, y) in Uδ(D) (i.e. δ% of the total number
of disparities in D).

Lambooij et al. suggest to use delta as 10, but note that this is a heuristic value which is
not underpinned by statistical evaluations.

In image processing it is a common way to calculate a maximum (minimum) feature as mean
of some greatest (smallest) values. This is due to the fact, that images, especially disparity
maps, are often noisy. By calculating an image feature in that way, one can overcome this
drawback.

The experiments in chapter 6 show a high correlation of the Range10 feature with visual
discomfort. Since one can always take δ as 10 as suggested, there is a parameter free way to
extract the feature. Using the described approach to overcome the problem of noise yields a
feature which is robust against noise. Since, the range feature is used to model the range of
the disparities, it is directly related to properties causing the accommodation-vergence conflict
as described in section 3.3. Unfortunately the calculation of the 10% greatest and smallest
values requires a sorting process which makes it slightly slower to evaluate than Mean and
Var. This argumentative analysis of properties of Lambooij et al.s work [24] is summarized in
table 4.3.

4.3.3. Kim et al. (2011)

in [21], aim at modelling parallax distribution and the influence of the accommodation -
vergence conflict (see section 3.3). They aim at extracting range and maximum from the
distribution of disparities similarly to Lambooij et al.. In addition, they model the influence
of spatial frequency on visual discomfort. Spatial frequency is a characteristic of the parallax
distribution and is measured in cycles per degree (cpd), i.e. the number of repetitions of a
periodic pattern within a width of one degree. Because measuring the cpd is not possible in
natural images they obtain a spatial frequency component by applying the Sobel-Operator to

15

https://www.researchgate.net/publication/229351956_Visual_discomfort_of_3D_TV_Assessment_methods_and_modeling?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/229351956_Visual_discomfort_of_3D_TV_Assessment_methods_and_modeling?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/224212023_Visual_Fatigue_Prediction_for_Stereoscopic_Image?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==
https://www.researchgate.net/publication/224201226_Visual_fatigue_evaluation_and_enhancement_for_2D-plus-depth_video?el=1_x_8&enrichId=rgreq-263f748841f5fe3618ce260a1f032ee8-XXX&enrichSource=Y292ZXJQYWdlOzI4MTIzOTU0NjtBUzoyNjYzMjYyNDE0NDM4NDBAMTQ0MDUwODUzMjQ1NA==


4. State-of-the-Art for Visual Discomfort Prediction

the disparity map.

Spacial frequency is modelled by adding new multiplicative factors to the maximum and
range feature of Lambooij et al.. This factors are similar to maximum and range itself, but
the summed disparities are weighted by gradient information induced by the application of
the Sobel-Operator (appendix A.1) on the disparity map.

The maximum feature is defined by

Maxδ(D) =
1

#Uδ(D)

∑
(x,y)∈Uδ(D)

D(x, y)

Where Uδ(D) is again the set of indices of
the δ% greatest disparities. The featuresMaxδSobel
and RangeδSobel are defined by

MaxδSobel(D) = Maxδ(D) + λ ·MaxGradientδ(D)

RangeδSobel(D) = Rangeδ(D) + λ ·RangeGradientδ(D)

WhereRangeGradientδ(D) andMaxGradientδ(D) are similar toRangeδ(D) andMaxδ(D),
but the disparities are weighted by a gradient information between the disparities and their
neighbours as noted above. The gradient information is induced by the application of the
Sobel-Operator on the disparity map.

MaxGradientδ(D) =
1

#Uδ(D)

∑
(x,y)∈Uδ(D)

D(x, y) · SD(x, y)

GradientRangeδ(D) =
1

#Uδ(D)

∑
(x,y)∈Uδ(D)

D(x, y) · SD(x, y)

− 1

#Lδ(D)

∑
(x,y)∈Lδ(D)

D(x, y) · SD(x, y)

with the image S(D), which is the result of the application of he Sobel-Operator on the dis-
parity map. Note that δ and λ are heuristic values for MaxδSobel and RangeδSobel and Kim
et al. do not give any suggestions in [21] about its values. Because of heuristic observations
and comparability, I chose this values as δ = 5 for MaxδSobel and δ = 10 for RangeδSobel
and λ always as 1.

The maximum feature Max5 has similar properties as Range10, including the interpretation
as model for the influence of the disparity range on the accommodation-vergence conflict. The
computational complexity is nearly the same and the feature is parameter free. The only
difference is that my experiments (chapter 6) show slightly worse prediction results for Max5

when extracted from noisy images. This is probably because the set U5(D) is too small to
overcome the problem of very much noise. Of course someone could set this value greater than
five, but in that case the correlation of the feature with visual discomfort is very low on the
database of [19].
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4.3. State-of-the-Art Image Features Used for Visual Discomfort Prediction

Kim et al. use MaxδSobel and RangeδSobel to model the spatial frequency of a stereo-
scopic image. They argue that a gradient image represent a spatial frequency component of a
stereoscopic image. Note that spatial frequency is a characteristic of the parallax distribution
of an image, which gives a clear interpretation for these features. Experiments (chapter 6)
show that the correlation of the two features with visual discomfort is higher than the one of
Max5 and Range10 respectively. This indicates, that MaxδSobel and RangeδSobel model the
phenomenon of visual discomfort slightly better with respect to the correlation to that. In ad-
dition the features MaxδSobel and RangeδSobel give no evidence to assume sensitivity against
noise in my experiments. Unfortunately the required application of the Sobel-Operator takes
some time. It is important to note that the application of the Sobel-Operator induces pixel
neighbour information. This approach goes towards second-order statistical features, which
will be discussed in section 4.4. The arguments are summarized in table 4.3 again.

4.3.4. Sohn et al. (2013)

in [38], aim at modelling object specific prop-
erties of a scene. Their concept is based on the
consideration of a scene, shown by an image, as
constellation of different objects. As they refer
to spatial properties of objects, the modelled
image properties fall into the category of par-
allax distribution as factor influencing visual
discomfort (section 3.3).

They introduce a concept of disparity gradi-
ent as relative disparity difference between the
location of objects. In addition they aim at
modelling the stimulus width of an object by
proposing a disparity based feature, which takes the width of nearby objects into account.

As noted in the introduction, they use higher level feature extraction methods. By seg-
mentation and grouping steps an image is splitted into parts, which are called objects. After
that they extract the mean width of all objects, i.e. the mean length of rows included in the
object (image segment). Then, for every object in the image, this value is divided by the mean
disparity of the object, i.e. the mean of all disparities included in the object. They also use a
logarithmic function because of empirical observation. This observations show, that approach
with a logarithmic function linearizes (i.e. causes linear correlation) the relation between the
factor and visual discomfort scores from subjective assessments.

More formally defined: Let o be an object (segment), i.e. a set of image pixels, and let O
be the set of all objects in the disparity map. Let R(o) be the set of all horizontal lines (i.e.
pixel rows) in the object o ∈ O. Then the object thickness feature OT (D) is defined by

OT (D) = min
o∈O

ln

(
α +

ω(o)

γ(o)

)
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with the mean object width ω(o) and the mean object disparity γ(o) defined by

ω(o) =
1

#R(o)

∑
r∈R(o)

#r

γ(o) =
1

#o

∑
(x,y)∈o

D(x, y)

where |.| is the absolute value and alpha is chosen such that ω(o)
γ(o)

is always positive. Note that

in [38] the fraction ω
γ

was multiplied by a factor α, to ensure that this feature is always positive
in their experiments. Instead of that, I decided to rather add α to the fraction because of
computational reasons. But note that this change only causes a slightly different scaling of
the feature. Also note that in the original definition of the OT feature, the mean disparity
γ(o) is the mean of the absolute values of the disparities. Due to that, an object has the
same object thickness feature if it is flipped on the screen, i.e. it has the same mean disparity
γ(o). This is no problem at all, if all disparities of a stereoscopic image are positive like in
Sohn et al.s experiments, but there is a problem for images with negative disparities like in
the experiments in chapter 6.

Of course these modifications do not change any results of the experiments of Sohn et al.,
which I review in chapter 6.

Now let us define the mean relative disparity feature RD(D). Let N (o) be the set of
neighbour objects of o, i.e. all objects which have neighbour pixels in the object o, except
o itself, where neighbour pixels of (x, y) are are all pixels which have maximum euclidean
distance

√
2 from (x, y). Then,

N (o) = {õ | ∃(x̃, ỹ) ∈ õ, ∃(x, y) ∈ o : ‖(x̃− x, ỹ − y)‖2 ≤
√

2}

Then

RD(D) = max
o∈O

1

#N (o)

∑
õ∈N (o)

|γ(õ)− γ(o)|

with the mean object disparity γ(o) as defined above.
As noted in the introduction, this approach allows a substantial improvement of the predic-

tion accuracy when using the proposed higher level features in combination with other features
described in this chapter. Unfortunately, OT and RD show low correlation with visual dis-
comfort in the experiments in chapter 6 and [38]. The extraction of the features is based on
a segmentation of the disparity map. Sohn et al. recommend the mean-shift-segmentation
algorithm [4]. Since this algorithm has many parameters it is not easy to adapt the parame-
ters to new input images with different properties. This makes the features sensitive to noisy
disparity maps when the parameters are not tuned properly. There is a good interpretation of
the features, but the evaluation time is very high compared to first and higher order statistical
features.

4.3.5. Summary

The work of four research groups is outlined and categorized above and the presented features
are summarized in table 4.2. The question arises why some of the features should be used
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4.4. Problem Analysis

when focusing on their shortcoming. Although some of the features have their shortcomings,
the real quality of state-of-the-art measures is based on combinations of features. Therefore
we want to analyse some shortcomings, which still arise even if combinations of features are
used, in the next section.

Feature Notation Description Literature

Mean, Var
standard mean and variance

of disparity map
Choi et al. [3]

Range10
difference of 10% greatest and

smallest disparities
Lambooij et al. [24]

Max5
sum of 5% maximal disparity

values
Kim et al. [21]

Max5Sobel, Range10Sobel

similar to Range10 and Max5

except additional factors,
which are based on gradient

information

Kim et al. [21]

RD, OT
mean relative disparity and

width of nearby objects
Sohn et al. [38]

Table 4.2. Survey of disparity-based features

Properties Mean Var Range10 Max5
Max5-
Sobel

Range10-
Sobel

RD OT

Interpretability 2 2 3 3 3 3 3 3
Simplicity of Parameter Adap-
tation

3 3 3 3 3 3 1 1

Correlation with
Visual Discomfort

1 2 3 3 3 3 1 1

Robustness w.r.t. Noise and
Artefacts

3 3 3 2 3 3 2 2

Computational Efficiency 3 3 2 2 2 2 1 1

Table 4.3. Desirable properties of image features used for visual discomfort measurement.
Rating: 1 - neutral, 2 - good, 3 - very good.

4.4. Problem Analysis

4.4.1. Problems of State-of-the-Art Visual Discomfort Measures

In the last section 4.3, some shortcomings of state-of-the-art image features used for visual
discomfort prediction, are observed. Before I suggest some possible improvements based on
this analysis, let us discuss the discovered shortcomings, which can not be eliminated by using
combinations of features.

Prediction Accuracy

Sohn et al. [38] analysed the prediction accuracy of some image features included in our
consideration. Their results show that the prediction accuracy of measures, using combinations
of first order statistics only, is limited. Particularly they show that the prediction accuracy of
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such measures can be improved using the object dependent features OT and RD. Beneath the
evidence of this shortcoming of first order stat. features, these experiments give hints about
possible improvements which will be discussed in section 4.4.2.

Time Complexity

Although the combination of first order statistical features with object dependent features
can improve prediction accuracy, the runtime complexity is substantially higher (see chap-
ter 6). This is a big shortcoming since visual discomfort measures are often used to analyse
stereoscopic contents in real time as argued in section 4.1.2. Note that the application of the
Sobel-Operator used to compute Range10Sobel and Max5Sobel induces also time intensive
computations.

4.4.2. Possible Improvements of State-of-the-Art Visual Discomfort
Measures

The analysis of the four visual discomfort measures presented in section 4.3 and their catego-
rization presented in section 4.2 can be summarized by the following four facts.

Properties modelled by object dependent features can not be modelled using first order
statistics since pixel neighbourhood is considered, which can be modelled using second order
statistics.

The fact that object dependent features have high runtime complexity, points out that fea-
tures should be based on a lower information representation. Higher order statistical features
have a lower information representation as outlined.

The weighting of first order statistics by disparity differences shows an improvement of the
correlation of first order features with visual discomfort [21]. This also hints towards the
design of second order statistical features.

Kim et al. noted in the conclusion of [21] that the extension of their work by a disparity
contrast model could lead to better prediction accuracy.

Based on this four facts I decided to try to improve state-of-the-art visual discomfort measures
by the modelling of a disparity-based contrast feature, based on a second order statistic, which
will be outlined in the next section.
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5. Improving Visual Discomfort
Prediction by Disparity-Based Contrast

In the following sections, a new model of disparity-contrast will be proposed. The approach,
which is new in the field of visual discomfort prediction, is based on the introduction of the
Haralick Contrast Feature HC.

The motivation of this approach consists of three parts: a motivation from the state-of-the-
art analysis in section 4, a motivation from the field of texture analysis and a motivation from
psychophysics.

After the motivation, the feature will be proposed and mathematical simplifications are
performed, which give the possibility of a fast computation of the feature. The proposition of
the feature is closed by experiments on the optimal parameter settings.

5.1. Motivation

The approach of this work is motivated by three research fields: psychophysics, visual discom-
fort prediction and texture analysis.

Motivation from Psychophysics

Features, modelling object dependent properties, are known to have a high correlation with
visual discomfort when combined with lower level information as for example first order sta-
tistical features extracted from the disparity map. My approach relies on the hypothesis that
bottom-up features in the human visual sensorial system are relevant for visual discomfort. A
bottom-up process in psychophysics is characterized by an absence of higher level information
in sensory processing such as the contextual knowledge [43]. A crucial bottom-up aspect turns
out to refer to the so-called conspicuity area, which, with single eye fixation, captures the spa-
tial region around a center of gaze, where the target can be resolved from its background [42].
The human visual target conspicuity is measured by a psychophysical procedure and has been
analysed for a range of static targets in static scenes [7, 9]. The investigations show that the
conspicuity area is small if the target (object of interest) is surrounded by high spatial vari-
ability. Therefore distinctness of image details is not only influenced by natural characteristics
like the parallax distribution (see section 3.3) but also by artefacts in the disparity maps. I
propose to model the distinctness of image details by a disparity-contrast model.

Motivation from the State-Of-The-Art Analysis

The state-of-the-art analysis of section 4.3, especially the summary in section 4.4.2 hints to-
wards the model of disparity-contrast as a higher order statistical feature. From the character-
ization in section 4.2 we know that higher order statistical features can be seen as intermediate
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5. Improving Visual Discomfort Prediction by Disparity-Based Contrast

state between first order statistical features and object dependent features concerning the level
of information representation. Thus, higher order statistical features can be used to balance
both, prediction accuracy and evaluation time.

For computational efficiency reasons, we ask for the group of the most simple higher order
statistical features. These features are the second order statistical features which are features
extracted from a joint probability distribution of pixels with respect to the values. I use the
joint probability distribution of disparity-pairs with respect to the two disparities values. This
probability distribution is known as grey level co-occurrence matrix, and it comes from the
field of texture analysis.

Motivation from Texture Analysis

In literature one can find various concepts for characterizing contrast, see, e.g. [35, 15, 42,
33, 2]. Motivated by observations in 4.3, I ask for a contrast model which makes use of pixel
neighbourhood. Because pixel neighbourhood can not be modelled using first order statistics
of pixels intensities, this leads to the motivation of a second order statistical features. Par-
ticularly, the motivation comes from experiments on texture characterization. For example,
Julesz [18] claimed in his famous experiments on human visual perception of textures that for
a large class of textures “no texture pair can be discriminated if they agree in their second-
order statistics”. Even if counterexamples have been found to this conjecture, the importance
of second order statistics is generally agreed to be certain. Thus, the major statistical method
used in texture characterization is the one based on the joint probability distribution of pixel-
pairs [27]. From this probability distribution second order statistical features can be extracted,
known as Haralick Features. One of this features, Haralick Contrast (HC), models the contrast
of a texture and it is widely used in in the field of texture characterization. From this research
field it is known, that the HC feature has computational interesting properties including high
robustness, good interpretability and fast computation time [27].

In the following section 5.2 the extraction of the HC feature from the disparity map of an
stereoscopic image is proposed. Furthermore, experiments on an accurate parameter setting
of the feature are performed as part 5.2.2 of the section.

5.2. Disparity-Based Contrast

In the last section the introduction of the Haralick Contrast feature HC was motivated. In
this section the extraction of this feature from the disparity map is proposed. After some
mathematical simplifications, the optimal parameter setting for the HC feature, when used
for visual discomfort prediction, is discussed in section 5.2.2.

5.2.1. Modelling Approach

The joint probability distribution of pixel-pairs of an image is given by the second order
histogram known as grey level co-occurrence matrix. It is defined as a function

hδ,Θ : {1, . . . , n} × {1, . . . , n} → [0, 1]
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5.2. Disparity-Based Contrast

Figure 5.1. Left and right view of a stereoscopic image, (x1, y) and (x2, y) are two pixels
horizontally shifted by δ, (x̃1, y) and (x̃2, y) are the corresponding pixels in the right view,
∆1 = D(x1, y) and ∆2 = D(x2, y) encode the pixels disparities shown as horizontally shift
between the left and right view of the image.

where n denotes the number of grey-values. An entry, hδ,Θ(i, j) in the co-occurrence matrix
represents the joint probability that a pair of pixels with in-between distance δ and direction
Θ has the grey values i and j respectively. This yields a square matrix of dimension equal to
the number of pixels grey values n in the image. Figure 5.3 gives an illustrating example of
a stereoscopic image, the corresponding left disparity map, and the grey level co-occurrence
matrix h2,0◦ of the disparity map.

Now let us apply the co-occurrence matrix on a disparity map D. Let us assume that the
stereoscopic image was created under perfect conditions, i.e. all corresponding pixels appear
horizontally in the two views of the image. Thus, the disparity value D(x, y) at the pixel
position (x, y) encodes the distance ∆ by which the pixel (x, y) in the left image has to be
shifted horizontally in order to match the corresponding pixel in the right image. Figure 5.1
gives an illustrating example of these notations.

As a result, the grey level co-occurrence matrix hδ,0 with Θ := 0 yields a special case of the
Haralick Contrast Feature HC, [12], given by

HCD(δ) =
∑

∆1,∆2

(∆1 −∆2)2hδ,0(∆1,∆2) (5.1)

where ∆1 and ∆2 are the disparity values of the pixels (x1, y) and (x2, y) with distance
‖x1 − x2‖2 = δ. The entry hδ,0(∆1,∆2) of the co-occurrence matrix can be estimated by

hδ,0(∆1,∆2) =
#δ{∆1,∆2}∑

∆x,∆y∈#δ{∆x,∆y}
(5.2)

where #δ{∆1,∆2} is the number of pixel pairs with values ∆1 and ∆2 and in-between distance
δ. That is

#δ{∆1,∆2} =

= #{((x1, y), (x2, y)) ∈ ({1, . . . , N} × {1, . . . ,M})2|
∆1 = D(x1, y) ∧∆2 = (x2, y) ∧ ‖x1 − x2‖2 = δ} (5.3)

where N and M denote the number of the disparity rows and columns respectively and #S
the cardinality of the set S. Note that using equations 5.2 and 5.3, the HC feature can be
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(a) (b)

Figure 5.2. Examples of disparity maps of stereoscopic images from [19] created by an algo-
rithm of [1]. Figure (a), a detail of a railing, shows low HC and a low level of visual discomfort,
while Figure (b), a crown of a tree, shows high HC and a high level of visual discomfort.

simplified to

HCD(δ) =
∑

∆1,∆2

(∆1 −∆2)2hδ,0(∆1,∆2) =

=
1

NM

∑
x,y

(D(x, y)−D(x+ δ, y))2 (5.4)

Note that the HC feature is high, if the stereoscopic image has high spatial complexity, see e.g.
figure 5.2. In the next section we will discuss the optimal parameter setting of the parameter
δ.

5.2.2. Parameter Setting

Although the HC feature could be simplified in the last section, the optimal choice of the
parameter δ is still missing. In this section we will perform some experiments for an ac-
curate setting of that parameter. The experiments are performed on two publicly available
databases [19, 10]. The databases store subjective assessment data about visual discomfort
and subjective image quality of stereoscopic images. As noted in chapter 4, this data is used
for supervised learning to train and test visual discomfort measures. Apart from that, we will
use this data to analyse the correlation of the HC feature with visual discomfort scores for
different settings of the parameter δ.

First of all let us point out that the quality of the correlation between an image feature and
visual discomfort can be measured using the Person Product-Moment Correlation Coefficient
CC (see appendix A.2). The CC, for a set of images, can be calculated between the extracted
feature values and the level of visual discomfort associated with the images. The level of visual
discomfort is mostly experimentally determined using subjective assessment data, where the
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5.2. Disparity-Based Contrast

(a) (b) (c) (d)

Figure 5.3. Stereoscopic image of a simplified flower: (a) left view (b) right view (c) left
disparity map, where −1 identifies occluded pixels, (d) grey level co-occurrence matrix h2,0◦ of
the disparity map.

mean score of the ratings of enough, i.e. more than 15, [17], subjects is stored. Such a mean
score is also called mean opinion score (MOS).

In the two databases [19, 10] (referred to as LausanneDB and KaistDB respectively), the
MOS of 54 respectively 120 stereoscopic images are stored. To extract the HC feature, I first
computed disparity maps for all images. This was done by means of the OpenCV implemen-
tation, [1], of the semi-global block matching algorithm [14] (see e.g. figure 5.4).

To determine a reasonable choice for the parameter δ, I performed sensitivity analysis based
on linear regression analysis between the MOS and HC extracted from the disparity maps of
the images. Then, the CC between the images and the MOS were computed. The result of
both databases is shown in figure 5.5.

The figure shows the correlation between the extracted HCs and the mean opinion scores
of the images of the databases KaistDB (solid) and LausanneDB (dashed). The horizontal
axis shows the value of the distance parameter δ in percent of image width. The vertical axis
shows the CC between the extracted HC values and the MOS of the stereoscopic images.

The result shows a high correlation between the HC feature and visual discomfort after
an accurate setting of the parameter δ. One can see that the correlation is lower on the
LausanneDB. This could be due to the fact that the computed disparity maps, of the images
of the database, are more noisy than the ones of KaistDB. Another reason could be that the
questionnaire which yields the MOS of the LausanneDB are slightly different than for the
KaistDB. Apart from that, the correlation on both databases is high, if the parameter δ is set
in the interval [5; 20]. This shows that the feature is not very sensitive to parameter changes
for different input data in that interval.

Thus, in all my experimental evaluations, I chose the parameter δ as 10 percent of image
width.

The question arises, why the CC in this interval is higher than for other values, when
analysed for both databases. This could be because of the smoothness of the disparity maps
(smoothing operations are performed within the disparity algorithm, see [14]). Another reason
could be that the human visual perception is more sensitive in discriminating stereoscopic
image details in a certain range [31, 36]. Although it is very interesting to find possible
answers to this question, this work is not intended to find new results in psychophysics, but
the goal of this section is an accurate tuning of the δ parameter for predicting visual discomfort.
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5.3. Summary

In this chapter I proposed the Haralick Contrast Feature as a model of disparity-based contrast.
This was motivated from three fields namely psychophysics, visual discomfort prediction and
texture analysis. I showed, that the feature can be simplified, which gives the possibility for
fast evaluation of the feature. The chapter concludes with experiments on the optimal param-
eter setting of the feature, which shows low sensitivity against parameter changes. Another
outcome of the experiments is a high correlation between the feature and visual discomfort.
These facts are summarized in table 5.1, which concludes the summary of feature properties
analysed in section 4.3. Note that the prediction accuracy and time complexity compared to
other features will be discussed in more detail in chapter 6.

Properties HC

Interpretability 3
Simplicity of Parameter Adaptation 3
Correlation withVisual Discomfort 3
Robustness w.r.t. Noise and Artefacts 3
Computational Efficiency 3

Table 5.1. Conclusion of table 4.3. Desirable properties of image features used for visual
discomfort measurement. Rating: 1 - neutral, 2 - good, 3 - very good.
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5.3. Summary

(a)

(b)

Figure 5.4. Example of stereoscopic images and corresponding disparity maps, (a) left views,
(b) disparity maps
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Figure 5.5. Sensitivity analysis for the parameter δ. The graph shows the CC between the
MOS and HC for the databases KaistDB (solid) and LausanneDB (dashed). The marked points
indicate the corresponding correlation coefficients for δ equal to 10% of the image width.
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6. Experiments

This chapter is intended to achieve the goal of this work, which is given as a question. First this
question is shortly reviewed and the answer is given as four claims. After that the experimental
setup is discussed. The rest of this chapter consists of experiments which underpin the four
claims. The chapter concludes with a summary about the observations of the experiments.

6.1. Goal of this Work

The goal of this work is given by a question: Is it possible to design a visual discomfort
measure, which achieves the same prediction accuracy as state-of-the-art models, while it
needs comparably lower runtime?

The answer to this question is Yes, and a measure having the desirable properties can be
modelled using the HC feature proposed in section 5.2. More precisely formulated I will give
the answer to this question and more, by four claims with respect to the approaches of [24,
30, 3, 21, 38] and the one of this work:

Claim 1 (Prediction Accuracy)
The expected prediction accuracy, which can be achieved by combinations including HC, is
significantly higher than for combinations without HC.

Claim 2 (Feature Selection)
Taking all the features under consideration, inclusive HC, into account, a total number of four
features is appropriate to predict visual discomfort.

Claim 3 (Time Complexity)
HC allows substantial time complexity improvement without significant loss of prediction
accuracy, compared to state-of-the-art approaches under consideration.

Claim 4 (Further Improvement)
The prediction accuracy, which can be achieved by the best combination without HC can be
improved by HC.

In the next sections, these claims are underpinned by statistical tests on two publicly avail-
able databases [19, 10]. The experimental analysis aims at providing evidence regarding the
following aspects: prediction accuracy (section 6.3), feature selection (section 6.4) and runtime
versus prediction accuracy (section 6.5). Concerning prediction accuracy, the potential of im-
proving the overall prediction accuracy will be checked by taking various feature combinations
into account. The section about feature selection is tackled by means of sensitivity analysis of
the expected accuracy of visual discomfort prediction depending on combinations of features
in order to determine the optimal choice of the number of features. Finally regarding run-
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time versus prediction accuracy it will be looked at the Pareto fronts when taking prediction
accuracy on the one hand, and computation time on the other hand into account.

Before that let me outline the experimental setup based on two publicly available databases.

6.2. Experimental Setup

The experimental analysis relies on two publicly available databases KaistDB [19] and Lau-
sanneDB [10]. Both databases store the information of subjective assessments following the
guidelines of [17]. These guidelines, from the International Telecommunication Union (ITU),
are about an optimal setup for the subjective assessments of visual quality. In both presented
assessments, stereoscopic images of size 1080 × 1920 where shown by a stereoscopic display,
three times the image width away from the rating subjects.

In the assessment of KaistDB, 19 subjects rated the level of visual discomfort associated
with 120 stereoscopic images. They were asked to give a rating on a five point grading scale.
The level of visual discomfort associated with a single image was then stored as mean opinion
score (MOS) of all the 19 subjects.

LausanneDB consists of MOS values of 54 images resulting from the assessment of 17 sub-
jects, where the subjective quality scores are obtained using an adapted single stimulus quality
scale method. This method consists of rating stereoscopic images on a continuous scale by a
single rating.

Note that, since the subjects were asked different questionnaires about a subjective feeling,
which does not have overall accepted definition, results on both databases can be very different.
Therefore, the same experimental setup can lead to different experimental results, which is a
common phenomenon in objective video quality rating. This phenomenon is also strengthened
by the fact that the only one definition of visual discomfort [25] was given four years before
the beginning of this work.

The disparity maps used in the experiments are computed by the SCCH by means of the
OpenCV implementation, [1], of the semi-global block matching algorithm [14]. Note that
the analysis of disparity generation algorithms exceeds the intuition of this work and only the
results are important. Examples of some disparity maps, displayed as normalized grey images,
can be seen in figure 5.4.

To model the relation between features and visual discomfort, I employ M5P regression
trees [37, 5] (see appendix A.3 for details of the algorithm). These machine learning functions
combine a decision tree with linear regression functions in the leaves, which gives the possibility
of compact and relatively comprehensible results. These functions are used because of two
reasons. The first reason is that the resulting models are well interpretable and the second
reason is about comparability. Since, Sohn et al. [38] also use M5P regression trees in their
work, some of the results of this work can directly be compared with the results of [38].

To quantify prediction accuracy I rely on the Pearson Product-Moment Correlation Coef-
ficient (CC), which is discussed in appendix A.2. The CC, evaluated between MOS of visual
discomfort and the output of visual discomfort measures, gives a measure of the prediction
accuracy.

Overfitting is a common phenomenon in computer vision. It occurs when a statistical
model describes random error or noise instead of the underlying relationship. This happens,
e.g. when a model is excessively complex, such as having too many parameters relative to the
number of observations. This is the case especially if too much features are combined to a
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function for predicting visual discomfort. To overcome this problem cross-validation can be
performed, which is discussed in appendix A.4.

To check statistical significance, two statistical tests are performed. The non-parametric
Mann-Whitney-U-Test [26] (MWU-test) and a one tailed F-test [8] (F-test). The MWU-test
is used for testing the mean values of sets for being different with statistical significance level
of 10−3. The F-test is used for testing, if one sample has statistical significant different CC
than a other.

To measure runtime, I rely on the OpenCV implementations [1] of the features. Since, for
some features, there does not exist publicly available implementations, I implemented these
features in Python [44] by using as much runtime optimized functions of [1] as possible. The
runtime was then measured by the mean runtime of several computations using all images
from both databases. For the object-based approach of [38] only the most time consuming
part was considered, which is identified to be the pyramid-based mean-shift segmentation
algorithm [4]. I repeated the evaluations 10 times on the 174 images of the two databases
(KaistDB, LausanneDB) on a DELL OptiPlex 990 (the images were resized to 540 × 960).
This results in a mean runtime of 1740 evaluations per feature.

The next section is devoted to the question whether the HC feature can be used to improve
the prediction accuracy of state-of-the-art visual discomfort measures with respect to the
approaches of [24, 30, 3, 21, 38], summarized in table 4.2. The result will be claim 1.

6.3. Prediction Accuracy

In the following it will be analysed, if the HC feature can be used to improve prediction
accuracy of visual discomfort measures using combinations of features described in section 4.3.
The natural question arises, if the most simple visual discomfort measures, which make use
of single features only, can be improved by adding the Haralick Contrast Feature HC to the
single feature. The first experiment is devoted to this question. It is analysed, whether a
combination of the Haralick Feature HC with a single feature, proposed in [24, 30, 3, 21,
38], shows higher prediction accuracy than the visual discomfort measure based on the single
feature and without HC. Note that it is not always true that a visual discomfort measure
based on two features shows higher prediction accuracy than the measure based on one of
these features only, since overfitting might occur.

Table 6.1 shows the result, which can be summarized by the following claim with respect
to the features proposed in section 4.3.

Claim 5 (Single Feature Prediction Accuracy)
The prediction accuracy of visual discomfort measures based on a single feature can substan-
tially be improved by adding the Haralick Contrast Feature HC.

The measures consist of a feature extraction part and a M5P regression tree (see ap-
pendix A.3) as machine learning function. To overcome the problem of overfitting, leave-
one-out cross-validation (see appendix A.4) was performed, which results in one prediction
score for every image in the database. The prediction accuracy of the visual discomfort mea-
sures was then measured by CC between the prediction results for all images of the databases
and the MOS of the subjective ratings. Figure 6.1 illustrates this experimental approach.

The resulting CCs in table 6.1 show the prediction accuracy of the visual discomfort measure
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Figure 6.1. Experimental approach

based on different features and the combination with HC.

The first column shows the CCs of visual discomfort measures based on a single feature
only, evaluated on the KaistDB. One can see that the prediction accuracy of measures, based
on the features RD and OT, is very low when used as single features only. The other features
show a CC over 74%, which is not low for measures predicting subjective feelings. The highest
CC is derived by a measure based on the Range10Sobel feature, which is printed in bolt.

The second column shows the CCs of visual discomfort measures, based on a single feature
only, evaluated on the LausanneDB. On that database, all except two measures show low
prediction accuracy, i.e. CC ≤ 60%. These two features are the variance of disparity V ar and
the HC feature. Note that the measure based on the HC feature shows the highest prediction
accuracy, which is another small result of this work. For the reason of the lower prediction
accuracy of visual discomfort measures on the LausanneDB, I refer to section 5.2.2.

The computation of the CCs of single features confirm the property analysis of the single
features in section 4.3 and tables 4.3 and 5.1.

The cells of the last two columns of the table show the prediction accuracy of a visual dis-
comfort measure based on the feature, to which the row corresponds to, and the HC feature.
The columns show that the combined use of the HC feature with one of the other features
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always improves prediction accuracy compared to the measures based on the single features
only. The improvement in CC ranges from 0.7% to 50.1%, which underpins claim 5.

Note that the results in this table are consistent with the tables in the work of Sohn et
al. [38], i.e. the first column of table 6.1 shows very similar CCs as the tables of [38]. This
indicates that there are no errors in the implementation of the features, as well as in the
machine learning part (M5P regression), the cross-validation part and the CC computations.

Single Feature
CC of Single

Feature
(KaistDB)

CC of Single
Feature

(LausanneDB)

CC of Single
Feature + HC

(KaistDB)

CC of Single
Feature + HC
(LausanneDB)

RD 0.2465 0.3539 0.7478 (+ 0.5013) 0.6972 (+ 0.3432)

OT 0.3807 0.1024 0.7627 (+ 0.3820) 0.7019 (+ 0.5994)
Mean 0.2995 0.5822 0.7603 (+ 0.4608) 0.7243 (+ 0.1420)
Var 0.7449 0.6901 0.7698 (+ 0.0249) 0.6972 (+ 0.0070)
Range10 0.7806 0.5248 0.7939 (+ 0.0133) 0.7244 (+ 0.1997)
Max5 0.7707 0.4746 0.8047 (+ 0.0340) 0.7312 (+ 0.2566)
Max5Sobel 0.7761 0.5089 0.8036 (+ 0.0275) 0.7327 (+ 0.2238)
Range10Sobel 0.7841 0.5437 0.7933 (+ 0.0092) 0.7168 (+ 0.1732)
HC 0.7593 0.6972 0.7593 (+ 0.0000) 0.6972 (+ 0.0000)

Table 6.1. Prediction performance of single features and the corresponding combination with
HC, based on the ground truth data given by the databases KaistDB [19] and LausanneDB [10].
Improvements are marked in bolt.

The next experiment is devoted to the question whether the HC feature can be used to
improve prediction accuracy of visual discomfort measures using different combinations of
features with potentially more than one feature. The 8 features under consideration (see
table 4.2), together with the proposed HC feature, yield in total

∑9
k=1

(
9
k

)
= 911 possible

feature combinations, where
(
x
y

)
denotes the binomial coefficient ”x choose y”. For all of these

911 combinations a M5P regression tree was trained using leave-one-out cross validation.
This yield two correlation coefficients for each combination, one for each database. After
that the results for all combinations without HC were combined into one set. The remaining
combinations, i.e. combinations including HC, wre also combined into one set. Then the mean
CC for both sets of combinations was computed. The result for KaistDB (LausanneDB) shows,
that the mean CC 0.81 (0.79) of the set of combinations including HC is higher than the mean
CC 0.79 (0.61) of the set of combinations without HC. The MWU-test shows the statistical
significance of the results (KaistDB: U = 25823.0, p-value= 4.419 · 10−5, LausanneDB: U =
6124.0, p-value= 2.8 · 10−70), which underpins claim 1.

Again note that an improvement of prediction accuracy is not always achieved by adding
features to the visual discomfort measures. Moreover, the prediction accuracy can become
worse by this process, which will be discussed in the next section. Also note that a statistically
significant difference of two values (e.g. mean CC) is a much stronger result than simply a
difference (see appendix A.5).
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6. Experiments

6.4. Feature Selection

In the following experiments the impact of the number of image features, of a visual discomfort
measure, is analysed. I often noticed the important fact that a high parameter complexity
of visual discomfort measures, i.e. too many parameters relative to the number of training
samples, can lead to a decrease of prediction performance, compared to the same measure
with a lower number of parameters. This effect is known as overfitting and its impact on
the prediction accuracy increases with the number of features. This is because the number
of parameters of the machine learning function (e.g. M5P regression tree) increases with the
number of features, which have to be combined. To restrict the number of features is therefore a
regularization measure that helps to improve the behaviour of the machine learning model [45].

Therefore we analyse the prediction accuracy measured in CC of the best combination for
every number of features, i.e. the combination with the highest CC for every feature number.
Figure 6.2 shows the result.

Figure 6.2. Analysis of prediction accuracy, measured by CC, of the best (i.e. highest CC)
combination with feature number n ∈ {1, . . . , 9} based on ground truth data from KaisDB
(solid), [19], and LausanneDB (dashed), [10].

The experimental results show that, taking the nine features under consideration into ac-
count, a feature number of four is appropriate to predict visual discomfort. Although the
experiment on the LausanneDB shows two combinations with a higher feature number having
higher CC, a statistical F-test indicates statistical equivalence (F-tests: Z ≤ 0.072,p-value
≥ 0.47). These results can be summarized by claim 2.

6.5. Pareto-Front

The goal of this work was given as a question and it is about the balance of prediction accuracy
and runtime of visual discomfort measures. Thus, I’m interested in feature combinations that
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6.5. Pareto-Front

are characterized by the property that it is impossible to reduce runtime, by exchanging image
features, without deteriorating prediction accuracy, and vice versa. Combinations with this
property are called Pareto-optimal solutions and they lie on the so-called Pareto front, see
e.g. [6]. Thus, I compute the Pareto front, with respect to prediction accuracy and runtime,
of all combinations with at most four features.

The Pareto front obtained, using ground truth data from KaistDB, is shown in figure 6.3a.
Every point in the figure corresponds to a combination with at most four features, where the
corresponding runtime (CC) is shown by the horizontal (vertical) axis. Three clusters can be
identified: combinations without object dependent features, OT and RD, having evaluation
runtime lower than one second, combinations with one object dependent feature (evaluation
time between three and four seconds) and combinations including OT and RD. The figure
shows that combinations including the two object dependent features don’t have higher pre-
diction accuracy than other combinations. It also shows some combinations, with the OT
feature and without the RD feature, having higher prediction accuracy than combinations
without that feature. This fact is the main result of Sohn et al.’s work [38], when not con-
sidering results of the HC feature. The dashed rectangles in figure 6.3a indicate figures 6.3b
and 6.3c, which scale up the enclosed parts in figure 6.3a.

Combinations in figures 6.3b and 6.3c, marked by ’×’ indicate combinations including
the HC feature. Note that all combinations in figure 6.3b are without object-dependent
features OT and RD. This figure also shows that many combinations on the Pareto front are
with the HC feature including the one with the highest prediction accuracy. This phenomenon
can also be seen in figure 6.3c, which shows the Pareto front including combinations with the
highest prediction accuracy.

Before discussing the combinations, lying on the Pareto front in detail let us consider the
results of the same experiment performed on the publicly available data of LausanneDB.

The Pareto front obtained using ground truth data from LausanneDB is shown in fig-
ure 6.4a. This figure shows that combinations with object dependent features don’t have
higher prediction accuracy than other combinations. The dashed rectangle in figure 6.3a in-
dicates figure 6.3b, which scales up the enclosed part, including the Pareto front. Since the
Pareto front of this experiment consists of combinations with runtime lower than one second,
all the combinations lying on the Pareto front are without object dependent features.

Combinations in figures 6.4b, marked by ’×’, again indicate combinations including the HC fea-
ture. Note that all except two combinations, lying on the Pareto front, are with the HC feature.

Now let us consider the Pareto front of the experiments on KaistDB and LausanneDB, in
detail. Tables 6.2 and 6.3 show the pareto optimal solutions of both experiments. Note that
in the KaistDB experiment, the HC feature is part of over 50% of the combinations and, in
the LausanneDB, the HC feature is part of all except two combinations. In both experiments
the HC feature is part of the combination with the highest CC, which underpins claim 4.

The tables also indicate that the HC feature can not only be used to improve prediction
accuracy, it also gives the opportunity to achieve substantial time complexity improvement.
For example, let us consider the combination consisting of V ar, Max5Sobel, HC and Mean.
This combination has a more than 58 times lower runtime than combinations with the object-
dependent features proposed by Sohn et al. in [38]. In addition to that, there does not exist
any combination out of 511 without HC, which shows a statistical improvement of prediction
accuracy (F-test, KaistDB: Z ∈ [0.0005; 0.6328], p-value ∈ [0.2634; 0.4998], LausanneDB: no
better combination without HC). Note that this result holds for both databases KaistDB and
LausanneDB. This indicates that the Haralick Contrast feature, extracted from the dispar-
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6. Experiments

ity map, with an appropriate parameter setting of δ, offers a reasonable trade-off between
prediction accuracy and time complexity. This underpins claim 3 and gives the answer to
the question, whether it is possible to design a visual discomfort measure, which achieves the
same prediction accuracy as state-of-the-art models, while it needs comparably lower runtime.
Thus, all arising problems of this work are solved and the goal of this work is achieved.

Combination on Pareto front Evaluation Time in Sec. CC

Mean 0.0004 0.300
Var 0.002 0.745
HC 0.006 0.759
HC, Mean 0.007 0.760
Var, HC 0.008 0.770
Max5 0.016 0.771
Range10 0.016 0.781
Max5, Mean 0.017 0.796
Var, Max5, Mean 0.018 0.803
Max5, HC 0.022 0.805
Max5, HC, Mean 0.023 0.814
Var, Max5, HC, Mean 0.024 0.816
Max5Sobel, HC, Mean 0.057 0.817
Var, Max5Sobel, HC, Mean 0.059 0.817
Var, OT, HC, Mean 3.425 0.824
Max5, OT 3.432 0.838
Max5, OT, Mean 3.433 0.839
Var, Max5, OT 3.434 0.842
Var, OT, Max5, HC 3.440 0.846
OT, Range10, Max5, HC 3.455 0.846

Table 6.2. Pareto optimal solutions of combinations with at most four features of experiment
on KaistDB [19]

Combination on Pareto front Evaluation Time in Sec. CC

Mean 0.0004 0.582
Var 0.002 0.690
HC 0.006 0.697
HC, Mean 0.007 0.724
Max5, HC 0.022 0.731
Var, Max5, HC 0.024 0.733
Range10, Max5, HC, Mean 0.039 0.778
Var, Range10, Max5, HC 0.040 0.787
Range10Sobel, Max5, HC, Mean 0.072 0.794

Table 6.3. Pareto optimal solutions of combinations with at most four features of experiment
on LausanneDB [10]

6.6. Summary

In this section experiments are done to underpin the claims given in the introduction. The
experiments are performed concerning three aspects: prediction accuracy, feature selection and
prediction accuracy versus runtime. The results show that the Haralick Contrast feature HC,
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6.6. Summary

which is firstly considered by this work in the field of visual discomfort prediction, offers a
reasonable trade-off between prediction accuracy and time complexity. Moreover it can be
used to improve the prediction accuracy of state-of-the-art visual discomfort measures with
respect to the approaches of [24, 30, 3, 21, 38].

The goal of this work, described in section 2, was achieved by experiments on two publicly
available databases [19, 10].
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6. Experiments

(a)

(b) (c)

Figure 6.3. Pareto front (solid line) of combinations with at most four features, considering
prediction accuracy and runtime, based on ground truth data of KaistDB [19]. (b) and (c)
scale up the details of (a) indicated by the dashed rectangles in (a). Combinations in (b) and
(c) marked by ’×’ indicate combinations including the HC feature.
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6.6. Summary

(a) (b)

Figure 6.4. Pareto front (solid line) of combinations with at most four features, considering
prediction accuracy and runtime based on ground truth data of LausanneDB [10]. (b) scales
up the details of (a) indicated by the dashed rectangle. Combinations in (b) marked by ’×’
indicate combinations including the HC feature.
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7. Conclusion and Outlook

In this work I addressed state-of-the-art computational models for predicting visual discom-
fort. Starting with an accurate characterization and analysis of state-of-the-art visual discom-
fort measures, a second order statistical feature was proposed. Derived from the grey-level
co-occurrence matrix, commonly used in texture analysis, I came up with a computational
efficient contrast feature based on the disparity map, the Haralick disparity contrast. Finally
experimental analysis showed that this feature allows to improve prediction accuracy and run-
time of state-of-the-art visual discomfort measures, when combined with other features. It
remains future research to integrate the model into an automated re-rendering software for
stereoscopic videos to minimize the effect of visual discomfort.
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A. Computer Vision Preliminaries

A.1. Sobel Operator

The Sobel-Operator of an image uses two 3×3 kernels, which are convolved with the image to
calculate approximations of derivatives. For a more formal definition, we first need to define
the commonly used two dimensional convolution.

Definition 2 (2D Discrete Convolution)
Let f and h be two images with size (Nf ,Mf ) and (Nh,Mh) respectively. Then, the two-
dimensional convolution g(x, y) = f ∗ h of the images is given by

g(i, j) =

Nf−1∑
n=0

Mf−1∑
m=0

f(n,m)h(i− n, j −m)

where 0 ≤ i ≤ Nf +Nh − 1 and 0 ≤ j ≤Mf +Mh − 1.

Now, let us define the horizontal and vertical derivative approximations.

Definition 3 (Horizontal and Vertical Derivative Approximation)
Let f be an image, then, the horizontal and vertical derivative approximations Gx and Gy of
the image f are defined by

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ f Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ f
Using that, one can define the Sobel-Operator by

Definition 4 (Sobel-Operator)
Let f be an image with size (Nf ,Mf ) and Gx, Gy be the horizontal respectively vertical
derivative approximations of f . Then, the Sobel-Operator S(f) of the image f is defined by

S(f)(i, j) =
√
Gx(i, j)2 +Gy(i, j)2

where 0 ≤ i ≤ Nf and 0 ≤ j ≤Mf .

Many image processing applications make use of the Sobel-Operator, like for example edge
detection algorithms. For a typical output see figure A.1.
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A. Computer Vision Preliminaries

(a) (b)

Figure A.1. Example of the application of the Sobel-Operator. (a) Original image, (b) Image
after the Application of the Sobel-Operator.

A.2. Pearson Product-Moment Correlation Coefficient

In statistics, the Pearson Product-Moment Correlation Coefficient (CC), is a measure of linear
correlation between two populations. It gives a value between −1 and 1, where 1 is total
positive correlation, 0 is no correlation and −1 is total negative correlation. It is defined by

Definition 5 (Pearson Product-Moment Correlation Coefficient)
Let X = {x0, . . . , xN} and Y = {y0, . . . , yN} be two populations, i.e. sets of samples xi and yi
of the same cardinality N +1, and let µX and µY be the mean values of X and Y respectively.
Then, the Pearson Product-Moment Correlation Coefficient CC(X, Y ) of X and Y is defined
by

CC(X, Y ) =

∑N
i=0(xi − µX)(yi − µY )√∑N

i=0(xi − µX)2

√∑N
i=0(yi − µY )2

Properties

The Pearson Product-Moment Correlation Coefficient CC(X, Y ) has the following properties

1. Strongest Correlation and Weakest Correlation:
Correlations equal to −1 and 1 represent samples, lying on a line.

2. Symmetry:
The Pearson Product-Moment Correlation Coefficient is symmetric, i.e. CC(X, Y ) =
CC(Y,X).
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A.3. M5P Regression Trees

3. Invariants To Translation and Scaling:
The CC is invariant to translation and scaling of the two variables, i.e. if X and Y are
two sets and a, b, c, d ∈ R, b, d ≥ 0, then CC(X, Y ) = CC(a+ bX, c+ dY ).

Geometric Interpretation

Let X = {x0, . . . , xN} and Y = {y0, . . . , yN} two sets of populations, i.e. sets of samples xi
and yi, of the same cardinality N + 1, and let µX and µY be the mean values of X and Y
respectively, then

CC(X, Y ) =

∑N
i=0(xi − µX)(yi − µY )√∑N

i=0(xi − µX)2

√∑N−1
i=0 (yi − µY )2

=

=

〈
X − µX ·~1, Y − µY ·~1

〉∥∥∥X − µX~1∥∥∥
2
·
∥∥∥Y − µY~1∥∥∥

2

(A.1)

with the (N+1)-dimensional vector ~1, where all entries are ones. Let l1 be the linear regression

line of the set X − µX , such that the mean squared error
√∑N

i=0(xi − l1(xi))2 is minimized.

Let l2 be the regression line of Y − µY then, by using equation A.1, we get

CC(X, Y ) = cos(l1, l2)

where cos refers to the cosine of the enclosed angle between l1 and l2. Thus, one can interpret
the Pearson Product-Moment Correlation Coefficient CC as the cosine of the enclosed angle
between the two regression lines, minimizing the mean squared error of the normalized sets.

A.3. M5P Regression Trees

In this section the M5P regression algorithm [37] is described. Regression trees are supervised
machine learning models, which combine conventional decision trees with the possibility of
regression functions in the leafs. This gives the possibility to divide the input values range
into smaller categories, for which separate regression models are built. The resulting prediction
model is a global non-continuous function for all input values.

For example let us consider multi-dimensional linear regression. The result of this supervised
learning technique is a global continuous linear function, holding over the entire data-space.
Thus, for data with lots of features interacting with each other in non-linear ways, assembling
the linear regression function can be very difficult and the interpretation of the result can be
very vague. To overcome these shortcomings the feature space can be sub-divided into smaller
regions where the interactions have better interpretability. If the interactions of multiple
features still remain vague one can again sub-divide this regions, i.e. she can perform recursive
partitioning. This process can be repeated until the regions contain values, which show ”clear”
linear relations (the meaning of ”clear” will be discussed later). Thus, the result contains a
simple linear regression function for every region, which gives a global, well interpretable, and
piece-wise linear regression model.
Let us consider a learning problem occurred due to an experiment of this work.
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A. Computer Vision Preliminaries

Given: MOS values for the 120 stereoscopic images of the KaistDB [19], a six-dimensional feature
vector for every image consisting of the extracted features Mean, V ar, Max5, Range10,
Range10Sobel and HC from the corresponding disparity maps of the images

Goal: Regression tree function

A possible output of the M5P regression algorithm is displayed in figure A.2. The result splits
the feature space into three parts: one part where the HC feature shows a value greater than
0.49, another part where HC is smaller or equal to 0.49, and Var is smaller or equal to 0.135
and the rest of the space. For each of the three regions, there exist a multi-dimensional linear
regression function, for example for the part, where HC(DI) > 0.49, the function has the form

V DC(I) =− 0.1134 ·Mean(DI)− 0.3861 · V ar(DI) + 1.887 ·Range10(DI)

− 0.8 ·Max5(DI)− 1.108 ·HC(DI) + 1.954 ·Range10Sobel(DI) + 0.811

and it gives a visual discomfort value V DC(I) for every image I. Note that theRange10Sobel
feature is only used in this leaf of the tree. This indicates, that the use of the Range10Sobel
feature, in this example, only makes sense, if the HC is high (> 0.49). Note that such inter-
pretations are, in that way, not possible in multi-dimensional linear regression.

Figure A.2. Example of a M5P regression tree, predicting visual discomfort V DC(I) of an
image I based on features extracted from the corresponding disparity map DI .

M5P Regression Tree Algorithm

Since this work is not intended to give the full theory of regression trees, only the major steps
of the M5P regression algorithm are proposed, as in [37].

Let T = {x0, . . . , xN} be a set of training samples with xi = {fi,0, . . . , fi,n}, feature values
fi,j and Y = {y0, . . . , yN} a set of objective values yi. Then the first step of the algorithm is
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A.3. M5P Regression Trees

to compute the standard deviation sdX of X.

sdX =

√√√√ N∑
i=0

(fi − µX)2

with the mean value µX of X. Unless the set X contains very few samples or the values vary
only slightly, X and respectively Y are split according to the outcome of a test. Let Xj be the
determined j-th subset of X, which is defined by the i-th outcome of the test with M possible
outcomes. Thus, for every possible outcome of the test, a subset Xj ⊂ X is defined. Now
one can treat the standard deviation sdXj of Xj, as a measure of error. Then the expected
error-reduction of the outcome Xj can be formulated as

∆error = sdX −
M∑
i

#Xj

#X
sdXj

with the cardinality #Xj of the set Xj. After that, the performed splitting strategy is chosen
by the test, which maximises the ∆error. This splitting strategy is then performed recursively
on the outcomes X0, . . . , XM of the chosen test.

Since this process often causes over-elaborated structures, the sub-trees have to be pruned
back, e.g. by replacing a sub-tree by leaf. The major innovation comes into play, after the
tree has been built. A detailed formulation of these steps is precluded by this work, but the
main ideas are as follows:

• Error Estimation:
The algorithm often has to compute the accuracy of a model on unseen variable values
xi, i.e. when pruning some sub-trees back. A residual of a model, for a special variable
value xi, is defined as the difference between the objective value yi of xi and the predicted
value x̃i, of the model for the value xi. The error of a model, for a set of variable values
Xj, is first estimated by the average residual of all values xi ∈ Xj. Since, this often

over-determines the error, this value is multiplied by
#Xj+ν

#Xj−ν , where ν gives the number

of parameters of the model. This multiplied factor increases the error for models with
many parameters when applied to small sets Xj of variable values xi.

• Linear Models:
The algorithm builds linear regression models for the leafs, in every iteration, by standard
linear regression, minimizing the mean squared error. In addition the algorithm restricts
the linear regression models to variables that are referenced by test or linear regression
models somewhere in the sub-tree at the node [37]. This has the effect that, when
comparing the accuracy of a sub-tree model with a linear regression model, these two
types of models have the same parameters.

• Pruning:
The algorithm estimates the above-mentioned error for every sub-tree and compares it
with the simplified above-mentioned linear model. If the simplified linear model has the
smaller error, the sub-tree is pruned to a leave.

These three major parts of the algorithm make it very interesting for a high number of
features and a comparably low number of training samples, as it is the case in this work.
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A.4. Cross-Validation

Given a dataset X = {x0, . . . , xn}, the goal of cross-validation is to find a partition of the
set X in two sets XT , XV with XT ∩ XV = X, in order to train a model f with unknown
parameters on the training set XT and to test the model on the test set XV . The training of the
model is performed by parameter estimation using the training set XT . Once, the parameters
are estimated, the model is then tested using the test set XV in order to validate the results
of the training phase.

This process is used to estimate how well the model will generalize to an independent
data set, for example in practice. Thereby the training phase is used to optimize the model
parameters as well as possible. Then the test set XV is used to validate the results of the
test phase using quality measures based on this set. A typical result of the test phase is
that the model does not fit to the test set XV as well as to the training set XT . This can
happen when the model parameters are over-estimated in the training phase, which is called
over-fitting. Over-fitting is particularly likely to happen in practice when the size of practical
usable training data is small or when the number of model parameters is large. Therefore the
test phase of the cross-validation process can also be seen as a test on how likely the model
will generalize to unseen data when it is trained using the parameter estimation algorithm of
the training phase.

Normally cross-validation is performed many times for different partitions of the data set X
and the results of the validation phases are aggregated to an overall error measure. This error
measure can then be used to rate how well the model and the parameter estimation process
will generalize in practice.

A special case of cross validation is leave-one-out cross-validation. There the cross-validation
process is performed multiple times on the training sets X\{x0}, . . . , X\{xn} and the test sets
{x0}, . . . , {xn} respectively. Finally the, in the test phases, estimated errors are aggregated to
one overall error measure. The advantage of leave-one-out cross-validation over other cross-
validations is that all, except one, samples xi ∈ X can be used to train the model. Therefore
this kind of cross-validation normally is used when the data set X is rather small, as in the
experiments of this work (see e.g. sample size of [10]). Another advantage of this method is
that the test set XV consists only of one sample. Therefore the error estimation process is
very sensitive to outliers. This outliers can store a high level on information in small datasets.
The leave-one-out cross-validation process is shown in figure A.3.

A.5. Statistical Tests

In the following I want to give a short overview of statistical test procedures, cited from [13].
But before that, it is necessary to give some definitions.

Definition 6 (Statistical Test)
A statistical test is a method of deducing properties of an underlying distribution T , called
test-statistic, by analysis of data, in order to verify a statistical hypothesis.

Definition 7 (Statistical Hypothesis)
A statistical hypothesis is a scientific hypothesis that is testable on the basis of observing a
process that is modelled via a set of random variables.
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Figure A.3. Leave-one-out cross-validation. In every experiment, the model f is trained using
the sets X\{x0}, . . . , X\{xn} and tested, using the sets {x0}, . . . , {xn} respectively. The results
f(x0), . . . , f(xn) of every iteration are then aggregated, shown by ⊗, to an overall error.

Furthermore, a result of a statistical test can be statistically significant.

Definition 8 (Statistically Significant Result)
A test result of a statistical test is called statistically significant, if it has been predicted as
unlikely by chance alone, according to a threshold probability, the so-called significance level.

The goal of a statistical test is to verify a statistical hypothesis H1 by rejecting the so-called
null-hypothesis H0 :”H1 does not hold” (H1 is called alternative hypothesis of H0). This is
done by determining how likely it would be, for a given set of observations X = {x0, . . . , xn},
to occur if H0 was true. If there is a high probability P (H0 holds) that X would not occur, if
H0 holds, then the hypothesis H0 can be rejected and H1 can be seen as verified. Note that
the probability of making an incorrect decision is not the probability that H0 holds, nor that
H1 is false, but often in practice it can be used to indicate that H0 is true.
A statistical test procedure, given a set of observationsX = {x0, . . . , xn}, can be summarized

by the following steps:

1. Formulation of the null-hypothesis H0 and the alternative hypothesis H1.

2. Choose a statistical test based on a test-statistic T .

3. Choose a confidence interval K based on a significance-level α, where K consists of
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values of T , which hold under H0 with probability smaller than α.

4. Compute from the observations X the observed value tX of T .

5. Reject H0, if tX ∈ K.

It can be shown that the following process is equivalent to the previous one:

1. Formulation of the null-hypothesis H0 and the alternative hypothesis H1.

2. Choose a statistical test based on the test-statistic T .

3. Choose a significance level α.

4. Compute from the observations X the observed value tX of T .

5. Calculate the p− value p that is the probability, under H0, of sampling a test statistic
as least as extreme as tX .

6. Reject H0, if and only if p < α.

In this form, a statistical test requires the calculation of the so-called p-value p, which is the
probability of sampling a test-statistic as least as extreme as the corresponding value tX of T ,
given X, under H0. The p-value is defined as

Definition 9 (p-value)
The p-value p is the probability of sampling a value t of T ”as least as extreme as” a given
value tX of T , given observations X, under a hypothesis H0. Where, ”as least as extreme”
means the probability of either {T ≥ tX} (right-tail-event), {T ≤ tX} (left-tail-event), or, the
smaller of {T ≥ tX} and {T ≤ tX} (double-sided-event).

p =


P (T ≥ tX |H0) right-tail-event

P (T ≤ tX |H0) left-tail-event

2 ·min (P (T ≥ tX |H0), P (T ≤ tX |H0)) double-sided-event

Examples of statistical tests are the non parametric Mann-Whitney U test and the one
tailed F-test.

A.5.1. Non Parametric Mann-Whitney U Test

The non parametric Mann-Whitney U test [26] is a test of the null-hypothesis that two pop-
ulations are from the same distribution. Especially is tested, if a particular population tends
to have larger values than an other. The test assumptions and formal statements of the hy-
pothesis are the following. Let X and Y be two random variables with distribution functions
FX and FY respectively, which are shifted with parameter a, i.e. FY (x) = FX(x − a). Let
X = {x0, . . . , xn} and Y = {y0, . . . , ym} be independent, then the Mann-Whitney U test is
based on the hypothesis

H0 : a = 0 and H1 : a 6= 0

Moreover the test is based on the calculation of the test-statistic U , which distribution under
H0 is known. The test-statistic is defined as
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Definition 10 (Mann-Whitney U Test Statistic)
The Mann-Whitney U test statistic of two sets of observations X = {x0, . . . , xn} and Y =
{y0, . . . , ym} is defined as

U =
n∑
i=0

m∑
j=0

[xi = yj]?

where [P ]? = 1 iff the clause P is true, and, [P ]? = 0 if P is false.

With this definition the normal way of statistical tests, as outlined above, can be used as
algorithm for the Mann-Whitney U test that is

1. Set H0 : a = 0 and H1 : a 6= 0, where a is assumed to be the shift between the distribution
functions fY (x) = fX(x−a) of the observations X = {x0, . . . , xn} and Y = {y0, . . . , ym}.

2. Set up the test-statistic U as defined above.

3. Choose a significance level α.

4. Calculate the p-value p, as defined above.

5. Reject H0 iff p < α.

This test is especially interesting, because it implies the rejection (acceptance) of the fol-
lowing hypothesis

H0 : µX = µY and H1 : µX 6= µY

with the mean values µX and µY , of X and Y respectively. Note that this implication is used
in this work to verify claim 1.

A.5.2. One Tailed F-Test

The test is based on the Fisher-Z-transformation [8] and it tests the null-hypothesis that two
samples have statistically different Pearson Product-Moment Correlation Coefficient (CC).
The Fisher-Z-transformation is defined as

Definition 11
Let CC(X, Y ) be the Pearson Product-Moment Correlation Coefficient of two observations
X = {x0, . . . , xN} and Y = {y0, . . . , yN}. Then the Fisher-Z-transformation z is defined as

z =
1

2
ln

(
1 + CC(X, Y )

1− CC(X, Y )

)
where ln(.) denotes the natural logarithm.

If (X, Y ) has approximately bivariate normal distribution and if all pairs (xi, yi) are indepen-

dent for i, j ∈ {0, . . . , N}, then z is approximately normal distributed with mean ln
(1+CC(X,Y )

1−CC(X,Y )

)
and standard deviation 1√

N−3
.
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This gives us the following steps for a statistical test based on a p-value. Let the three
observations X = {x0, . . . , xN}, Y = {y0, . . . , yN} and G = {g0, . . . , gN} be given. The
goal is to compare the two Pearson Product-Moment Correlation Coefficients CC(X,G) and
CC(Y,G) for being statistically significantly different, especially that CC(X,G) is statistically
significantly greater than CC(Y,G).

1. Set the null-hypothesis for the correlation coefficients ρX := CC(X,G) and ρY :=
CC(Y,G), H0 : ρX − ρY = 0 and the alternative hypothesis H1 : ρX − ρY > 0.

2. Set a significance-level α

3. Compute the Z-transformations zX and zY , of ρX and ρY respectively, as

zX =
1

2
ln

(
1 + ρX
1− ρX

)
and zY =

1

2
ln

(
1 + ρY
1− ρY

)
4. Note that the sum X+Y of two independent normal distributed variables X and Y , with

means µX and µY and standard deviations sdX and sdY respectively, is again normal
distributed with mean µX + µY and standard deviation sdX + sdY . This implies, that
the difference zX − zY is normal distributed with mean

1

2
ln

(
1 + ρX
1− ρX

)
− 1

2
ln

(
1 + ρY
1− ρY

)
and standard deviation 0 (the number of sample pairs (xi, gi) equals the number of pairs
(yi, gi) and is N).

Therefore, the p-value can be computed by

p = 1− f(zX − zY )

where f is the probability density function of the normal distribution with mean and
standard deviation computed as above.

5. Reject H0 iff p < α.
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Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die
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